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Two ways of computing a polynomial with integer coefficients

» Algorithm that evaluates the polynomial at an integer point.
Example: P(x,y) = (x + y)? on input (1,3) — 16.

» Arithmetic circuit that computes the polynomial.
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A question of Papadimitriou

Question &

If a polynomial P can be evaluated by a polynomial-time algorithm,
is it true that it is computable by an arithmetic circuit of polynomial
size?

In other words, does the use of boolean operations other than +
and X enable a superpolynomial speed-up in the computation?

» The use of families of polynomials makes these questions
meaningful.
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» Strassen: positive answer for divisions if the polynomial has a
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Divisions

» Strassen: positive answer for divisions if the polynomial has a
polynomial degree.

> Idea: replace -~ by 1+ x + X2 + - - - + xP(),
1-x

» What if the degree is not polynomial ?
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Discussion

» In order to show that question & has a negative answer, one
looks for a polynomial P that can be evaluated in polynomial
time but cannot be computed by polynomial-size circuits.

But lack of candidates (usual examples don’t work:
determinant, permanent, etc.).

» In order to show that question & has a positive answer, one
wants to transform an evaluation algorithm into an arithmetic
circuit.



Main result

If question & has a negative answer, then VP # VNP.
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Arithmetic circuits

Arithmetic circuits:
» gates + and x
> inputs X1, ..., X, and the constant —1
» — multivariate polynomials with integer coefficients.
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Disclaimer

We will skip the problem of constants and of uniformity. ..
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» Family of polynomials (f,): one circuit C, per polynomial
fn € Z[X1 nooog Xu(n)]-



P and NP in Valiant’s model

» Family of polynomials (f,): one circuit C, per polynomial
fn € Z[X1 nooog Xu(n)]-

» VP: families of polynomials of polynomial degree computed
by arithmetic circuits of polynomial size.
Example: the determinant

detn(X4,15. .., X1,0, X215 - . ., Xpn) = Z HX/(T(:)

ge8Sn



P and NP in Valiant’s model

» VNP: exponential sum of a VP family. If
(fn(X1 s o5 Xu(n)s Yis- - - ’yp(n))) € VP,

gn(Xts- o Xum) = D, (%)

€€{0,1}p(n)

Example: the permanent (VNP-complete)

n
pern(xm IR ST IR X Xn,n) = Z l_l X,-’O.(,').

€S, i=1
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Counting classes

» Languages (PP) or functions (#P). We will focus on languages.

» Alanguage A is in PP if there exists a polynomial-time
nondeterministic Turing machine such that x € A iff more than
half of the computation paths are accepting.

» A function f : {0, 1}* — N is in §P if it counts the number of
accepting paths of a polynomial-time nondeterministic Turing
machine.
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Counting hierarchy

» Counting hierarchy: CH = PP U PPPP U PPPP” U ... (similarity
with the polynomial hierarchy).

» Majority operator C: if C is a complexity class, C.C is the set of
languages A such that there exists a language B € C
satisfying:

xeA e #ye{0,1)P™) | (x,y) € B} = 2°(X)-1,

» CoP =Pet Ci;1P = C.C;P. Then CH = U;C;P.






A central lemma

Lemma
If VP = VNP then CH = P.

Proof (idea)

If VP = VNP then the permanent has polynomial-size arithmetic
circuits. Then it can be evaluated in polynomial time. Since the
permanent is §P-complete, it yields PP = P, hence CH = P. O



Sequences of integers

Definition

A sequence of integers (anx)x<opn(n Of €xponential bitsize is
computable in CH if

{(1", k, j, b) | the j-th bit of an is b} € CH.



Some results of Blrgisser

Theorem (Burgisser)

If (anx) is computable in CH, then it is also the case of

20(n) 2p(n)
Cp = Z a(n,k) and d,= n a(n, k).
k=0 k=0

Proof (idea)

Key ingredient: iterated addition and multiplication are in
LOGTIME-uniform TC® (recent result of Hesse, Allender and
Barrington for the multiplication). Then scaling up to obtain the
result on the counting hierarchy.

