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Introduction
I Arithmetic circuits: model for computing polynomials.

I Algebraic variants of P vs NP.

I No strong lower bounds for general circuits.

I Other weaker models:
formulas and algebraic branching programs (ABPs).
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Multilinearity

I A polynomial is multilinear if
the degree of each variable is at most 1.

I Example: x1x2 + x1x3 + x2 + 1.

I Counter-example: x2y + xyz.

I Important multilinear polynomials:
determinant, permanent. . .

det(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

(−1)ε(σ)

n∏
i=1

xi,σ(i).

per(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).
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Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Algebraic Branching Program (ABP)

I DAG from a source s
to a sink t
with arcs labelled by
constants or variables.

s t
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−1

I Weight of a path = product of the labels.

I Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

I Multilinear =
on each path, each variable appears at most once.
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I Polynomial-size ABPs capture the complexity of:
• matrix multiplication
• computing the determinant.

I However no multilinear polynomial-size ABP
known for the determinant.
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The coefficient matrix

I aka matrix of partial
derivatives

I f multilinear polynomial
over variables X

I a partition of X
into Y and Z,
Π : X → Y ∪ Z

I fΠ: renaming the
variables according to Π

I M(fΠ): coefficient matrix
of f according to Π.
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Example

I X = {x1, x2, x3, x4}

I f (x1, x2, x3, x4) = 2x2x3x4 + x1x2 + 5x1x3 − 2x4 − 3

I Y = {y1, y2}, Z = {z1, z2}

I Π : x1 7→ y1, x2 7→ y2,
x3 7→ z1, x4 7→ z2

→ fΠ = 2y2z1z2 + y1y2 + 5y1z1 − 2z2 − 3

M(fΠ) =

1 y1 y2 y1y2

1 −3 0 0 1
z1 0 5 0 0
z2 −2 0 0 0

z1z2 0 0 2 0
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Rank

The rank of the coefficient matrix has nice properties:

I rank(M((f + g)Π)) ≤ rank(M(fΠ)) + rank(M(gΠ))

I if f and g are on disjoint variables, then

rank(M((fg)Π)) = rank(M(fΠ))rank(M(gΠ))

I if Y (f ) and Z(f ) are the numbers of Y and Z variables
appearing in fΠ, then

rank(M(fΠ)) ≤ 2min(Y (f ),Z(f )).
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The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

I build a polynomial f such that:
• f is computed by polynomial size circuits;

• for all partition Π, M(fΠ) has full rank

(“fΠ is full rank”);

I any formula of polynomial size computes a polynomial g
which is not full rank according to some partition Π.

I Probabilistic method: gΠ is not full rank
if Π is chosen at random.
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The result

THEOREM

There exists a polynomial-size multilinear ABP

computing a polynomial P that has

no multilinear formula of size no(log n).



Strategy

Consider a restricted subset of all partitions:
I small enough so that

an ABP can compute full-rank polynomials;
I big enough so that

formulas cannot compute full-rank polynomials.

Lower bound:
I it suffices that polynomials computed by formulas

are not full-rank for a single partition;
I however probabilistic argument:

not full-rank for most partitions.
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Pairings (1)

I Pairings:
before partitioning, variables are grouped in pairs.

I Set of variables X ≡ {0, 1, . . . , n− 1}
seen as the n-cycle Cn.
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Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R

R + 1
R + 2

L− 1

L− 2
L− 1

R + 1
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Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.
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The branching program

The ABP is built according to the iterative process of pairing:

I vertices = arcs [L,R] of the pairing
I start node [0, 1], end node Cn

I one path = one pairing

[0, 1] Cn[L,R]

[L− 2,R]

[L− 1,R + 1]

[L,R + 2]

λ1(xL−2 + xL−1)

λ2(xL−1 + xR+1)

λ3(xR+1 + xR+2 )

Independent paths, two choices per edge→ full rank.
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(K,T )-products

Definition
A polynomial g(x1, . . . , xn) is a (K,T )-product
if g = g1g2 · · · gK where:

I gi is on the set of variables Xi;
I X1, . . . ,XK are pairwise disjoint;
I and |Xi| ≥ T .

Example: (x1x2 − 3x1)(x3 + 1)(5x5x6 − x6)

is a (3, 2)-product.
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Restricting to (K,T )-products

LEMMA (Shpilka&Yehudayoff)

If f (x1, . . . , xn) is computed by a

formula of size s, then f = f1 + · · ·+ fs+1

where fi is a ( log n
100 , n7/8)-product.

Since rank(M((fi + fj)Π)) ≤ rank(M((fi)Π)) + rank(M((fj)Π)),

we restrict the study to one (K,T )-product g = g1g2 · · · gK

→ we must argue that g is low rank
(instead of only “not full rank”)
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Combinatorics

I K disjoint subsets of the variables =
K colors.

I rank(M(gΠ)) =
∏

i rank(M((gi)Π))

→ g is low rank if
one of the gi is low rank.

I Since rank(M((gi)Π)) ≤ 2min(Y (gi),Z(gi)),

it suffices that some color has
much more Y than Z variables.

X2

X1

X3

From now on the argument is only combinatorial.
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Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



A sufficient condition of balance

If all pairs containing a red vertex has its other vertex red,
then color red is balanced.
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→ look for pairs whose vertices have different colors
= “violations”
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Violations

Examples of violations in a pairing:
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First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.
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Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)
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