Interpolation in Valiant's theory

Pascal Koiran Sylvain Perifel

LIP, ENS Lyon

Paderborn, October 30, 2007

Introduction

Two ways of computing a polynomial with integer coefficients

- Algorithm that evaluates the polynomial at an integer point. Example: $P(x, y)=(x+y)^{2}$ on input $(1,3) \rightarrow 16$.

Introduction

Two ways of computing a polynomial with integer coefficients

- Algorithm that evaluates the polynomial at an integer point. Example: $P(x, y)=(x+y)^{2}$ on input $(1,3) \rightarrow 16$.
- Arithmetic circuit that computes the polynomial. Example:

A question of Papadimitriou

Question $2 \cdot$

If a polynomial P can be evaluated by a polynomial-time algorithm, is it true that it is computable by an arithmetic circuit of polynomial size?

A question of Papadimitriou

Question 2

If a polynomial P can be evaluated by a polynomial-time algorithm, is it true that it is computable by an arithmetic circuit of polynomial size?

In other words, does the use of boolean operations other than + and \times enable a superpolynomial speed-up in the computation?

A question of Papadimitriou

Question 2*

If a polynomial P can be evaluated by a polynomial-time algorithm, is it true that it is computable by an arithmetic circuit of polynomial size?

In other words, does the use of boolean operations other than + and \times enable a superpolynomial speed-up in the computation?

- The use of families of polynomials makes these questions meaningful.

Divisions

- Strassen: positive answer for divisions if the polynomial has a polynomial degree.
- Idea: replace $\frac{1}{1-x}$ by $1+x+x^{2}+\cdots+x^{p(n)}$.

Divisions

- Strassen: positive answer for divisions if the polynomial has a polynomial degree.
- Idea: replace $\frac{1}{1-x}$ by $1+x+x^{2}+\cdots+x^{p(n)}$.
- What if the degree is not polynomial ?

Discussion

- In order to show that question \& has a negative answer, one looks for a polynomial P that can be evaluated in polynomial time but cannot be computed by polynomial-size circuits.

Discussion

- In order to show that question \& has a negative answer, one looks for a polynomial P that can be evaluated in polynomial time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don't work: determinant, permanent, etc.).

Discussion

- In order to show that question \& has a negative answer, one looks for a polynomial P that can be evaluated in polynomial time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don't work: determinant, permanent, etc.).

- In order to show that question \& has a positive answer, one wants to transform an evaluation algorithm into an arithmetic circuit.

Main result

If question \& has a negative answer, then VP $\neq \mathrm{VNP}$.

Outline

1. Valiant's classes
2. The counting hierarchy
3. Interpolation
4. Consequences

Arithmetic circuits

Arithmetic circuits:

- gates + and \times
- inputs x_{1}, \ldots, x_{n} and the constant -1
- \rightarrow multivariate polynomials with integer coefficients.

Disclaimer

We will skip the problem of constants and of uniformity...

P and NP in Valiant's model

- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.

P and NP in Valiant's model

- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.
- VP: families of polynomials of polynomial degree computed by arithmetic circuits of polynomial size.
Example: the determinant

$$
\operatorname{det}_{n}\left(x_{1,1}, \ldots, x_{1, n}, x_{2,1}, \ldots, x_{n, n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \epsilon(\sigma) \prod_{i=1}^{n} x_{i, \sigma(i)} .
$$

P and NP in Valiant's model

- VNP: exponential sum of a VP family. If $\left(f_{n}\left(x_{1}, \ldots, x_{u(n)}, y_{1}, \ldots, y_{p(n)}\right)\right) \in \mathrm{VP}$,

$$
g_{n}\left(x_{1}, \ldots, x_{u(n)}\right)=\sum_{\bar{\epsilon} \in\{0,1\}^{p(n)}} f_{n}(\bar{x}, \bar{\epsilon})
$$

Example: the permanent (VNP-complete)

$$
\operatorname{per}_{n}\left(x_{1,1}, \ldots, x_{1, n}, x_{2,1}, \ldots, x_{n, n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Counting classes

- Languages (PP) or functions ($\sharp \mathrm{P}$). We will focus on languages.

Counting classes

- Languages (PP) or functions ($\# \mathrm{P}$). We will focus on languages.
- A language A is in PP if there exists a polynomial-time nondeterministic Turing machine such that $x \in A$ iff more than half of the computation paths are accepting.

Counting classes

- Languages (PP) or functions ($\sharp \mathrm{P}$). We will focus on languages.
- A language A is in PP if there exists a polynomial-time nondeterministic Turing machine such that $x \in A$ iff more than half of the computation paths are accepting.
- A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\sharp \mathrm{P}$ if it counts the number of accepting paths of a polynomial-time nondeterministic Turing machine.

Counting hierarchy

- Counting hierarchy: $\mathrm{CH}=\mathrm{PP} \cup \mathrm{PP}^{\mathrm{PP}} \cup \mathrm{PP}^{\mathrm{PP}}{ }^{\mathrm{PP}} \cup \ldots$ (similarity with the polynomial hierarchy).

