Symmetry of information and nonuniform lower bounds

Sylvain Perifel

LIP, ENS Lyon

Ekaterinburg, September 4, 2007

Outline

- 1. Complexity classes
- 2. Advices of size n^c
- 3. Symmetry of information
- 4. Polynomial-size advices

 EXP: set of languages recognized in exponential time by a deterministic Turing machine

 $\mathrm{EXP} = \cup_{k \geq 0} \mathrm{DTIME}(2^{n^k}).$

 EXP: set of languages recognized in exponential time by a deterministic Turing machine

$$\mathrm{EXP} = \cup_{k \geq 0} \mathrm{DTIME}(2^{n^k}).$$

► P/poly: set of languages recognized by a family of polynomial-size boolean circuits (gates ∧, ∨ and ¬, one circuit per input length)

 EXP: set of languages recognized in exponential time by a deterministic Turing machine — uniform

$$\mathrm{EXP} = \cup_{k \geq 0} \mathrm{DTIME}(2^{n^k}).$$

- ► P/poly: set of languages recognized by a family of polynomial-size boolean circuits (gates ∧, ∨ and ¬, one circuit per input length) — nonuniform
- Open question: $EXP \subset P/poly$?

 EXP: set of languages recognized in exponential time by a deterministic Turing machine — uniform

$$\mathrm{EXP} = \cup_{k \geq 0} \mathrm{DTIME}(2^{n^k}).$$

- ► P/poly: set of languages recognized by a family of polynomial-size boolean circuits (gates ∧, ∨ and ¬, one circuit per input length) — nonuniform
- Open question: $EXP \subset P/poly$?
- ► Main result: polynomial-time symmetry of information implies EXP ∉ P/poly.

Remarks

▶ $EXP \neq P/poly$ (there are undecidable languages in P/poly).

- $EXP \neq P/poly$ (there are undecidable languages in P/poly).
- $EXP \neq P$ (time hierarchy theorem).

- ▶ $EXP \neq P/poly$ (there are undecidable languages in P/poly).
- $EXP \neq P$ (time hierarchy theorem).
- Space complexity version:

 $PSPACE \subset NC/poly?$

- ▶ $EXP \neq P/poly$ (there are undecidable languages in P/poly).
- $EXP \neq P$ (time hierarchy theorem).
- Space complexity version:

 $PSPACE \subset NC/poly?$

• Even the question " $EXP \subset L/poly$?" is open.

 A Turing machine can be helped by an advice (one word given for all inputs of same size).

- A Turing machine can be helped by an advice (one word given for all inputs of same size).
- If C is a complexity class and a : N → N a function, then
 C/a(n) is the set of languages A such that there exists B ∈ C and a function c : N → {0,1}* satisfying:
 - $\forall n, |c(n)| \leq a(n);$
 - ► $\forall x \in \{0,1\}^*$, $x \in A \iff (x, c(|x|)) \in B$.
- "The class C is helped by the advice c(|x|)" (the same for all words of each length).

► P/0 = ?

▶ P/2^{*n*} = ?

▶
$$P/2^n = \mathcal{P}(\{0,1\}^*).$$

▶
$$P/2^n = \mathcal{P}(\{0,1\}^*).$$

► P/1 ⊆?

- ► P/0 = P.
- ▶ $P/2^n = \mathcal{P}(\{0,1\}^*).$
- \blacktriangleright P/1 is uncountable and contains undecidable languages...

- ► P/0 = P.
- ▶ $P/2^n = \mathcal{P}(\{0,1\}^*).$
- $\blacktriangleright~P/1$ is uncountable and contains undecidable languages. . .

▶
$$P/poly = ?$$

► P/0 = P.

▶ $P/2^n = \mathcal{P}(\{0,1\}^*).$

▶ P/1 is uncountable and contains undecidable languages...

▶ $P/poly = \bigcup_{k \ge 0} P/n^k$ (polynomial-size advice).

P/poly: conversion advice $\leftrightarrow \rightarrow$ boolean circuit.

- ► P/0 = P.
- ▶ $P/2^n = \mathcal{P}(\{0,1\}^*).$
- ▶ P/1 is uncountable and contains undecidable languages...
- ▶ $P/poly = \bigcup_{k \ge 0} P/n^k$ (polynomial-size advice).

P/poly: conversion advice \longleftrightarrow boolean circuit.

