
Separating
multilinear branching programs

and formulas

Zeev Dvir Guillaume Malod
Sylvain Perifel Amir Yehudayoff

Lyon – July 4, 2012



Introduction
I Arithmetic circuits: model for computing polynomials.

I Algebraic variants of P vs NP.

I No strong lower bounds for general circuits.

I Other weaker models:
formulas and algebraic branching programs (ABPs).

formulas

ABPs

circuits



Introduction
I Arithmetic circuits: model for computing polynomials.

I Algebraic variants of P vs NP.

I No strong lower bounds for general circuits.

(Best nontrivial lower bound for “explicit” polynomials:
Ω(n log n), Baur-Strassen)

I Other weaker models:
formulas and algebraic branching programs (ABPs).

formulas

ABPs

circuits



Introduction
I Arithmetic circuits: model for computing polynomials.

I Algebraic variants of P vs NP.

I No strong lower bounds for general circuits.

I Other weaker models:
formulas and algebraic branching programs (ABPs).

formulas

ABPs

circuits



Introduction
I Important restriction = multilinear computation.

I Raz 2004: separation of multilinear circuits and formulas.

Here: separation of multilinear ABPs and formulas.

formulas

ABPs

circuits



Introduction
I Important restriction = multilinear computation.

I Raz 2004: separation of multilinear circuits and formulas.

Here: separation of multilinear ABPs and formulas.

formulas

ABPs

circuits



Outline

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation



Outline

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation



Multilinearity

I A polynomial is multilinear if
the degree of each variable is at most 1.

I Example: x1x2 + x1x3 + x2 + 1.

I Counter-example: x2y + xyz.

I Important multilinear polynomials:
determinant, permanent. . .

det(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

(−1)ε(σ)

n∏
i=1

xi,σ(i).

per(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).



Multilinearity

I A polynomial is multilinear if
the degree of each variable is at most 1.

I Example: x1x2 + x1x3 + x2 + 1.

I Counter-example: x2y + xyz.

I Important multilinear polynomials:
determinant, permanent. . .

det(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

(−1)ε(σ)

n∏
i=1

xi,σ(i).

per(x1,1, . . . , x1,n, x2,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).



Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Arithmetic formula

I Weakest model:
each subcomputation
can be used only once.

I Underlying graph = tree.
+

×

×

x1x1

x2

+

×

x1x1

−1

I Formulas can be parallelized (logarithmic depth) =
efficient parallel algorithm.

I Multilinear =
each gate computes a multilinear polynomial.



Algebraic Branching Program (ABP)

I DAG from a source s
to a sink t
with arcs labelled by
constants or variables.

s t

•

•

•

•

•

•

x1

x2

−1

x1

x2

−1x1

−1

x2

−1

I Weight of a path = product of the labels.

I Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

I Multilinear =
on each path, each variable appears at most once.



Algebraic Branching Program (ABP)

I DAG from a source s
to a sink t
with arcs labelled by
constants or variables.

s t

•

•

•

•

•

•

x1

x2

−1

x1

x2

−1x1

−1

x2

−1

I Weight of a path = product of the labels.

I Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

I Multilinear =
on each path, each variable appears at most once.



Algebraic Branching Program (ABP)

I DAG from a source s
to a sink t
with arcs labelled by
constants or variables.

s t

•

•

•

•

•

•

x1

x2

−1

x1

x2

−1x1

−1

x2

−1

I Weight of a path = product of the labels.

I Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

I Multilinear =
on each path, each variable appears at most once.



Power of ABPs

I Polynomial-size ABPs capture the complexity of:
• matrix multiplication
• computing the determinant.

I However no multilinear polynomial-size ABP
known for the determinant.



Power of ABPs

I Polynomial-size ABPs capture the complexity of:
• matrix multiplication
• computing the determinant.

I However no multilinear polynomial-size ABP
known for the determinant.



