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Arithmetic circuits: model for computing polynomials.
Algebraic variants of P vs NP.

No strong lower bounds for general circuits.

(Best nontrivial lower bound for “explicit” polynomials:
Q(nlogn), Baur-Strassen)



Arithmetic circuits: model for computing polynomials.
Algebraic variants of P vs NP.
No strong lower bounds for general circuits.

Other weaker models:
formulas and algebraic branching programs (ABPs).
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Here: |separation of multilinear ABPs and formulas.
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A polynomial is multilinear if
the degree of each variable is at most 1.

Example: xX1%2 + x1x3 + %2 + 1.

Counter-example: X’y + xyz.



A polynomial is multilinear if
the degree of each variable is at most 1.

Example: xX1%2 + x1x3 + %2 + 1.
Counter-example: X’y + xyz.

Important multilinear polynomials:
determinant, permanent. . .

det(X11, .oy X1y X2 1y« v s Xnn) = Z (=1)<@ Hxi’(,(i).
i=1

UESn

n
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X1 X1 X1 X1

\/ \/

Weakest model: X2 X

1
each subcomputation \ / X \ /
X

can be used only once.

_l_
Underlying graph = tree. \ N /

Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

Multilinear =
each gate computes a multilinear polynomial.
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sum of the weights of all paths from s to ¢.



DAG from a source s " 7
to a sink ¢ / © k
with arcs labelled by

constants or variables. \

Weight of a path = product of the labels.

Polynomial computed by the ABP =
sum of the weights of all paths from s to ¢.

Multilinear =
on each path, each variable appears at most once.



Power of ABPs

computing the determinant.



Polynomial-size ABPs capture the complexity of:

matrix multiplication
computing the determinant.

However no multilinear polynomial-size ABP
known for the determinant.
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aka matrix of partial
derivatives

f multilinear polynomial
over variables X

N

a partition of X -8
into Y and Z, E’
n:X—-YuZz %
=

fi: renaming the
variables according to II

M(fnn): coefficient matrix
of f according to II.

3

~

monomials in Y
m

coef(mm')
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X = {x1,%2,%3, %4}
f(xl, X2, X3, X4) = ZXZX3X4 + xX1Xp + SX1X3 — ZX4 -3

Y — {ylayZ}) Z — {21722}

H:x1|—>y1, X2 = Y2,
X3 V> Z1, X4t Zo
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X = {x1,%2,%3, %4}
f(xl, X2, X3, X4) = ZXZX3X4 + xX1Xp + 5x1x3 — ZX4 -3
Y — {ylayZ}) Z — {21722}

H:x1|—>y1, X2 = Y2,
X3 > Z1, X4+ Zp

— fH = 2:)122122 = Y1)2 aF 5y121 — 222 -3

Tyt 92 2

1 |-3 0 O 1

Mfai)= z |0 5 0 0
z |—2 0 0 0

z1z2] 0 0 2 O
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The rank of the coefficient matrix has nice properties:
rank(M((f + g)n)) < rank(M(fr1)) + rank(M(gn))

if f and g are on disjoint variables, then

rank(M((fg)n)) = rank (M (fi))rank (M (gn))

if Y(f) and Z(f) are the numbers of ¥ and Z variables
appearing in fi1, then

rank(M(fy)) < 2min(¥N.200),
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Separation of multilinear circuits and formulas (Raz 2004):
build a polynomial  such that:
f is computed by polynomial size circuits;

for all partition IT, M(fi1) has full rank
(“f11 1s full rank”);

any formula of polynomial size computes a polynomial g
which is not full rank according to some partition II.

Probabilistic method: g is not full rank
if IT 1s chosen at random.
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There exists a polynomial-size multilinear ABP
computing a polynomial P that has

no multilinear formula of size 7°0°s"),



Consider a restricted subset of all partitions:

small enough so that
an ABP can compute full-rank polynomials;

big enough so that
formulas cannot compute full-rank polynomials.



Consider a restricted subset of all partitions:

small enough so that
an ABP can compute full-rank polynomials;

big enough so that
formulas cannot compute full-rank polynomials.

Lower bound:

it suffices that polynomials computed by formulas
are not full-rank for a single partition;

however probabilistic argument:
not full-rank for most partitions.



Pairings (1)
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Pairings:
before partitioning, variables are grouped in pairs.

Set of variables X = {0,1,...,n — 1}
seen as the n-cycle C,.

n—1 1



Random pairing: iterative process
First pair: {0, 1}.

