Separating multilinear branching programs and formulas

Zeev Dvir Guillaume Malod Sylvain Perifel Amir Yehudayoff

Lyon – July 4, 2012

- > Arithmetic circuits: model for computing polynomials.
- Algebraic variants of P vs NP.

- > Arithmetic circuits: model for computing polynomials.
- Algebraic variants of P vs NP.
- No strong lower bounds for general circuits.
 (Best nontrivial lower bound for "explicit" polynomials: Ω(n log n), Baur-Strassen)

- > Arithmetic circuits: model for computing polynomials.
- Algebraic variants of P vs NP.
- ▶ No strong lower bounds for general circuits.
- Other weaker models:
 formulas and algebraic branching programs (ABPs).

- Important restriction = multilinear computation.
- Raz 2004: separation of multilinear circuits and formulas.

- Important restriction = multilinear computation.
- Raz 2004: separation of multilinear circuits and formulas.

Here: separation of multilinear ABPs and formulas.

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation

Multilinearity

- A polynomial is multilinear if the degree of each variable is at most 1.
- Example: $x_1x_2 + x_1x_3 + x_2 + 1$.
- Counter-example: $x^2y + xyz$.

Multilinearity

- A polynomial is multilinear if the degree of each variable is at most 1.
- Example: $x_1x_2 + x_1x_3 + x_2 + 1$.
- Counter-example: $x^2y + xyz$.
- Important multilinear polynomials: determinant, permanent...

$$\det(x_{1,1}, \dots, x_{1,n}, x_{2,1}, \dots, x_{n,n}) = \sum_{\sigma \in S_n} (-1)^{\epsilon(\sigma)} \prod_{i=1}^n x_{i,\sigma(i)}.$$
$$\operatorname{per}(x_{1,1}, \dots, x_{1,n}, x_{2,1}, \dots, x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

Arithmetic formula

- Weakest model:
 each subcomputation
 can be used only once.
- Underlying graph = tree.

Arithmetic formula

- Weakest model:
 each subcomputation
 can be used only once.
- Underlying graph = tree.

Formulas can be parallelized (logarithmic depth) = efficient parallel algorithm.

Arithmetic formula

- Weakest model:
 each subcomputation
 can be used only once.
- Underlying graph = tree.

- Formulas can be parallelized (logarithmic depth) = efficient parallel algorithm.
- Multilinear =

each gate computes a multilinear polynomial.

Algebraic Branching Program (ABP)

 DAG from a source s to a sink t with arcs labelled by constants or variables.

Algebraic Branching Program (ABP)

 DAG from a source s to a sink t with arcs labelled by constants or variables.

- Weight of a path = product of the labels.
- Polynomial computed by the ABP = sum of the weights of all paths from *s* to *t*.

Algebraic Branching Program (ABP)

 DAG from a source s to a sink t with arcs labelled by constants or variables.

- Weight of a path = product of the labels.
- Polynomial computed by the ABP = sum of the weights of all paths from *s* to *t*.

Multilinear =

on each path, each variable appears at most once.

Power of ABPs

- Polynomial-size ABPs capture the complexity of:
 - matrix multiplication
 - computing the determinant.

Power of ABPs

- Polynomial-size ABPs capture the complexity of:
 - matrix multiplication
 - computing the determinant.
- However no multilinear polynomial-size ABP known for the determinant.

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation

The coefficient matrix

 aka matrix of partial derivatives

The coefficient matrix

- aka matrix of partial derivatives
- *f* multilinear polynomial over variables *X*
- a partition of X into Y and Z, $\Pi: X \to Y \cup Z$
 - f_{Π} : renaming the variables according to Π

The coefficient matrix

- aka matrix of partial derivatives
- *f* multilinear polynomial over variables *X*
- a partition of X into Y and Z, $\Pi: X \to Y \cup Z$
 - f_{Π} : renaming the variables according to Π
 - $M(f_{\Pi})$: coefficient matrix of f according to Π .

