
Interpolation in Valiant’s theory

Pascal Koiran Sylvain Perifel

LIP, ENS Lyon

Paderborn, October 30, 2007

Introduction

Two ways of computing a polynomial with integer coefficients

I Algorithm that evaluates the polynomial at an integer point.
Example: P(x, y) = (x + y)2 on input (1, 3)→ 16.

I Arithmetic circuit that computes the polynomial.
Example:

x y

+

×

Introduction

Two ways of computing a polynomial with integer coefficients

I Algorithm that evaluates the polynomial at an integer point.
Example: P(x, y) = (x + y)2 on input (1, 3)→ 16.

I Arithmetic circuit that computes the polynomial.
Example:

x y

+

×

A question of Papadimitriou

Question ♣

If a polynomial P can be evaluated by a polynomial-time algorithm,
is it true that it is computable by an arithmetic circuit of polynomial
size?

In other words, does the use of boolean operations other than +

and × enable a superpolynomial speed-up in the computation?

I The use of families of polynomials makes these questions
meaningful.

A question of Papadimitriou

Question ♣

If a polynomial P can be evaluated by a polynomial-time algorithm,
is it true that it is computable by an arithmetic circuit of polynomial
size?

In other words, does the use of boolean operations other than +

and × enable a superpolynomial speed-up in the computation?

I The use of families of polynomials makes these questions
meaningful.

A question of Papadimitriou

Question ♣

If a polynomial P can be evaluated by a polynomial-time algorithm,
is it true that it is computable by an arithmetic circuit of polynomial
size?

In other words, does the use of boolean operations other than +

and × enable a superpolynomial speed-up in the computation?

I The use of families of polynomials makes these questions
meaningful.

Divisions

I Strassen: positive answer for divisions if the polynomial has a
polynomial degree.

I Idea: replace 1
1−x by 1 + x + x2 + · · ·+ xp(n).

I What if the degree is not polynomial ?

Divisions

I Strassen: positive answer for divisions if the polynomial has a
polynomial degree.

I Idea: replace 1
1−x by 1 + x + x2 + · · ·+ xp(n).

I What if the degree is not polynomial ?

Discussion

I In order to show that question ♣ has a negative answer, one
looks for a polynomial P that can be evaluated in polynomial
time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don’t work:
determinant, permanent, etc.).

I In order to show that question ♣ has a positive answer, one
wants to transform an evaluation algorithm into an arithmetic
circuit.

Discussion

I In order to show that question ♣ has a negative answer, one
looks for a polynomial P that can be evaluated in polynomial
time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don’t work:
determinant, permanent, etc.).

I In order to show that question ♣ has a positive answer, one
wants to transform an evaluation algorithm into an arithmetic
circuit.

Discussion

I In order to show that question ♣ has a negative answer, one
looks for a polynomial P that can be evaluated in polynomial
time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don’t work:
determinant, permanent, etc.).

I In order to show that question ♣ has a positive answer, one
wants to transform an evaluation algorithm into an arithmetic
circuit.

Main result

If question ♣ has a negative answer, then VP , VNP.

Outline

1. Valiant’s classes

2. The counting hierarchy

3. Interpolation

4. Consequences

Arithmetic circuits

Arithmetic circuits:
I gates + and ×
I inputs x1, . . . , xn and the constant −1
I → multivariate polynomials with integer coefficients.

x1 x2 −1

× ×

+

+

Disclaimer

We will skip the problem of constants and of uniformity. . .

P and NP in Valiant’s model

I Family of polynomials (fn): one circuit Cn per polynomial
fn ∈ Z[x1, . . . , xu(n)].

I VP: families of polynomials of polynomial degree computed
by arithmetic circuits of polynomial size.
Example: the determinant

detn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

ε(σ)
n∏

i=1

xi,σ(i).

P and NP in Valiant’s model

I Family of polynomials (fn): one circuit Cn per polynomial
fn ∈ Z[x1, . . . , xu(n)].

I VP: families of polynomials of polynomial degree computed
by arithmetic circuits of polynomial size.
Example: the determinant

detn(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

ε(σ)
n∏

i=1

xi,σ(i).

