Symmetry of information and nonuniform lower bounds

Sylvain Perifel
LIP, ENS Lyon

Ekaterinburg, September 4, 2007

Outline

1. Complexity classes
2. Advices of size n^{c}
3. Symmetry of information
4. Polynomial-size advices

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- P/poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length)

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine - uniform

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- P /poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length) - nonuniform
- Open question: EXP $\subset \mathrm{P} /$ poly?

Two complexity classes

- EXP: set of languages recognized in exponential time by a deterministic Turing machine - uniform

$$
\operatorname{EXP}=\cup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right)
$$

- P /poly: set of languages recognized by a family of polynomial-size boolean circuits (gates \wedge, \vee and \neg, one circuit per input length) - nonuniform
- Open question: EXP $\subset \mathrm{P} /$ poly?
- Main result: polynomial-time symmetry of information implies EXP $\not \subset \mathrm{P} /$ poly.

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\neq \mathrm{P}$ (time hierarchy theorem).

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\neq \mathrm{P}$ (time hierarchy theorem).
- Space complexity version:

$$
\text { PSPACE } \subset \text { NC/poly? }
$$

Remarks

- EXP $\neq \mathrm{P} /$ poly (there are undecidable languages in $\mathrm{P} /$ poly).
- EXP $\neq \mathrm{P}$ (time hierarchy theorem).
- Space complexity version:

$$
\text { PSPACE } \subset \text { NC/poly? }
$$

- Even the question "EXP $\subset \mathrm{L} /$ poly?" is open.

Some classes

Some classes

Some classes

Advices

- A Turing machine can be helped by an advice (one word given for all inputs of same size).

Advices

- A Turing machine can be helped by an advice (one word given for all inputs of same size).
- If \mathcal{C} is a complexity class and $a: \mathbb{N} \rightarrow \mathbb{N}$ a function, then $\mathcal{C} / a(n)$ is the set of languages A such that there exists $B \in \mathcal{C}$ and a function $c: \mathbb{N} \rightarrow\{0,1\}^{*}$ satisfying:
- $\forall n,|c(n)| \leq a(n)$;
- $\forall x \in\{0,1\}^{*}, x \in A \Longleftrightarrow(x, c(|x|)) \in B$.
- "The class \mathcal{C} is helped by the advice $c(|x|)$ " (the same for all words of each length).

Advices (quizz)

- $\mathrm{P} / 0=$?

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $\mathrm{P} / 2^{n}=?$

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- $\mathrm{P} / 1 \subseteq$?

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $P / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- $\mathrm{P} / 1$ is uncountable and contains undecidable languages...

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $P / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- $\mathrm{P} / 1$ is uncountable and contains undecidable languages...
- $\mathrm{P} /$ poly $=$?

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- $\mathrm{P} / 1$ is uncountable and contains undecidable languages...
- $\mathrm{P} /$ poly $=\cup_{k \geq 0} \mathrm{P} / n^{k}$ (polynomial-size advice).

P/poly: conversion advice \longleftrightarrow boolean circuit.

Advices (quizz)

- $\mathrm{P} / 0=\mathrm{P}$.
- $\mathrm{P} / 2^{n}=\mathcal{P}\left(\{0,1\}^{*}\right)$.
- $\mathrm{P} / 1$ is uncountable and contains undecidable languages...
- $\mathrm{P} /$ poly $=\cup_{k \geq 0} \mathrm{P} / n^{k}$ (polynomial-size advice).

P/poly: conversion advice \longleftrightarrow boolean circuit.

- $\mathrm{EXP} \subset \mathrm{P} /$ poly $\Longleftrightarrow \mathrm{EXP} /$ poly $=\mathrm{P} /$ poly.