Example

$$X = \{x_1, x_2, x_3, x_4\}$$

= $f(x_1, x_2, x_3, x_4) = 2x_2x_3x_4 + x_1x_2 + 5x_1x_3 - 2x_4 - 3$

Example

 $X = \{x_1, x_2, x_3, x_4\}$ $f(x_1, x_2, x_3, x_4) = 2x_2x_3x_4 + x_1x_2 + 5x_1x_3 - 2x_4 - 3$ $Y = \{y_1, y_2\}, \quad \mathbf{Z} = \{\mathbf{z}_1, \mathbf{z}_2\}$ $\Pi : x_1 \mapsto y_1, \quad x_2 \mapsto y_2,$ $x_3 \mapsto \mathbf{z}_1, \quad x_4 \mapsto \mathbf{z}_2$ $\to \qquad f_{\Pi} = 2y_2z_1z_2 + y_1y_2 + 5y_1z_1 - 2z_2 - 3$

Example

 $X = \{x_1, x_2, x_3, x_4\}$ $f(x_1, x_2, x_3, x_4) = 2x_2x_3x_4 + x_1x_2 + 5x_1x_3 - 2x_4 - 3$ $Y = \{y_1, y_2\}, \quad Z = \{z_1, z_2\}$ $\square: x_1 \mapsto y_1, \quad x_2 \mapsto y_2,$ $x_3 \mapsto z_1, \quad x_4 \mapsto z_2$ $\rightarrow f_{\Pi} = 2\gamma_2 z_1 z_2 + \gamma_1 \gamma_2 + 5\gamma_1 z_1 - 2z_2 - 3$

Rank

The rank of the coefficient matrix has nice properties:

► rank $(M((f + g)_{\Pi})) \le \operatorname{rank}(M(f_{\Pi})) + \operatorname{rank}(M(g_{\Pi}))$

Rank

The rank of the coefficient matrix has nice properties:

- ► rank $(M((f + g)_{\Pi})) \le \operatorname{rank}(M(f_{\Pi})) + \operatorname{rank}(M(g_{\Pi}))$
- if f and g are on disjoint variables, then

 $\mathrm{rank}(M((\mathit{fg})_{\Pi})) = \mathrm{rank}(M(\mathit{f}_{\Pi}))\mathrm{rank}(M(\mathit{g}_{\Pi}))$

Rank

The rank of the coefficient matrix has nice properties:

- ► rank $(M((f + g)_{\Pi})) \le \operatorname{rank}(M(f_{\Pi})) + \operatorname{rank}(M(g_{\Pi}))$
- if f and g are on disjoint variables, then

 $\operatorname{rank}(M((fg)_{\Pi})) = \operatorname{rank}(M(f_{\Pi}))\operatorname{rank}(M(g_{\Pi}))$

if Y(f) and Z(f) are the numbers of Y and Z variables appearing in f_{Π} , then

$$\operatorname{rank}(M(f_{\Pi})) \leq 2^{\min(Y(f), \mathbf{Z}(f))}$$

The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

- build a polynomial f such that:
 - *f* is computed by polynomial size circuits;
 - for all partition Π , $M(f_{\Pi})$ has full rank (" f_{Π} is full rank");

The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

- build a polynomial f such that:
 - *f* is computed by polynomial size circuits;
 - for all partition Π , $M(f_{\Pi})$ has full rank (" f_{Π} is full rank");
- any formula of polynomial size computes a polynomial g which is not full rank according to some partition Π .

The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

- build a polynomial f such that:
 - f is computed by polynomial size circuits;
 - for all partition Π , $M(f_{\Pi})$ has full rank (" f_{Π} is full rank");
- any formula of polynomial size computes a polynomial g which is not full rank according to some partition Π .
- Probabilistic method: g_{Π} is not full rank if Π is chosen at random.