P and NP in Valiant’s model

I VNP: exponential sum of a VP family. If
(fn(x1, . . . , xu(n), y1, . . . , yp(n))) ∈ VP,

gn(x1, . . . , xu(n)) =
∑

ε̄∈{0,1}p(n)

fn(x̄, ε̄)

Example: the permanent (VNP-complete)

pern(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

Counting classes

I Languages (PP) or functions (]P). We will focus on languages.

I A language A is in PP if there exists a polynomial-time
nondeterministic Turing machine such that x ∈ A iff more than
half of the computation paths are accepting.

I A function f : {0, 1}∗ → N is in]P if it counts the number of
accepting paths of a polynomial-time nondeterministic Turing
machine.

Counting classes

I Languages (PP) or functions (]P). We will focus on languages.

I A language A is in PP if there exists a polynomial-time
nondeterministic Turing machine such that x ∈ A iff more than
half of the computation paths are accepting.

I A function f : {0, 1}∗ → N is in]P if it counts the number of
accepting paths of a polynomial-time nondeterministic Turing
machine.

Counting classes

I Languages (PP) or functions (]P). We will focus on languages.

I A language A is in PP if there exists a polynomial-time
nondeterministic Turing machine such that x ∈ A iff more than
half of the computation paths are accepting.

I A function f : {0, 1}∗ → N is in]P if it counts the number of
accepting paths of a polynomial-time nondeterministic Turing
machine.

Counting hierarchy

I Counting hierarchy: CH = PP ∪ PPPP ∪ PPPPPP
∪ . . . (similarity

with the polynomial hierarchy).

I Majority operator C: if C is a complexity class, C.C is the set of
languages A such that there exists a language B ∈ C
satisfying:

x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x |) | (x, y) ∈ B} ≥ 2p(|x |)−1.

I C0P = P et Ci+1P = C.CiP. Then CH = ∪iCiP.

Counting hierarchy

I Counting hierarchy: CH = PP ∪ PPPP ∪ PPPPPP
∪ . . . (similarity

with the polynomial hierarchy).

I Majority operator C: if C is a complexity class, C.C is the set of
languages A such that there exists a language B ∈ C
satisfying:

x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x |) | (x, y) ∈ B} ≥ 2p(|x |)−1.

I C0P = P et Ci+1P = C.CiP. Then CH = ∪iCiP.

Some inclusions

P

BPP
NP

PH

PPP

CH

PSPACE

A central lemma

Lemma

If VP = VNP then CH = P.

Proof (idea)
If VP = VNP then the permanent has polynomial-size arithmetic
circuits. Then it can be evaluated in polynomial time. Since the
permanent is]P-complete, it yields PP = P, hence CH = P. �

Sequences of integers

Definition

A sequence of integers (an,k)k≤2p(n) of exponential bitsize is
computable in CH if

{(1n, k , j, b) | the j-th bit of an,k is b} ∈ CH.

Some results of Bürgisser

Theorem (Bürgisser)

If (an,k) is computable in CH, then it is also the case of

cn =
2p(n)∑
k=0

a(n, k) and dn =
2p(n)∏
k=0

a(n, k).

Proof (idea)
Key ingredient: iterated addition and multiplication are in
LOGTIME-uniform TC0 (recent result of Hesse, Allender and
Barrington for the multiplication). Then scaling up to obtain the
result on the counting hierarchy.
TC0: polynomial-size circuits of constant depth with majority gates.
LOGTIME-uniform: very strong uniformity condition. �

Main result (bis)

If question ♣ has a negative answer, then VP , VNP.

In other words, if VP = VNP then question ♣ has a positive
answer: we know how to transform an evaluation algorithm into an
arithmetic circuit.

Main result (bis)

If question ♣ has a negative answer, then VP , VNP.

In other words, if VP = VNP then question ♣ has a positive
answer: we know how to transform an evaluation algorithm into an
arithmetic circuit.

Some tools from Lagrange

Going from the evaluation at integer points to the computation:
Lagrange interpolation.