Links with derandomization

- Pseudo-random generators approach: Yao 1982, Nisan \& Wigderson 1994

Links with derandomization

- Pseudo-random generators approach: Yao 1982, Nisan \& Wigderson 1994
- Impagliazzo \& Wigderson 1997: if EXP requires circuits of exponential size, then $\mathrm{BPP}=\mathrm{P}$.
- Babai, Fortnow, Nisan \& Wigderson 1993: if EXP $\not \subset \mathrm{P} /$ poly then BPP has subexponential-time deterministic algorithms.

Links with derandomization

- Pseudo-random generators approach: Yao 1982, Nisan \& Wigderson 1994
- Impagliazzo \& Wigderson 1997: if EXP requires circuits of exponential size, then $\mathrm{BPP}=\mathrm{P}$.
- Babai, Fortnow, Nisan \& Wigderson 1993: if EXP $\not \subset \mathrm{P} /$ poly then BPP has subexponential-time deterministic algorithms.
- For the other direction, Kabanets \& Impagliazzo 2002: if $\mathrm{P}=\mathrm{BPP}$ then NEXP does not have polynomial-size circuits.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: $\mathrm{NEXP}^{\mathrm{NP}} \not \subset \mathrm{P} /$ poly;
- Schöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: NEXP ${ }^{\text {NP }} \not \subset \mathrm{P} /$ poly;
- Schöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly.
- Homer \& Mocas 1995: $\forall c>0$, EXP $\not \subset \mathrm{P} / n^{c}$.

The question "EXP \subset P/poly?"

- Simple diagonalization fails (too many circuits).
- Kannan 1982: NEXP ${ }^{\text {NP }} \not \subset \mathrm{P} /$ poly;
- Schöning 1985: EXPSPACE $\not \subset \mathrm{P} /$ poly .
- Homer \& Mocas 1995: $\forall c>0$, EXP $\not \subset \mathrm{P} / n^{c}$.
- Here: symmetry of information $\left(\mathrm{SI}_{\mathrm{p}}\right) \Rightarrow \mathrm{EXP} \not \subset \mathrm{P} /$ poly;
- Lee \& Romashchenko 2004: $\left(\mathrm{SI}_{\mathrm{p}}\right) \Rightarrow \mathrm{EXP} \neq \mathrm{BPP}$ (remark: $\mathrm{BPP} \subset \mathrm{P} /$ poly, Adleman 1978).

Advices of size n^{c}

- Words of $\{0,1\}^{n}$ are ordered lexicographically $x_{1}<x_{2}<\cdots<x_{2^{n}}$.
- We fix an "efficient" universal Turing machine \mathcal{U}.

Advices of size n^{c}

- Words of $\{0,1\}^{n}$ are ordered lexicographically $x_{1}<x_{2}<\cdots<x_{2^{n}}$.
- We fix an "efficient" universal Turing machine \mathcal{U}.

Lemma

If $A \in \mathrm{P} / n^{c}$ then there exists a constant k and a family $\left(p_{n}\right)$ of programs of size $k+n^{c}$ such that

- $\mathcal{U}\left(p_{n}, x\right)=1$ iff $x \in A$;
- $\mathcal{U}\left(p_{n}, x\right)$ works in polynomial time.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

First word not in A
1

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in DTIME $\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Advices of size n^{c} (continued)

Proposition (warm-up)

For all constants $c_{1}, c_{2} \geq 1$, there exists a sparse language A in $\operatorname{DTIME}\left(2^{n^{1+c_{1} c_{2}}}\right)$ but not in $\operatorname{DTIME}\left(2^{n^{c_{1}}}\right) / n^{c_{2}}$.

Corollary

For all constant $c>0$, EXP $\not \subset \mathrm{P} / n^{c}$ and PSPACE $\not \subset\left(\cup_{k}\right.$ DSPACE $\left.\left(\log ^{k} n\right) / n^{c}\right)$.