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation

The result

THEOREM

There exists a polynomial-size *multilinear* ABP computing a polynomial P that has no *multilinear* formula of size $n^{o(\log n)}$.

Strategy

Consider a restricted subset of all partitions:

- small enough so that an ABP can compute full-rank polynomials;
- big enough so that formulas cannot compute full-rank polynomials.

Strategy

Consider a restricted subset of all partitions:

- small enough so that an ABP can compute full-rank polynomials;
- big enough so that formulas cannot compute full-rank polynomials.

Lower bound:

- it suffices that polynomials computed by formulas are not full-rank for a single partition;
- however probabilistic argument: not full-rank for most partitions.

Pairings (1)

Pairings:

before partitioning, variables are grouped in pairs.
Pairings:

before partitioning, variables are grouped in pairs.

Set of variables $X \equiv \{0, 1, ..., n-1\}$ seen as the *n*-cycle C_n .

Random pairing: iterative process

- ▶ First pair: {0, 1}.
- At any given step, the set of vertices grouped in pairs forms an arc [L, R].

Random pairing: iterative process

- ▶ First pair: {0, 1}.
- At any given step, the set of vertices grouped in pairs forms an arc [L, R].
- Extending a pairing:

Random pairing: iterative process

- ▶ First pair: {0, 1}.
- At any given step, the set of vertices grouped in pairs forms an arc [L, R].
- Extending a pairing:

Random pairing: iterative process

- ▶ First pair: {0, 1}.
- At any given step, the set of vertices grouped in pairs forms an arc [L, R].
- Extending a pairing:

Random pairing: iterative process

- ▶ First pair: {0, 1}.
- At any given step, the set of vertices grouped in pairs forms an arc [L, R].
- Extending a pairing:

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $Z = \{z_1, \dots, z_{n/2}\}.$

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_j is mapped to z_i and x_k to y_i .

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_i is mapped to z_i and x_k to y_i .

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_j is mapped to z_i and x_k to y_i .

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_j is mapped to z_i and x_k to y_i .

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_j is mapped to z_i and x_k to y_i .

X to be partitioned into $Y = \{y_1, \dots, y_{n/2}\}$ and $\mathbf{Z} = \{z_1, \dots, z_{n/2}\}.$

Definition of a random arc-partition:

- with probability 1/2, x_i is mapped to y_i and x_k to z_i ;
- with probability 1/2, x_j is mapped to z_i and x_k to y_i .

The branching program

The ABP is built according to the iterative process of pairing:

- vertices = arcs [L, R] of the pairing
- start node [0, 1], end node C_n
- one path = one pairing

The branching program

The ABP is built according to the iterative process of pairing:

- vertices = arcs [L, R] of the pairing
- start node [0, 1], end node C_n
- one path = one pairing

(K, T)-products

Definition

A polynomial $g(x_1, ..., x_n)$ is a (K, T)-product if $g = g_1g_2 \cdots g_K$ where:

- $rac{}_{g_i}$ is on the set of variables X_i ;
- \succ X_1, \ldots, X_K are pairwise disjoint;

and $|X_i| \geq T$.

(K, T)-products

Definition

A polynomial $g(x_1, ..., x_n)$ is a (K, T)-product if $g = g_1g_2 \cdots g_K$ where: g_i is on the set of variables X_i ; $X_1, ..., X_K$ are pairwise disjoint; and $|X_i| > T$.

Example:
$$(x_1x_2 - 3x_1)(x_3 + 1)(5x_5x_6 - x_6)$$

is a (3, 2)-product.

Restricting to (K, T)-products

LEMMA (Shpilka&Yehudayoff) — If $f(x_1, ..., x_n)$ is computed by a formula of size *s*, then $f = f_1 + \cdots + f_{s+1}$ where f_i is a $(\frac{\log n}{100}, n^{7/8})$ -product.