At any given step,
the set of vertices grouped in pairs forms an arc [L, R].

L existing pairing
| . \/\»R
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Random pairing: iterative process
First pair: {0, 1}.

At any given step,
the set of vertices grouped in pairs forms an arc [L, R].

Extending a pairing:
3 equiprobable possibilities for the next pair.

R+1



Arc-partitions




X to be partitioned into
Y = {yh 000 7yn/2} and Z = {217 500G 7Zn/2}-

Definition of a random arc-partition:

from a random pairing P = Py, ..., P, ), if P; = {j, k} then
with probability 1/2, x; is mapped to y; and x;, to z;

with probability 1/2, x; is mapped to z; and x; to ;.
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X to be partitioned into
Y = {yh 000 7yn/2} and Z = {217 500G 7Zn/2}-

Definition of a random arc-partition:

from a random pairing P = Py, ..., P, ), if P; = {j, k} then
with probability 1/2, x; is mapped to y; and x;, to z;

with probability 1/2, x; is mapped to z; and x; to ;.



The ABP is built according to the iterative process of pairing:

vertices = arcs [L, R] of the pairing
start node [0, 1], end node C,
one path = one pairing

L —2,R

X %L/O
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[O, 1] IL,R] Xa(xp—1 + xRr41) IL—1,R+1] C,

4
N
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The ABP is built according to the iterative process of pairing:

vertices = arcs [L, R] of the pairing
start node [0, 1], end node C,
one path = one pairing

L —2,R

X %L/O

N@L/”’

[O, 1] IL,R] Xa(xp—1 + xRr41) IL—1,R+1] C,

4
N
+2)

Independent paths, two choices per edge — full rank.




A polynomial g(xq, ... ,x,) isa (K, T)-product
if g = g1 - - gk where:

g; 1s on the set of variables X;;

Xi, ..., Xk are pairwise disjoint;

and | X;| > T.



A polynomial g(xq, ... ,x,) isa (K, T)-product
if g = g1 - - gk where:

g; 1s on the set of variables X;;

Xi, ..., Xk are pairwise disjoint;

and | X;| > T.

Example: (x1x; — 32x1) (23 + 1) (52506 — x6)
is a (3, 2)-product.



Restricting to (K, T')-products

—— LEMMA (Shpilka& Yehudayoff)




If f(x1,. .., x,) is computed by a

formula of size s, then f = fi + -+ - + fi11

log n

2% n’/%)-product.

where f; is a (

Since rank(M((f; + f)u)) < rank(M((f))n)) + rank(M(()n)),

we restrict the study to one (K, T')-product g = g12> - - - gk

— we must argue that g is low rank
(instead of only “not full rank”)



Combinatorics




K disjoint subsets of the variables =
K colors.

rank(M(gn)) = [, rank(M((gi)m))

— g is low rank if
one of the g; is low rank.
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K disjoint subsets of the variables =

K colors.

o ® o X
rank(M(gn)) = II; rank(M((gi)n)) . 2
— g is low rank if X; . . X,
one of the g; is low rank. i N
Since rank(M((g;))) < 2min(¥(e)2(&)) Te e

it suffices that some color has
much more Y than Z variables.

From now on the argument is only combinatorial.



For a given partition I, a color is balanced if it has
roughly the same number of Y and Z variables.

— We want to show that some colors are unbalanced.
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For a given partition I, a color is balanced if it has
roughly the same number of Y and Z variables.

— We want to show that some colors are unbalanced.

o ® o
yi2  ® °
° °
° 3
° )2
° e )3
° ®0
7o ® °
° °
VLS °



If all pairs containing a red vertex has its other vertex red,
then color red is balanced.

[ ] /Z
z.\' o :
Y Y



If all pairs containing a red vertex has its other vertex red,
then color red is balanced.

Y * o Y
.Q‘Z

[ ] /Z
z.\' o :
Y Y

— look for pairs whose vertices have different colors

= “violations”



Violations



















Violation for consecutive vertices = “jump”

(=change of color)



If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

Many jumps
— one third of them yield violations.
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If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

Many jumps
— one third of them yield violations.
e % .
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If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

Many jumps
— one third of them yield violations.

— the color is unbalanced with sufficiently high probability.
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Large monochromatic arcs.

— A large number of cords give violations
since each violating cord is chosen with probability 1/3.

— the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)
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Separate multilinear circuits and ABPs?

Are there polynomial-size multilinear ABPs
for the determinant?
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