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

- Resource-bounded Kolmogorov complexity: \mathcal{U} is required to run within a time bound t

$$
C^{t}(x \mid y)=\min \left\{|p|: \mathcal{U}^{t}(p, y)=x\right\}
$$

Kolmogorov complexity

- Plain Kolmogorov complexity:

$$
C(x \mid y)=\min \{|p|: \mathcal{U}(p, y)=x\}
$$

- Resource-bounded Kolmogorov complexity: \mathcal{U} is required to run within a time bound t

$$
C^{t}(x \mid y)=\min \left\{|p|: \mathcal{U}^{t}(p, y)=x\right\}
$$

- Typical time bound: polynomial or exponential. There could also be a space bound.

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^{n} \in\{0,1\}^{2^{n}}$ of $A^{=n}$:

$$
\chi_{i}^{n}=1 \Longleftrightarrow x_{i} \in A^{=n} .
$$

Lemma

Suppose that for all n and some $1 \leq i \leq 2^{n}$ we have

$$
C^{i r(n)}\left(\chi^{n}[1 . . i]\right)>n+a(n)
$$

Then $A \notin \operatorname{DTIME}(r(n)) / a(n)$.

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^{n} \in\{0,1\}^{2^{n}}$ of $A^{=n}$:

$$
\chi_{i}^{n}=1 \Longleftrightarrow x_{i} \in A^{=n} .
$$

Lemma

Suppose that for all n and some $1 \leq i \leq 2^{n}$ we have

$$
C^{i r(n)}\left(\chi^{n}[1 . . i]\right)>n+a(n)
$$

Then $A \notin \operatorname{DTIME}(r(n)) / a(n)$.
Proof
If $A \in \operatorname{DTIME}(r(n)) / a(n)$ then $\chi^{n}[1 . . i]$ is computed in time $i r(n)$ with a program of size $a(n)+O(1)$.

Symmetry of information

Theorem (symmetry of information, Levin \& Kolmogorov)
Given x and y, x contains as much information on y as y on x

$$
C(y)-C(y \mid x) \simeq C(x)-C(x \mid y)
$$

- The (equivalent) version we will use:

$$
C(x, y) \simeq C(x)+C(y \mid x)
$$

$\leq:$ easy direction $\quad \geq$: hard direction.

Symmetry of information

Theorem (symmetry of information, Levin \& Kolmogorov)

Given x and y, x contains as much information on y as y on x

$$
C(y)-C(y \mid x) \simeq C(x)-C(x \mid y)
$$

- The (equivalent) version we will use:

$$
C(x, y) \simeq C(x)+C(y \mid x)
$$

$\leq:$ easy direction $\quad \geq$: hard direction.

- Exponential time bounds \rightarrow still true.
- Polynomial-time symmetry of information: easy direction still holds; hard direction is open!
(true if $\mathrm{P}=\mathrm{NP}$, Longpré \& Watanabe 1995).

Symmetry of information

Hypothesis (SI_{p})

There exist a polynomial q and a constant $\alpha>1 / 2$ such that for all t and all words x, y of size n :

$$
C^{t}(x, y) \geq \alpha\left(C^{t q(n)}(x)+C^{t q(n)}(y \mid x)\right)
$$

Symmetry of information

Hypothesis $\left(\mathrm{SI}_{\mathrm{p}}\right)$

There exist a polynomial q and a constant $\alpha>1 / 2$ such that for all t and all words x, y of size n :

$$
C^{t}(x, y) \geq \alpha\left(C^{t q(n)}(x)+C^{t q(n)}(y \mid x)\right)
$$

Remark: stronger time bounds than the usual ones $t q(n)$ instead of $q(t)$.

Symmetry of information

Hypothesis $\left(\mathrm{SI}_{\mathrm{p}}\right)$

There exist a polynomial q and a constant $\alpha>1 / 2$ such that for all t and all words x, y of size n :

$$
C^{t}(x, y) \geq \alpha\left(C^{q(t)}(x)+C^{q(t)}(y \mid x)\right)
$$

Remark: stronger time bounds than the usual ones $t q(n)$ instead of $q(t)$.