Outline

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation



The coefficient matrix

I aka matrix of partial
derivatives

I f multilinear polynomial
over variables X

I a partition of X
into Y and Z,
Π : X → Y ∪ Z

I fΠ: renaming the
variables according to Π

I M(fΠ): coefficient matrix
of f according to Π.

m

m′ coef(mm′)

monomials in Y

m
on

om
ia

ls
in

Z

2|Y |

2|Z|



The coefficient matrix

I aka matrix of partial
derivatives

I f multilinear polynomial
over variables X

I a partition of X
into Y and Z,
Π : X → Y ∪ Z

I fΠ: renaming the
variables according to Π

I M(fΠ): coefficient matrix
of f according to Π.

m

m′ coef(mm′)

monomials in Y

m
on

om
ia

ls
in

Z

2|Y |

2|Z|



The coefficient matrix

I aka matrix of partial
derivatives

I f multilinear polynomial
over variables X

I a partition of X
into Y and Z,
Π : X → Y ∪ Z

I fΠ: renaming the
variables according to Π

I M(fΠ): coefficient matrix
of f according to Π.

m

m′ coef(mm′)

monomials in Y

m
on

om
ia

ls
in

Z

2|Y |

2|Z|



Example

I X = {x1, x2, x3, x4}

I f (x1, x2, x3, x4) = 2x2x3x4 + x1x2 + 5x1x3 − 2x4 − 3

I Y = {y1, y2}, Z = {z1, z2}

I Π : x1 7→ y1, x2 7→ y2,
x3 7→ z1, x4 7→ z2

→ fΠ = 2y2z1z2 + y1y2 + 5y1z1 − 2z2 − 3

M(fΠ) =

1 y1 y2 y1y2

1 −3 0 0 1
z1 0 5 0 0
z2 −2 0 0 0

z1z2 0 0 2 0



Example

I X = {x1, x2, x3, x4}

I f (x1, x2, x3, x4) = 2x2x3x4 + x1x2 + 5x1x3 − 2x4 − 3

I Y = {y1, y2}, Z = {z1, z2}

I Π : x1 7→ y1, x2 7→ y2,
x3 7→ z1, x4 7→ z2

→ fΠ = 2y2z1z2 + y1y2 + 5y1z1 − 2z2 − 3

M(fΠ) =

1 y1 y2 y1y2

1 −3 0 0 1
z1 0 5 0 0
z2 −2 0 0 0

z1z2 0 0 2 0



Example

I X = {x1, x2, x3, x4}

I f (x1, x2, x3, x4) = 2x2x3x4 + x1x2 + 5x1x3 − 2x4 − 3

I Y = {y1, y2}, Z = {z1, z2}

I Π : x1 7→ y1, x2 7→ y2,
x3 7→ z1, x4 7→ z2

→ fΠ = 2y2z1z2 + y1y2 + 5y1z1 − 2z2 − 3

M(fΠ) =

1 y1 y2 y1y2

1 −3 0 0 1
z1 0 5 0 0
z2 −2 0 0 0

z1z2 0 0 2 0



Rank

The rank of the coefficient matrix has nice properties:

I rank(M((f + g)Π)) ≤ rank(M(fΠ)) + rank(M(gΠ))

I if f and g are on disjoint variables, then

rank(M((fg)Π)) = rank(M(fΠ))rank(M(gΠ))

I if Y (f ) and Z(f ) are the numbers of Y and Z variables
appearing in fΠ, then

rank(M(fΠ)) ≤ 2min(Y (f ),Z(f )).



Rank

The rank of the coefficient matrix has nice properties:

I rank(M((f + g)Π)) ≤ rank(M(fΠ)) + rank(M(gΠ))

I if f and g are on disjoint variables, then

rank(M((fg)Π)) = rank(M(fΠ))rank(M(gΠ))

I if Y (f ) and Z(f ) are the numbers of Y and Z variables
appearing in fΠ, then

rank(M(fΠ)) ≤ 2min(Y (f ),Z(f )).



Rank

The rank of the coefficient matrix has nice properties:

I rank(M((f + g)Π)) ≤ rank(M(fΠ)) + rank(M(gΠ))

I if f and g are on disjoint variables, then

rank(M((fg)Π)) = rank(M(fΠ))rank(M(gΠ))

I if Y (f ) and Z(f ) are the numbers of Y and Z variables
appearing in fΠ, then

rank(M(fΠ)) ≤ 2min(Y (f ),Z(f )).



The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

I build a polynomial f such that:
• f is computed by polynomial size circuits;

• for all partition Π, M(fΠ) has full rank

(“fΠ is full rank”);

I any formula of polynomial size computes a polynomial g
which is not full rank according to some partition Π.

I Probabilistic method: gΠ is not full rank
if Π is chosen at random.



The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

I build a polynomial f such that:
• f is computed by polynomial size circuits;

• for all partition Π, M(fΠ) has full rank

(“fΠ is full rank”);

I any formula of polynomial size computes a polynomial g
which is not full rank according to some partition Π.