• $EXP \subset P/poly \iff EXP/poly = P/poly.$

 Pseudo-random generators approach: Yao 1982, Nisan & Wigderson 1994

Links with derandomization

- Pseudo-random generators approach: Yao 1982, Nisan & Wigderson 1994
 - Impagliazzo & Wigderson 1997: if EXP requires circuits of exponential size, then BPP = P.
 - ► Babai, Fortnow, Nisan & Wigderson 1993: if EXP ⊄ P/poly then BPP has subexponential-time deterministic algorithms.

Links with derandomization

- Pseudo-random generators approach: Yao 1982, Nisan & Wigderson 1994
 - Impagliazzo & Wigderson 1997: if EXP requires circuits of exponential size, then BPP = P.
 - ► Babai, Fortnow, Nisan & Wigderson 1993: if EXP ⊄ P/poly then BPP has subexponential-time deterministic algorithms.
- For the other direction, Kabanets & Impagliazzo 2002: if P = BPP then NEXP does not have polynomial-size circuits.

Simple diagonalization fails (too many circuits).

Simple diagonalization fails (too many circuits).

- ▶ Kannan 1982: NEXP^{NP} $\not\subset$ P/poly;
- ▶ Schöning 1985: EXPSPACE $\not\subset$ P/poly.

Simple diagonalization fails (too many circuits).

- ▶ Kannan 1982: NEXP^{NP} $\not\subset$ P/poly;
- ▶ Schöning 1985: EXPSPACE $\not\subset$ P/poly.
- ▶ Homer & Mocas 1995: $\forall c > 0, EXP \not\subset P/n^c$.

- Simple diagonalization fails (too many circuits).
- ▶ Kannan 1982: NEXP^{NP} $\not\subset$ P/poly;
- ▶ Schöning 1985: EXPSPACE $\not\subset$ P/poly.
- ▶ Homer & Mocas 1995: $\forall c > 0, EXP \not\subset P/n^c$.
- Here: symmetry of information $(SI_p) \Rightarrow EXP \not\subset P/poly;$
- Lee & Romashchenko 2004: (SI_p) ⇒ EXP ≠ BPP (remark: BPP ⊂ P/poly, Adleman 1978).

- ▶ Words of {0,1}ⁿ are ordered lexicographically x₁ < x₂ < ··· < x_{2ⁿ}.
- \blacktriangleright We fix an "efficient" universal Turing machine $\mathcal{U}.$

- ► Words of {0,1}ⁿ are ordered lexicographically x₁ < x₂ < ··· < x_{2ⁿ}.
- ▶ We fix an "efficient" universal Turing machine U.

Lemma

If $A \in P/n^c$ then there exists a constant k and a family (p_n) of programs of size $k + n^c$ such that

•
$$\mathcal{U}(p_n, x) = 1$$
 iff $x \in A$;

• $\mathcal{U}(p_n, x)$ works in polynomial time.

Advices of size n^c (continued)

Proposition (warm-up)

For all constants $c_1, c_2 \ge 1$, there exists a sparse language A in $DTIME(2^{n^{1+c_1c_2}})$ but not in $DTIME(2^{n^{c_1}})/n^{c_2}$.

Advices of size n^c (continued)

Proposition (warm-up)

For all constants $c_1, c_2 \ge 1$, there exists a sparse language A in $DTIME(2^{n^{1+c_1c_2}})$ but not in $DTIME(2^{n^{c_1}})/n^{c_2}$.

Advices of size n^c (continued)

Proposition (warm-up)

For all constants $c_1, c_2 \ge 1$, there exists a sparse language A in $DTIME(2^{n^{1+c_1c_2}})$ but not in $DTIME(2^{n^{c_1}})/n^{c_2}$.

Proposition (warm-up)

Proposition (warm-up)

Proposition (warm-up)

Proposition (warm-up)

Proposition (warm-up)

For all constants $c_1, c_2 \ge 1$, there exists a sparse language A in $DTIME(2^{n^{1+c_1c_2}})$ but not in $DTIME(2^{n^{c_1}})/n^{c_2}$.

Corollary

For all constant c > 0, EXP $\not\subset P/n^c$ and PSPACE $\not\subset (\cup_k DSPACE(\log^k n)/n^c)$.

Kolmogorov complexity

▶ Plain Kolmogorov complexity: $C(x|y) = \min\{|p| : U(p, y) = x\}.$

Kolmogorov complexity

- Plain Kolmogorov complexity:
 C(x|y) = min{|p| : U(p, y) = x}.
- Resource-bounded Kolmogorov complexity: U is required to run within a time bound t

$$C^{t}(x|y) = \min\{|p| : \mathcal{U}^{t}(p,y) = x\}.$$

Kolmogorov complexity

- Plain Kolmogorov complexity:
 C(x|y) = min{|p| : U(p, y) = x}.
- Resource-bounded Kolmogorov complexity: U is required to run within a time bound t

$$C^{t}(x|y) = \min\{|p| : \mathcal{U}^{t}(p,y) = x\}.$$

 Typical time bound: polynomial or exponential. There could also be a space bound.