Restricting to (K, T)-products

LEMMA (Shpilka&Yehudayoff) — If $f(x_1, ..., x_n)$ is computed by a formula of size *s*, then $f = f_1 + \cdots + f_{s+1}$ where f_i is a $(\frac{\log n}{100}, n^{7/8})$ -product.

Since $\operatorname{rank}(M((f_i + f_j)_{\Pi})) \leq \operatorname{rank}(M((f_i)_{\Pi})) + \operatorname{rank}(M((f_j)_{\Pi})))$, we restrict the study to one (K, T)-product $g = g_1g_2 \cdots g_K$

> \rightarrow we must argue that g is low rank (instead of only "not full rank")

K disjoint subsets of the variables = K colors.

K disjoint subsets of the variables = K colors.

► rank $(M(g_{\Pi})) = \prod_{i} \operatorname{rank}(M((g_{i})_{\Pi}))$ → g is low rank if one of the g_{i} is low rank.

- K disjoint subsets of the variables = K colors.
- rank($M(g_{\Pi})$) = $\prod_i \operatorname{rank}(M((g_i)_{\Pi}))$ → g is low rank if one of the g_i is low rank.
 - Since rank $(M((g_i)_{\Pi})) \leq 2^{\min(Y(g_i), \mathbb{Z}(g_i))}$, it suffices that some color has much more Y than Z variables.

• K disjoint subsets of the variables = K colors.

rank($M(g_{\Pi})$) = $\prod_i \operatorname{rank}(M((g_i)_{\Pi}))$ → g is low rank if one of the g_i is low rank.

Since rank $(M((g_i)_{\Pi})) \leq 2^{\min(Y(g_i), \mathbb{Z}(g_i))}$, it suffices that some color has much more Y than Z variables.

From now on the argument is only combinatorial.

Unbalanced colors

Definition

For a given partition Π , a color is balanced if it has roughly the same number of Y and Z variables.

 \rightarrow We want to show that some colors are unbalanced.

Unbalanced colors

Definition

For a given partition Π , a color is balanced if it has roughly the same number of Y and Z variables.

 \rightarrow We want to show that some colors are unbalanced.

Unbalanced colors

Definition

For a given partition Π , a color is balanced if it has roughly the same number of Y and Z variables.

 \rightarrow We want to show that some colors are unbalanced.

A sufficient condition of balance

If all pairs containing a red vertex has its other vertex red, then color red is balanced.

A sufficient condition of balance

If all pairs containing a red vertex has its other vertex red, then color red is balanced.

→ look for pairs whose vertices have different colors = "violations"

Violations

Examples of violations in a pairing:

First case: Many colors with many jumps

- If [R, R + 1] is a jump, it is chosen in the pairing with probability 1/3.
- Many jumps

 \rightarrow one third of them yield violations.

- If [R, R + 1] is a jump, it is chosen in the pairing with probability 1/3.
- Many jumps

 \rightarrow one third of them yield violations.

- If [R, R + 1] is a jump, it is chosen in the pairing with probability 1/3.
- Many jumps

 \rightarrow one third of them yield violations.

- If [R, R + 1] is a jump, it is chosen in the pairing with probability 1/3.
- Many jumps

 \rightarrow one third of them yield violations.

- If [R, R + 1] is a jump, it is chosen in the pairing with probability 1/3.
- Many jumps

 \rightarrow one third of them yield violations.

 \rightarrow the color is unbalanced with sufficiently high probability.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

 \rightarrow the color is **unbalanced** with sufficiently high probability.

- Large monochromatic arcs.
- → A large number of cords give violations since each violating cord is chosen with probability 1/3.

 \rightarrow the color is unbalanced with sufficiently high probability. (Formal analysis = 2D random walk on a chessboard.)

Future directions

Separate multilinear circuits and ABPs?

Future directions

- Separate multilinear circuits and ABPs?
- Are there polynomial-size multilinear ABPs for the determinant?