Lemma (Lagrange interpolation)

Let p(x) be a polynomial in one variable and of degree ≤ d. Then

p(x) =
d∑

i=0

p(i)
∏
j,i

x − j
i − j
,

where the integer j ranges from 0 to d.

Proof
Both polynomials are of degree ≤ d and coincide on d + 1
points. �

Some tools from Lagrange

Going from the evaluation at integer points to the computation:
Lagrange interpolation.

Lemma (Lagrange interpolation)

Let p(x) be a polynomial in one variable and of degree ≤ d. Then

p(x) =
d∑

i=0

p(i)
∏
j,i

x − j
i − j
,

where the integer j ranges from 0 to d.

Proof
Both polynomials are of degree ≤ d and coincide on d + 1
points. �

Lagrange interpolation

Lemma

Let p(x1, . . . , xn) be a polynomial of degree ≤ d. Then

p(x1, . . . , xn) =
∑

0≤i1,...,in≤d

p(i1, . . . , in)
n∏

k=1

(∏
jk,ik

xk − jk
ik − jk

)
,

where the integers jk range from 0 to d.

Main result (ter)

Definition

Let (fn(x1, . . . , xu(n))) be a family of polynomials. We say that (fn)
can be evaluated in CH at integer points if

{(1n, i1, . . . , iu(n), j, b) | the j-th bit of fn(i1, . . . , iu(n)) is b} ∈ CH.

What we will show:

(if VP = VNP and f can be evaluated in CH at integer points)
then f has a polynomial-size circuit.

Main result (ter)

Definition

Let (fn(x1, . . . , xu(n))) be a family of polynomials. We say that (fn)
can be evaluated in CH at integer points if

{(1n, i1, . . . , iu(n), j, b) | the j-th bit of fn(i1, . . . , iu(n)) is b} ∈ CH.

What we will show:

(if VP = VNP and f can be evaluated in CH at integer points)
then f has a polynomial-size circuit.

Valiant’s criterion

Definition of VPnb: idem VP but without the polynomial constraint
on the degree
−→ families of polynomials computed by arithmetic circuits of
polynomial size.

Lemma

Let

fn(x1, . . . , xn) =
∑

α(1),...,α(n)

a(n, α(1), . . . , α(n))xα
(1)

1 · · · xα
(n)

n ,

where a(n, α(1), . . . , α(n)) is a sequence of integers computable in
CH.
If VP = VNP then (fn) ∈ VPnb.

Valiant’s criterion

Definition of VPnb: idem VP but without the polynomial constraint
on the degree
−→ families of polynomials computed by arithmetic circuits of
polynomial size.

Lemma

Let

fn(x1, . . . , xn) =
∑

α(1),...,α(n)

a(n, α(1), . . . , α(n))xα
(1)

1 · · · xα
(n)

n ,

where a(n, α(1), . . . , α(n)) is a sequence of integers computable in
CH.
If VP = VNP then (fn) ∈ VPnb.

Main theorem

Theorem

Let (fn(x1, . . . , xu(n))) be a family of multivariate polynomials.
Suppose (fn) can be evaluated in CH at integer points. If
VP = VNP then (fn) ∈ VPnb.

Proof (idea)

I By the results of Bürgisser, the coefficients of the interpolation
polynomial are computable in CH.

I By Valiant’s criterion, if VP = VNP then (fn) ∈ VPnb. �

Main theorem

Theorem

Let (fn(x1, . . . , xu(n))) be a family of multivariate polynomials.
Suppose (fn) can be evaluated in CH at integer points. If
VP = VNP then (fn) ∈ VPnb.

Proof (idea)

I By the results of Bürgisser, the coefficients of the interpolation
polynomial are computable in CH.

I By Valiant’s criterion, if VP = VNP then (fn) ∈ VPnb. �

Summary

I Under the hypothesis VP = VNP, we aim at showing that a
family of polynomials that can be “easily evaluated” has
polynomial-size circuits.

I Idea: use Lagrange interpolation (enables to go from the
evaluation to the polynomial itself).