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^n \in \{0,1\}^{2^n}$ of $A^{=n}$:

$$\chi_i^n = 1 \iff x_i \in A^{=n}$$

Lemma

Suppose that for all n and some $1 \le i \le 2^n$ we have

$$C^{ir(n)}(\chi^n[1..i]) > n + a(n).$$

Then $A \notin \text{DTIME}(r(n))/a(n)$.

Links Kolmogorov/nonuniform complexity

Characteristic string $\chi^n \in \{0,1\}^{2^n}$ of $A^{=n}$:

$$\chi_i^n = 1 \iff x_i \in A^{=n}.$$

Lemma

Suppose that for all n and some $1 \le i \le 2^n$ we have

$$C^{ir(n)}(\chi^n[1..i]) > n + a(n).$$

Then $A \notin \text{DTIME}(r(n))/a(n)$.

Proof

If $A \in \text{DTIME}(r(n))/a(n)$ then $\chi^n[1..i]$ is computed in time ir(n) with a program of size a(n) + O(1).

Symmetry of information

Theorem (symmetry of information, Levin & Kolmogorov)

Given x and y, x contains as much information on y as y on x

$$C(y) - C(y|x) \simeq C(x) - C(x|y).$$

The (equivalent) version we will use:

$$C(x,y) \simeq C(x) + C(y|x).$$

 \leq : easy direction \geq : hard direction.

Symmetry of information

Theorem (symmetry of information, Levin & Kolmogorov)

Given x and y, x contains as much information on y as y on x

$$C(y) - C(y|x) \simeq C(x) - C(x|y).$$

The (equivalent) version we will use:

 $C(x,y)\simeq C(x)+C(y|x).$

 \leq : easy direction \geq : hard direction.

- ► Exponential time bounds → still true.
- Polynomial-time symmetry of information: easy direction still holds; hard direction is open! (true if P = NP, Longpré & Watanabe 1995).

There exist a polynomial q and a constant $\alpha > 1/2$ such that for all t and all words x, y of size n:

$$C^{t}(x,y) \geq \alpha(C^{tq(n)}(x) + C^{tq(n)}(y|x)).$$

There exist a polynomial q and a constant $\alpha > 1/2$ such that for all t and all words x, y of size n:

$$C^{t}(x,y) \geq \alpha(C^{tq(n)}(x) + C^{tq(n)}(y|x)).$$

Remark: stronger time bounds than the usual ones tq(n) instead of q(t).

There exist a polynomial q and a constant $\alpha > 1/2$ such that for all t and all words x, y of size n:

$$C^{t}(x,y) \geq \alpha(C^{q(t)}(x) + C^{q(t)}(y|x)).$$

Remark: stronger time bounds than the usual ones tq(n) instead of q(t).

There exist a polynomial q and a constant $\alpha > 1/2$ such that for all t and all words x, y of size n:

$$C^{t}(x,y) \geq \alpha(C^{tq(n)}(x) + C^{tq(n)}(y|x)).$$

Remark: stronger time bounds than the usual ones tq(n) instead of q(t).

Iterations of (SI_p)

Lemma

Suppose (SI_p) holds. Let u_1, \ldots, u_n be words of size s. Let m = ns. Suppose there exists k such that for all $j \leq n$,

$$C^{tq(m)^{\log n}}(u_j|u_1,\ldots,u_{j-1}) \geq k.$$

Then $C^t(u_1,\ldots,u_n) \geq n^{\log(2\alpha)}k$.

Iterations of (SI_p)

Lemma

Suppose (SI_p) holds. Let u_1, \ldots, u_n be words of size s. Let m = ns. Suppose there exists k such that for all $j \leq n$,

$$C^{tq(m)^{\log n}}(u_j|u_1,\ldots,u_{j-1}) \geq k.$$

Then $C^t(u_1,\ldots,u_n) \ge n^{\log(2\alpha)}k$.

Proof sketch

$$C^{t}(u_{1},...,u_{n}) \geq \alpha(C^{tq(m)}(u_{1},...,u_{n/2}) + C^{tq(m)}(u_{n/2+1},...,u_{n}|u_{1},...,u_{n/2})).$$

- In EXP, impossible to diagonalize over all advices of polynomial size
- ➤ → we cut the advices into blocks of size n and diagonalize over these blocks;

- In EXP, impossible to diagonalize over all advices of polynomial size
- ➤ → we cut the advices into blocks of size n and diagonalize over these blocks;
- ▶ then we "glue" these blocks together thanks to (SI_p).