Symmetry of information

Hypothesis $\left(\mathrm{SI}_{\mathrm{p}}\right)$

There exist a polynomial q and a constant $\alpha>1 / 2$ such that for all t and all words x, y of size n :

$$
C^{t}(x, y) \geq \alpha\left(C^{t q(n)}(x)+C^{t q(n)}(y \mid x)\right)
$$

Remark: stronger time bounds than the usual ones $t q(n)$ instead of $q(t)$.

Iterations of $\left(\mathrm{SI}_{\mathrm{p}}\right)$

Lemma

Suppose $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds.
Let u_{1}, \ldots, u_{n} be words of size s. Let $m=n$. Suppose there exists k such that for all $j \leq n$,

$$
C^{t q(m)^{\log n}}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) \geq k
$$

Then $C^{t}\left(u_{1}, \ldots, u_{n}\right) \geq n^{\log (2 \alpha)} k$.

Iterations of $\left(\mathrm{SI}_{\mathrm{p}}\right)$

Lemma

Suppose $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds.
Let u_{1}, \ldots, u_{n} be words of size s. Let $m=n$. Suppose there exists k such that for all $j \leq n$,

$$
C^{t g(m)^{\log n}}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) \geq k
$$

Then $C^{t}\left(u_{1}, \ldots, u_{n}\right) \geq n^{\log (2 \alpha)} k$.
Proof sketch

$$
\begin{aligned}
& C^{t}\left(u_{1}, \ldots, u_{n}\right) \geq \alpha\left(C^{t q(m)}\left(u_{1}, \ldots, u_{n / 2}\right)+\right. \\
& \left.C^{t q(m)}\left(u_{n / 2+1}, \ldots, u_{n} \mid u_{1}, \ldots, u_{n / 2}\right)\right) .
\end{aligned}
$$

Polynomial-size advices - the idea

- In EXP, impossible to diagonalize over all advices of polynomial size
$-\rightarrow$ we cut the advices into blocks of size n and diagonalize over these blocks;

Polynomial-size advices - the idea

- In EXP, impossible to diagonalize over all advices of polynomial size
- \rightarrow we cut the advices into blocks of size n and diagonalize over these blocks;
- then we "glue" these blocks together thanks to $\left(\mathrm{SI}_{\mathrm{p}}\right)$.

Polynomial-size advices - the idea

- In EXP, impossible to diagonalize over all advices of polynomial size
- \rightarrow we cut the advices into blocks of size n and diagonalize over these blocks;
- then we "glue" these blocks together thanks to $\left(\mathrm{SI}_{\mathrm{p}}\right)$.
- Other point of view: thanks to $\left(\mathrm{SI}_{\mathrm{p}}\right)$, build a characteristic string of high Kolmogorov complexity.

Main result

Theorem
If $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds, then $\mathrm{EXP} \not \subset \mathrm{P} /$ poly .

Main result

Theorem

If $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds, then EXP $\not \subset \mathrm{P} /$ poly .
Outline of the proof: feedback with previously defined segments. Proof
We build A by input sizes and word by word. Let $t(n)=n^{\log ^{3} n}$. Let us fix n and define $A^{=n}$:

$$
x_{1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \mathcal{U}^{t(n)}\left(p, x_{1}\right)=0 .
\end{aligned}
$$

(at least half of the programs give the wrong answer for x_{1}).

Main result

Theorem

If $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds, then EXP $\not \subset \mathrm{P} /$ poly .
Outline of the proof: feedback with previously defined segments. Proof
We build A by input sizes and word by word. Let $t(n)=n^{\log ^{3} n}$. Let us fix n and define $A^{=n}$:

$$
x_{1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \mathcal{U}^{t(n)}\left(p, x_{1}\right)=0 .
\end{aligned}
$$

(at least half of the programs give the wrong answer for x_{1}).
Let V_{1} be the set of programs giving the right answer for x_{1}.