I Technical points:
I Valiant’s criterion: if the coefficients are computable in CH,

then the polynomial has polynomial-size circuits (under the
hypothesis that VP = VNP)

I the results of Bürgisser enable to compute in CH the
coefficients of the interpolation polynomial.

Summary

I Under the hypothesis VP = VNP, we aim at showing that a
family of polynomials that can be “easily evaluated” has
polynomial-size circuits.

I Idea: use Lagrange interpolation (enables to go from the
evaluation to the polynomial itself).

I Technical points:
I Valiant’s criterion: if the coefficients are computable in CH,

then the polynomial has polynomial-size circuits (under the
hypothesis that VP = VNP)

I the results of Bürgisser enable to compute in CH the
coefficients of the interpolation polynomial.

Summary

I Under the hypothesis VP = VNP, we aim at showing that a
family of polynomials that can be “easily evaluated” has
polynomial-size circuits.

I Idea: use Lagrange interpolation (enables to go from the
evaluation to the polynomial itself).

I Technical points:
I Valiant’s criterion: if the coefficients are computable in CH,

then the polynomial has polynomial-size circuits (under the
hypothesis that VP = VNP)

I the results of Bürgisser enable to compute in CH the
coefficients of the interpolation polynomial.

Consequence for question ♣

Theorem

If question ♣ has a negative answer, then VP , VNP.

Remark: if question ♣ has a positive answer, then
P = PP⇒ VP = VNP.

Consequence for question ♣

Theorem

If question ♣ has a negative answer, then VP , VNP.

Remark: if question ♣ has a positive answer, then
P = PP⇒ VP = VNP.

Bounded and unbounded versions

Theorem

(In a constant-free context)

VP = VNP⇒ VPnb = VNPnb.

Remark: on fields of positive characteristic, this result was shown
by Malod (2003).

Transfer toward BSS

I Algebraic versions of P and NP: Blum-Shub-Smale model.

I On a field K of characteristic zero, operations +, × and =.

I Separation of PK and NPK thanks to problems in NP(K ,+,=)?
(Twenty Questions, Subset Sum, . . .)

Theorem

VP = VNP⇒ NP(K ,+,=) ⊆ P(K ,+,×,=).

We use exponential-size products as an intermediate step.

Transfer toward BSS

I Algebraic versions of P and NP: Blum-Shub-Smale model.

I On a field K of characteristic zero, operations +, × and =.

I Separation of PK and NPK thanks to problems in NP(K ,+,=)?
(Twenty Questions, Subset Sum, . . .)

Theorem

VP = VNP⇒ NP(K ,+,=) ⊆ P(K ,+,×,=).

We use exponential-size products as an intermediate step.

Transfer toward BSS

I Algebraic versions of P and NP: Blum-Shub-Smale model.

I On a field K of characteristic zero, operations +, × and =.

I Separation of PK and NPK thanks to problems in NP(K ,+,=)?
(Twenty Questions, Subset Sum, . . .)

Theorem

VP = VNP⇒ NP(K ,+,=) ⊆ P(K ,+,×,=).

We use exponential-size products as an intermediate step.

Conclusion

I Question ♣ is central but difficult: if the answer is positive, we
obtain a transfer result; otherwise we obtain the separation of
VP and VNP.

I Little intuition on the answer.

I Candidates for a negative answer? (polynomials that can be
easily evaluated but that do not have polynomial-size circuits)

Conclusion

I Question ♣ is central but difficult: if the answer is positive, we
obtain a transfer result; otherwise we obtain the separation of
VP and VNP.

I Little intuition on the answer.

I Candidates for a negative answer? (polynomials that can be
easily evaluated but that do not have polynomial-size circuits)

Conclusion

I Question ♣ is central but difficult: if the answer is positive, we
obtain a transfer result; otherwise we obtain the separation of
VP and VNP.

I Little intuition on the answer.

I Candidates for a negative answer? (polynomials that can be
easily evaluated but that do not have polynomial-size circuits)

Outline

1. Valiant’s classes

2. The counting hierarchy

3. Interpolation

4. Consequences

	Valiant's classes
	The counting hierarchy
	Interpolation
	Consequences