- In EXP, impossible to diagonalize over all advices of polynomial size
- ➤ → we cut the advices into blocks of size n and diagonalize over these blocks;
- then we "glue" these blocks together thanks to (SI_p) .
- Other point of view: thanks to (SI_p), build a characteristic string of high Kolmogorov complexity.

Main result

Theorem

If (SI_p) holds, then EXP $\not\subset$ P/poly.

Main result

Theorem

If (SI_p) holds, then $\mathrm{EXP} \not\subset \mathrm{P/poly}.$

Outline of the proof: feedback with previously defined segments. Proof

We build A by input sizes and word by word. Let $t(n) = n^{\log^3 n}$. Let us fix n and define $A^{=n}$:

 $x_1 \in A \iff egin{array}{c} \mbox{for at least half of the programs p of size $\leq n$,} \ \mathcal{U}^{t(n)}(p,x_1) = 0. \end{array}$

(at least half of the programs give the wrong answer for x_1).

Main result

Theorem

If (SI_p) holds, then EXP $\not\subset$ P/poly.

Outline of the proof: feedback with previously defined segments. Proof

We build A by input sizes and word by word. Let $t(n) = n^{\log^3 n}$. Let us fix n and define $A^{=n}$:

 $x_1 \in A \iff egin{array}{c} \mbox{for at least half of the programs p of size $\leq n$,} \ \mathcal{U}^{t(n)}(p,x_1) = 0. \end{array}$

(at least half of the programs give the wrong answer for x_1).

Let V_1 be the set of programs giving the right answer for x_1 .

We go on like this, discarding half of the remaining programs at each step, until x_n :

$$x_n \in A \iff egin{array}{c} ext{for at least half of the programs } p \in V_{n-1}, \ \mathcal{U}^{t(n)}(p,x_n) = 0. \end{array}$$

We call $u^{(1)}$ the *n* first bits of the characteristic string of $A^{=n}$ just defined.

Proof (continued)

Then:

$$x_{n+1} \in A \iff {egin{array}{c} \mbox{for at least half of the programs p of size $\leq n$,} \ \mathcal{U}^{t(n)}(p, u^{(1)}, x_{n+1}) = 0. \end{array}$$

(at least half of the programs are wrong on x_{n+1} , even with the advice $u^{(1)}$).

Proof (continued)

Then:

$$x_{n+1} \in A \iff {egin{array}{c} \mbox{for at least half of the programs p of size $\leq n$,} \ \mathcal{U}^{t(n)}(p, u^{(1)}, x_{n+1}) = 0. \end{array}$$

(at least half of the programs are wrong on x_{n+1} , even with the advice $u^{(1)}$).

Keep going: call V_1 the set of programs that where right at the preceding step.

 $x_{n+2} \in A \iff egin{array}{l} \mbox{for at least half of the programs } p \in V_1, \ \mathcal{U}^{t(n)}(p, u^{(1)}, x_{n+2}) = 0. \end{array}$

And so on, until the next segment $u^{(2)}$ of size *n* is defined. Then:

 $x_{2n+1} \in A \iff$ for at least half of the programs p of size $\leq n$, $\mathcal{U}^{t(n)}(p, u^{(1)}, u^{(2)}, x_{2n+1}) = 0.$

(at least half of the programs give the wrong answer for x_{2n+1} , even with the advice $u^{(1)}, u^{(2)}$).

We define $n^{\log n}$ segments of size n and decide that $x_j \notin A^{=n}$ for $j > n \times n^{\log n}$.

Proof continued

 A ∉ P/poly because for all j, C^{t(n)}(u^(j)|u⁽¹⁾,...,u^(j-1)) ≥ n − 1. Thus by iteratively applying (SI_p), C^t(χⁿ[1..n^{1+log n}]) ≥ n^{Ω(log n)}.
 A ∈ EXP.

Proof continued

Corollary

If (SI_p) holds, then there exists a constant c > 0 such that

BPP \subseteq DTIME(2^{log^c} n).

- ▶ (SI_p) is a central (and hard) question: if true, then $EXP \not\subset P/poly$; if false, then $P \neq NP...$
- ▶ What about the usual version of (SI_p) (with time bound q(t) instead of tq(n))?
- Can we obtain unconditionnal results by using variants of Kolmogorov complexity ? (for instance CAMD, a version based on the class AM).

Outline

- 1. Complexity classes
- 2. Advices of size n^c
- 3. Symmetry of information
- 4. Polynomial-size advices