TCP: polynomial-size circuits of constant depth with majority gates.
LOGTIME-uniform: very strong uniformity condition. O
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Main result (bis)

If question & has a negative answer, then VP # VNP.

In other words, if VP = VNP then question & has a positive
answer: we know how to transform an evaluation algorithm into an
arithmetic circuit.
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Some tools from Lagrange

Going from the evaluation at integer points to the computation:
Lagrange interpolation.

Lemma (Lagrange interpolation)
Let p(x) be a polynomial in one variable and of degree < d. Then
=3 o) [
P i:Op j#i i=J
where the integer j ranges from 0 to d.

Proof
Both polynomials are of degree < d and coincide on d + 1
points. O



Lagrange interpolation

Lemma

Let p(x1,...,Xn) be a polynomial of degree < d. Then

p(Xt,...,%Xn) = Z p(i1,...,in)l—[(n Xk_jk),

P
0<it,in<d k=1 jezii kT Ik

where the integers jk range from 0 to d.
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Let (fo(x1, ..., Xy(n))) be a family of polynomials. We say that (f,)
can be evaluated in CH at integer points if
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Main result (ter)

Definition
Let (fo(x1, ..., Xy(n))) be a family of polynomials. We say that (f,)
can be evaluated in CH at integer points if

(17t ig(n)s > b) | the jth bit of fo(is, .., iy(ny) iS b} € CH.

What we will show:

(if VP = VNP and f can be evaluated in CH at integer points)
then f has a polynomial-size circuit.
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Valiant’s criterion

Definition of VP,,: idem VP but without the polynomial constraint
on the degree

— families of polynomials computed by arithmetic circuits of
polynomial size.

Lemma
Let

Fo(Xts ..y Xn) = Z a(n,a(1),...,a(n))x1a<1>...ng,

.....

where a(n, ), ..., ") is a sequence of integers computable in
CH.
If VP = VNP then (f,) € VPyp.
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Theorem

Let (fa(x4, ..., Xy(n))) be a family of multivariate polynomials.
Suppose (f,) can be evaluated in CH at integer points. If
VP = VNP then (f,) € VPyp.

Proof (idea)

» By the results of Biirgisser, the coefficients of the interpolation
polynomial are computable in CH.

» By Valiant’s criterion, if VP = VNP then (f,) € VPyp. O
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» Under the hypothesis VP = VNP, we aim at showing that a
family of polynomials that can be “easily evaluated” has
polynomial-size circuits.

» Idea: use Lagrange interpolation (enables to go from the
evaluation to the polynomial itself).

» Technical points:

» Valiant’s criterion: if the coefficients are computable in CH,
then the polynomial has polynomial-size circuits (under the
hypothesis that VP = VNP)

> the results of Blirgisser enable to compute in CH the
coefficients of the interpolation polynomial.
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Consequence for question &

Theorem

If question % has a negative answer, then VP # VNP.

Remark: if question & has a positive answer, then
P =PP = VP = VNP.



Bounded and unbounded versions

Theorem

(In a constant-free context)

VP = VNP = VP, = VNPyp,.

Remark: on fields of positive characteristic, this result was shown
by Malod (2003).
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Transfer toward BSS

» Algebraic versions of P and NP: Blum-Shub-Smale model.
» On a field K of characteristic zero, operations +, x and =.

» Separation of Px and NPk thanks to problems in NP(K’%:)?
(Twenty Questions, Subset Sum, ...)

Theorem
VP = VNP = NP(x ; ) € P(k 4 x~)-

We use exponential-size products as an intermediate step.
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obtain a transfer result; otherwise we obtain the separation of
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Conclusion

» Question & is central but difficult: if the answer is positive, we
obtain a transfer result; otherwise we obtain the separation of
VP and VNP.

» Little intuition on the answer.

» Candidates for a negative answer? (polynomials that can be
easily evaluated but that do not have polynomial-size circuits)
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