Counting hierarchy

- Counting hierarchy: $\mathrm{CH}=\mathrm{PP} \cup \mathrm{PP}^{\mathrm{PP}} \cup \mathrm{PP}^{\mathrm{PPPP}} \cup \ldots$ (similarity with the polynomial hierarchy).
- Majority operator \mathbf{C} : if C is a complexity class, $\mathbf{C} . C$ is the set of languages A such that there exists a language $B \in C$ satisfying:

$$
x \in A \Longleftrightarrow \#\left\{y \in\{0,1\}^{p(|x|)} \mid(x, y) \in B\right\} \geq 2^{p(|x|)-1}
$$

- $C_{0} P=\mathrm{P}$ et $C_{i+1} P=\mathbf{C} . C_{i} P$. Then $\mathrm{CH}=\cup_{i} C_{i} P$.

Some inclusions

A central lemma

Lemma

If $\mathrm{VP}=\mathrm{VNP}$ then $\mathrm{CH}=\mathrm{P}$.

Proof (idea)
If $\mathrm{VP}=\mathrm{VNP}$ then the permanent has polynomial-size arithmetic circuits. Then it can be evaluated in polynomial time. Since the permanent is $\sharp \mathrm{P}$-complete, it yields $\mathrm{PP}=\mathrm{P}$, hence $\mathrm{CH}=\mathrm{P}$.

Sequences of integers

Definition

A sequence of integers $\left(a_{n, k}\right)_{k \leq 2^{p(n)}}$ of exponential bitsize is computable in CH if

$$
\left\{\left(1^{n}, k, j, b\right) \mid \text { the } j \text {-th bit of } a_{n, k} \text { is } b\right\} \in \mathrm{CH} .
$$

Some results of Bürgisser

Theorem (Bürgisser)

If $\left(a_{n, k}\right)$ is computable in CH , then it is also the case of

$$
c_{n}=\sum_{k=0}^{2^{p(n)}} a(n, k) \quad \text { and } \quad d_{n}=\prod_{k=0}^{p^{p(n)}} a(n, k)
$$

Proof (idea)
Key ingredient: iterated addition and multiplication are in LOGTIME-uniform TC ${ }^{0}$ (recent result of Hesse, Allender and Barrington for the multiplication). Then scaling up to obtain the result on the counting hierarchy.
TC^{0} : polynomial-size circuits of constant depth with majority gates. LOGTIME-uniform: very strong uniformity condition.

Main result (bis)

If question * has a negative answer, then VP $\neq \mathrm{VNP}$.

Main result (bis)

If question * has a negative answer, then VP $\neq \mathrm{VNP}$.
In other words, if VP = VNP then question * has a positive answer: we know how to transform an evaluation algorithm into an arithmetic circuit.

Some tools from Lagrange

Going from the evaluation at integer points to the computation: Lagrange interpolation.

Some tools from Lagrange

Going from the evaluation at integer points to the computation: Lagrange interpolation.

Lemma (Lagrange interpolation)

Let $p(x)$ be a polynomial in one variable and of degree $\leq d$. Then

$$
p(x)=\sum_{i=0}^{d} p(i) \prod_{j \neq i} \frac{x-j}{i-j},
$$

where the integer j ranges from 0 to d.
Proof
Both polynomials are of degree $\leq d$ and coincide on $d+1$ points.

Lagrange interpolation

Lemma

Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial of degree $\leq d$. Then

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{0 \leq i_{1}, \ldots, i_{n} \leq d} p\left(i_{1}, \ldots, i_{n}\right) \prod_{k=1}^{n}\left(\prod_{j_{k} \neq i_{k}} \frac{x_{k}-j_{k}}{i_{k}-j_{k}}\right),
$$

where the integers j_{k} range from 0 to d.

Main result (ter)

Definition

Let $\left(f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)\right)$ be a family of polynomials. We say that $\left(f_{n}\right)$ can be evaluated in CH at integer points if

$$
\left\{\left(1^{n}, i_{1}, \ldots, i_{u(n)}, j, b\right) \mid \text { the } j \text {-th bit of } f_{n}\left(i_{1}, \ldots, i_{u(n)}\right) \text { is } b\right\} \in \mathrm{CH} \text {. }
$$

Main result (ter)

Definition

Let $\left(f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)\right)$ be a family of polynomials. We say that $\left(f_{n}\right)$ can be evaluated in CH at integer points if

$$
\left\{\left(1^{n}, i_{1}, \ldots, i_{u(n)}, j, b\right) \mid \text { the } j \text {-th bit of } f_{n}\left(i_{1}, \ldots, i_{u(n)}\right) \text { is } b\right\} \in \mathrm{CH} \text {. }
$$

What we will show:
(if $\mathrm{VP}=\mathrm{VNP}$ and f can be evaluated in CH at integer points) then f has a polynomial-size circuit.

Valiant's criterion

Definition of $\mathrm{VP}_{\mathrm{nb}}$: idem VP but without the polynomial constraint on the degree
\longrightarrow families of polynomials computed by arithmetic circuits of polynomial size.