I Probabilistic method: gΠ is not full rank
if Π is chosen at random.



The rank technique

Separation of multilinear circuits and formulas (Raz 2004):

I build a polynomial f such that:
• f is computed by polynomial size circuits;

• for all partition Π, M(fΠ) has full rank

(“fΠ is full rank”);

I any formula of polynomial size computes a polynomial g
which is not full rank according to some partition Π.

I Probabilistic method: gΠ is not full rank
if Π is chosen at random.



Outline

1. Formulas, ABPs and multilinearity

2. The rank technique

3. Our separation



The result

THEOREM

There exists a polynomial-size multilinear ABP

computing a polynomial P that has

no multilinear formula of size no(log n).



Strategy

Consider a restricted subset of all partitions:
I small enough so that

an ABP can compute full-rank polynomials;
I big enough so that

formulas cannot compute full-rank polynomials.

Lower bound:
I it suffices that polynomials computed by formulas

are not full-rank for a single partition;
I however probabilistic argument:

not full-rank for most partitions.



Strategy

Consider a restricted subset of all partitions:
I small enough so that

an ABP can compute full-rank polynomials;
I big enough so that

formulas cannot compute full-rank polynomials.

Lower bound:
I it suffices that polynomials computed by formulas

are not full-rank for a single partition;
I however probabilistic argument:

not full-rank for most partitions.



Pairings (1)

I Pairings:
before partitioning, variables are grouped in pairs.

I Set of variables X ≡ {0, 1, . . . , n− 1}
seen as the n-cycle Cn.

0 1
2

n− 1



Pairings (1)

I Pairings:
before partitioning, variables are grouped in pairs.

I Set of variables X ≡ {0, 1, . . . , n− 1}
seen as the n-cycle Cn.

0 1
2

n− 1



Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R

R + 1
R + 2

L− 1

L− 2
L− 1

R + 1



Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R

R + 1
R + 2

L− 1

L− 2
L− 1

R + 1



Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R

R + 1
R + 2

L− 1

L− 2
L− 1

R + 1



Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R
R + 1
R + 2

L− 1

L− 2

L− 1

R + 1



Pairings (2)

Random pairing: iterative process
I First pair: {0, 1}.
I At any given step,

the set of vertices grouped in pairs forms an arc [L,R].

I Extending a pairing:
3 equiprobable possibilities for the next pair.

existing pairingL

R
R + 1
R + 2

L− 1

L− 2

L− 1

R + 1



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



Arc-partitions

X to be partitioned into
Y = {y1, . . . , yn/2} and Z = {z1, . . . , zn/2}.

Definition of a random arc-partition:

from a random pairing P = P1, . . . , Pn/2, if Pi = {j, k} then

I with probability 1/2, xj is mapped to yi and xk to zi;

I with probability 1/2, xj is mapped to zi and xk to yi.

yi

zi

zi
yi

yi

zi

zi

yi

yi

zi

zi

yi



The branching program

The ABP is built according to the iterative process of pairing:

I vertices = arcs [L,R] of the pairing
I start node [0, 1], end node Cn

I one path = one pairing

[0, 1] Cn[L,R]

[L− 2,R]

[L− 1,R + 1]

[L,R + 2]

λ1(xL−2 + xL−1)

λ2(xL−1 + xR+1)

λ3(xR+1 + xR+2 )

Independent paths, two choices per edge→ full rank.



The branching program

The ABP is built according to the iterative process of pairing:

I vertices = arcs [L,R] of the pairing
I start node [0, 1], end node Cn

I one path = one pairing

[0, 1] Cn[L,R]

[L− 2,R]

[L− 1,R + 1]

[L,R + 2]

λ1(xL−2 + xL−1)

λ2(xL−1 + xR+1)

λ3(xR+1 + xR+2 )

Independent paths, two choices per edge→ full rank.



(K,T )-products

Definition
A polynomial g(x1, . . . , xn) is a (K,T )-product
if g = g1g2 · · · gK where:

I gi is on the set of variables Xi;
I X1, . . . ,XK are pairwise disjoint;
I and |Xi| ≥ T .

Example: (x1x2 − 3x1)(x3 + 1)(5x5x6 − x6)

is a (3, 2)-product.



(K,T )-products

Definition
A polynomial g(x1, . . . , xn) is a (K,T )-product
if g = g1g2 · · · gK where:

I gi is on the set of variables Xi;
I X1, . . . ,XK are pairwise disjoint;
I and |Xi| ≥ T .