Proof (continued)

We go on like this, discarding half of the remaining programs at each step, until x_{n} :

$$
x_{n} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{n-1}, \\
& \mathcal{U}^{t(n)}\left(p, x_{n}\right)=0
\end{aligned}
$$

We call $u^{(1)}$ the n first bits of the characteristic string of $A^{=n}$ just defined.

Proof (continued)

Then:

$$
x_{n+1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \mathcal{U}^{t(n)}\left(p, u^{(1)}, x_{n+1}\right)=0 .
\end{aligned}
$$

(at least half of the programs are wrong on x_{n+1}, even with the advice $\left.u^{(1)}\right)$.

Proof (continued)

Then:

$$
x_{n+1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \mathcal{U}^{t(n)}\left(p, u^{(1)}, x_{n+1}\right)=0 .
\end{aligned}
$$

(at least half of the programs are wrong on x_{n+1}, even with the advice $\left.u^{(1)}\right)$.

Keep going: call V_{1} the set of programs that where right at the preceding step.

$$
x_{n+2} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \in V_{1} \\
& \mathcal{U}^{t(n)}\left(p, u^{(1)}, x_{n+2}\right)=0
\end{aligned}
$$

Proof continued

And so on, until the next segment $u^{(2)}$ of size n is defined. Then:

$$
x_{2 n+1} \in A \Longleftrightarrow \begin{aligned}
& \text { for at least half of the programs } p \text { of size } \leq n, \\
& \mathcal{U}^{t(n)}\left(p, u^{(1)}, u^{(2)}, x_{2 n+1}\right)=0 .
\end{aligned}
$$

(at least half of the programs give the wrong answer for $x_{2 n+1}$, even with the advice $\left.u^{(1)}, u^{(2)}\right)$.

We define $n^{\log n}$ segments of size n and decide that $x_{j} \notin A^{=n}$ for $j>n \times n^{\log n}$.

Proof continued

- $A \notin \mathrm{P} /$ poly because for all j, $C^{t(n)}\left(u^{(j)} \mid u^{(1)}, \ldots, u^{(j-1)}\right) \geq n-1$. Thus by iteratively applying $\left(\mathrm{SI}_{\mathrm{p}}\right), C^{t}\left(\chi^{n}\left[1 . . n^{1+\log n}\right]\right) \geq n^{\Omega(\log n)}$.
- $A \in$ EXP.

Proof continued

- $A \notin \mathrm{P} /$ poly because for all j, $C^{t(n)}\left(u^{(j)} \mid u^{(1)}, \ldots, u^{(j-1)}\right) \geq n-1$. Thus by iteratively applying $\left(\mathrm{SI}_{\mathrm{p}}\right), C^{t}\left(\chi^{n}\left[1 . . n^{1+\log n}\right]\right) \geq n^{\Omega(\log n)}$.
- $A \in$ EXP.

Corollary

If $\left(\mathrm{SI}_{\mathrm{p}}\right)$ holds, then there exists a constant $\mathrm{c}>0$ such that

$$
\mathrm{BPP} \subseteq \mathrm{DTIME}\left(2^{\log ^{c} n}\right)
$$

Conclusion

- $\left(\mathrm{SI}_{\mathrm{p}}\right)$ is a central (and hard) question: if true, then EXP $\not \subset \mathrm{P} /$ poly; if false, then $\mathrm{P} \neq \mathrm{NP} .$.
- What about the usual version of $\left(\mathrm{SI}_{\mathrm{p}}\right)$ (with time bound $q(t)$ instead of $t q(n))$?
- Can we obtain unconditionnal results by using variants of Kolmogorov complexity ? (for instance CAMD, a version based on the class AM).

Outline

1. Complexity classes
2. Advices of size n^{c}
3. Symmetry of information
4. Polynomial-size advices