Valiant's criterion

Definition of $\mathrm{VP}_{\mathrm{nb}}$: idem VP but without the polynomial constraint on the degree
\longrightarrow families of polynomials computed by arithmetic circuits of polynomial size.

Lemma

Let

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha^{(1)}, \ldots, \alpha^{(n)}} a\left(n, \alpha^{(1)}, \ldots, \alpha^{(n)}\right) x_{1}^{\alpha^{(1)}} \cdots x_{n}^{\alpha^{(n)}}
$$

where $a\left(n, \alpha^{(1)}, \ldots, \alpha^{(n)}\right)$ is a sequence of integers computable in CH.
If $\mathrm{VP}=\mathrm{VNP}$ then $\left(f_{n}\right) \in \mathrm{VP}_{\mathrm{nb}}$.

Main theorem

Theorem

Let $\left(f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)\right)$ be a family of multivariate polynomials. Suppose (f_{n}) can be evaluated in CH at integer points. If $\mathrm{VP}=\mathrm{VNP}$ then $\left(f_{n}\right) \in \mathrm{VP}_{\mathrm{nb}}$.

Main theorem

Theorem

Let $\left(f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)\right)$ be a family of multivariate polynomials.
Suppose (f_{n}) can be evaluated in CH at integer points. If $\mathrm{VP}=\mathrm{VNP}$ then $\left(f_{n}\right) \in \mathrm{VP}_{\mathrm{nb}}$.

Proof (idea)

- By the results of Bürgisser, the coefficients of the interpolation polynomial are computable in CH .
- By Valiant's criterion, if VP $=\mathrm{VNP}$ then $\left(f_{n}\right) \in \mathrm{VP}_{\mathrm{nb}}$.

Summary

- Under the hypothesis VP = VNP, we aim at showing that a family of polynomials that can be "easily evaluated" has polynomial-size circuits.

Summary

- Under the hypothesis VP = VNP, we aim at showing that a family of polynomials that can be "easily evaluated" has polynomial-size circuits.
- Idea: use Lagrange interpolation (enables to go from the evaluation to the polynomial itself).

Summary

- Under the hypothesis VP = VNP, we aim at showing that a family of polynomials that can be "easily evaluated" has polynomial-size circuits.
- Idea: use Lagrange interpolation (enables to go from the evaluation to the polynomial itself).
- Technical points:
- Valiant's criterion: if the coefficients are computable in CH, then the polynomial has polynomial-size circuits (under the hypothesis that VP = VNP)
- the results of Bürgisser enable to compute in CH the coefficients of the interpolation polynomial.

Consequence for question *

Theorem

If question \& has a negative answer, then VP $\neq \mathrm{VNP}$.

Consequence for question *

Theorem

If question \& has a negative answer, then VP $\neq \mathrm{VNP}$.

Remark: if question * has a positive answer, then
$\mathrm{P}=\mathrm{PP} \Rightarrow \mathrm{VP}=\mathrm{VNP}$.

Bounded and unbounded versions

Theorem

(In a constant-free context)

$$
\mathrm{VP}=\mathrm{VNP} \Rightarrow \mathrm{VP}_{\mathrm{nb}}=\mathrm{VNP}_{\mathrm{nb}}
$$

Remark: on fields of positive characteristic, this result was shown by Malod (2003).

Transfer toward BSS

- Algebraic versions of P and NP: Blum-Shub-Smale model.
- On a field K of characteristic zero, operations,$+ \times$ and $=$.

Transfer toward BSS

- Algebraic versions of P and NP: Blum-Shub-Smale model.
- On a field K of characteristic zero, operations,$+ \times$ and $=$.
- Separation of P_{K} and NP_{K} thanks to problems in $\mathrm{NP}_{(K,+,=)}$? (Twenty Questions, Subset Sum, ...)

Transfer toward BSS

- Algebraic versions of P and NP: Blum-Shub-Smale model.
- On a field K of characteristic zero, operations,$+ \times$ and $=$.
- Separation of P_{K} and NP_{K} thanks to problems in $\mathrm{NP}_{(K,+,=)}$? (Twenty Questions, Subset Sum, ...)

Theorem

$\mathrm{VP}=\mathrm{VNP} \Rightarrow \mathrm{NP}_{(K,+,=)} \subseteq \mathrm{P}_{(K,+, \times,=)}$.
We use exponential-size products as an intermediate step.

Conclusion

- Question \& is central but difficult: if the answer is positive, we obtain a transfer result; otherwise we obtain the separation of VP and VNP.

Conclusion

- Question a is central but difficult: if the answer is positive, we obtain a transfer result; otherwise we obtain the separation of VP and VNP.
- Little intuition on the answer.

Conclusion

- Question a is central but difficult: if the answer is positive, we obtain a transfer result; otherwise we obtain the separation of VP and VNP.
- Little intuition on the answer.
- Candidates for a negative answer? (polynomials that can be easily evaluated but that do not have polynomial-size circuits)

Outline

1. Valiant's classes
2. The counting hierarchy
3. Interpolation
4. Consequences