Example: (x1x2 − 3x1)(x3 + 1)(5x5x6 − x6)

is a (3, 2)-product.



Restricting to (K,T )-products

LEMMA (Shpilka&Yehudayoff)

If f (x1, . . . , xn) is computed by a

formula of size s, then f = f1 + · · ·+ fs+1

where fi is a ( log n
100 , n7/8)-product.

Since rank(M((fi + fj)Π)) ≤ rank(M((fi)Π)) + rank(M((fj)Π)),

we restrict the study to one (K,T )-product g = g1g2 · · · gK

→ we must argue that g is low rank
(instead of only “not full rank”)



Restricting to (K,T )-products

LEMMA (Shpilka&Yehudayoff)

If f (x1, . . . , xn) is computed by a

formula of size s, then f = f1 + · · ·+ fs+1

where fi is a ( log n
100 , n7/8)-product.

Since rank(M((fi + fj)Π)) ≤ rank(M((fi)Π)) + rank(M((fj)Π)),

we restrict the study to one (K,T )-product g = g1g2 · · · gK

→ we must argue that g is low rank
(instead of only “not full rank”)



Combinatorics

I K disjoint subsets of the variables =
K colors.

I rank(M(gΠ)) =
∏

i rank(M((gi)Π))

→ g is low rank if
one of the gi is low rank.

I Since rank(M((gi)Π)) ≤ 2min(Y (gi),Z(gi)),

it suffices that some color has
much more Y than Z variables.

X2

X1

X3

From now on the argument is only combinatorial.



Combinatorics

I K disjoint subsets of the variables =
K colors.

I rank(M(gΠ)) =
∏

i rank(M((gi)Π))

→ g is low rank if
one of the gi is low rank.

I Since rank(M((gi)Π)) ≤ 2min(Y (gi),Z(gi)),

it suffices that some color has
much more Y than Z variables.

X2

X1

X3

From now on the argument is only combinatorial.



Combinatorics

I K disjoint subsets of the variables =
K colors.

I rank(M(gΠ)) =
∏

i rank(M((gi)Π))

→ g is low rank if
one of the gi is low rank.

I Since rank(M((gi)Π)) ≤ 2min(Y (gi),Z(gi)),

it suffices that some color has
much more Y than Z variables.

X2

X1

X3

From now on the argument is only combinatorial.



Combinatorics

I K disjoint subsets of the variables =
K colors.

I rank(M(gΠ)) =
∏

i rank(M((gi)Π))

→ g is low rank if
one of the gi is low rank.

I Since rank(M((gi)Π)) ≤ 2min(Y (gi),Z(gi)),

it suffices that some color has
much more Y than Z variables.

X2

X1

X3

From now on the argument is only combinatorial.



Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



Unbalanced colors

Definition
For a given partition Π, a color is balanced if it has
roughly the same number of Y and Z variables.

→We want to show that some colors are unbalanced.

y3

y2

y12

y9

y8

z3

z1

z10



A sufficient condition of balance

If all pairs containing a red vertex has its other vertex red,
then color red is balanced.

YY

Y Y

Z

Z

Z

Z

→ look for pairs whose vertices have different colors
= “violations”



A sufficient condition of balance

If all pairs containing a red vertex has its other vertex red,
then color red is balanced.

YY

Y Y

Z

Z

Z

Z

→ look for pairs whose vertices have different colors
= “violations”



Violations

Examples of violations in a pairing:



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



Jumps

Violation for consecutive vertices = “jump”

(=change of color)



First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.



First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.



First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.



First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.



First case: Many colors with many jumps

I If [R,R + 1] is a jump,
it is chosen in the pairing with probability 1/3.

I Many jumps
→ one third of them yield violations.

→ the color is unbalanced with sufficiently high probability.



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Second case: Many colors with few jumps

I Large monochromatic arcs.

I → A large number of cords give violations
since each violating cord is chosen with probability 1/3.

→ the color is unbalanced with sufficiently high probability.

(Formal analysis = 2D random walk on a chessboard.)



Future directions

formulas

ABPs

circuits

I Separate multilinear circuits and ABPs?

I Are there polynomial-size multilinear ABPs
for the determinant?



Future directions

formulas

ABPs

circuits

I Separate multilinear circuits and ABPs?

I Are there polynomial-size multilinear ABPs
for the determinant?


	Formulas, ABPs and multilinearity
	The rank technique
	Our separation

