VPSPACE and a transfer theorem over the complex numbers

The question " $\mathrm{P}=\mathrm{PSPACE}$?" in algebraic complexity

Pascal Koiran Sylvain Perifel
LIP, ENS Lyon

Český Krumlov, August 30, 2007

Introduction

- Decision problems

Languages (over \mathbb{C}), Blum-Shub-Smale model
Example: decide whether a system of multivariate polynomials has a solution ($\mathrm{NP}_{\mathbb{C}}$-complete)

Introduction

- Decision problems

Languages (over \mathbb{C}), Blum-Shub-Smale model
Example: decide whether a system of multivariate
polynomials has a solution ($\mathrm{NP}_{\mathbb{C}}$-complete)

- Evaluation problems

Families of polynomials, Valiant's model
Example: compute the permanent of a matrix (VNP-complete)

Outline

1. P and PSPACE (boolean case)
2. P and PSPACE in BSS model
3. P and PSPACE in Valiant's model
4. Sign condition
if $\mathrm{VP}=\mathrm{VPSPACE}$ then $\mathrm{P}_{\mathbb{C}}=\mathrm{PAR}_{\mathbb{C}}$

P and PSPACE (boolean case)

- P: languages over $\{0,1\}$ recognized in polynomial time by a Turing machine.
- PSPACE: languages over $\{0,1\}$ recognized in polynomial space by a Turing machine.

P and PSPACE (boolean case)

- P: languages over $\{0,1\}$ recognized in polynomial time by a Turing machine.
- PSPACE: languages over $\{0,1\}$ recognized in polynomial space by a Turing machine.

Turing machines

boolean circuits
(gates \wedge, \vee, \neg).

P and PSPACE (boolean case)

- Language recognition: one circuit per input length.

P and PSPACE (boolean case)

- Language recognition: one circuit per input length.
- P: languages recognized by boolean circuits of polynomial size (+ uniformity).
- PSPACE: languages recognized by boolean circuits of polynomial depth (of possibly exponential size)
(+ uniformity).

P and PSPACE in BSS model

Algebraic circuits: gates,,$+- \times$ and $=$.

P and PSPACE in BSS model

- Languages over \mathbb{C} : sets of words over the alphabet \mathbb{C}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{C}^{n}$.
- Language recognition over \mathbb{C} : one circuit per input length.

P and PSPACE in BSS model

- Languages over \mathbb{C} : sets of words over the alphabet \mathbb{C}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{C}^{n}$.
- Language recognition over \mathbb{C} : one circuit per input length.
- $\mathrm{P}_{\mathbb{C}}$: languages over \mathbb{C} recognized by algebraic circuits of polynomial size (+ uniformity).

P and PSPACE in BSS model

- Languages over \mathbb{C} : sets of words over the alphabet \mathbb{C}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{C}^{n}$.
- Language recognition over \mathbb{C} : one circuit per input length.
- $\mathrm{P}_{\mathbb{C}}$: languages over \mathbb{C} recognized by algebraic circuits of polynomial size (+ uniformity).
- $\mathrm{PAR}_{\mathbb{C}}$: languages over \mathbb{C} recognized by algebraic circuits of polynomial depth (of possibly exponential size) (+ uniformity).

P and PSPACE in Valiant's model

Arithmetic circuits: gates,+- and \times, inputs x_{1}, \ldots, x_{n} and constant $1 \longrightarrow$ multivariate polynomial with integer coefficients.

P and PSPACE in Valiant's model

- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.

P and PSPACE in Valiant's model

- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).

$$
\left(=\text { Uniform } \mathrm{VP}_{\mathrm{nb}}^{0}\right)
$$

P and PSPACE in Valiant's model

- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).

$$
\left(=\text { Uniform } \mathrm{VP}_{\mathrm{nb}}^{0}\right)
$$

- VPSPACE: families of polynomials computed by arithmetic circuits of polynomial depth (+ uniformity).

Recapitulation

- Decision problems over $\{0,1\}$: boolean circuits (gates \wedge, \vee et \neg).
- Decision problems over $\mathbb{C}(B S S)$: algebraic circuits (gates,,$+- \times,=$).
- Evaluation problems (Valiant): arithmetic circuits (gates,,$+- \times$).

Recapitulation

- Decision problems over $\{0,1\}$: boolean circuits (gates \wedge, \vee et \neg).
- Decision problems over $\mathbb{C}(B S S)$: algebraic circuits (gates,,$+- \times,=$).
- Evaluation problems (Valiant): arithmetic circuits (gates,,$+- \times$).
- P: circuits of polynomial size.
- PSPACE: circuits of polynomial depth.

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1 .

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1 .
- Example: multivariate resultant of a system of polynomials.

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1 .
- Example: multivariate resultant of a system of polynomials.
- Proposition: VPSPACE $=\mathrm{VP} \Longrightarrow$ PSPACE $=\mathrm{P}$.

Transfer theorem

If $\mathrm{VPSPACE}=\mathrm{VP}$ then $\mathrm{PAR}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}}$.

Outline of the proof:

- Goal: for $A \in \operatorname{PAR}_{\mathbb{C}}$, decide in polynomial time (with VPSPACE tests) whether $\bar{x} \in A$.
- Find the sign condition of \bar{x}
- Simulate the circuit on this sign condition.

Transfer theorem

If $\mathrm{VPSPACE}=\mathrm{VP}$ then $\mathrm{PAR}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}}$.

Outline of the proof:

- Goal: for $A \in \operatorname{PAR}_{\mathbb{C}}$, decide in polynomial time (with VPSPACE tests) whether $\bar{x} \in A$.
- Find the sign condition of \bar{x}
- enumeration of the satisfiable sign conditions (Fichtas, Galligo, Morgenstern);
- binary search.
- Simulate the circuit on this sign condition.

Polynomials tested by a circuit

Test gate: $f(\bar{x})=0$?
If the results of the preceding tests are fixed, f is a polynomial.
\rightarrow enumeration of all possible polynomials (polynomial space): family f_{1}, \ldots, f_{s}.

Polynomials tested by a circuit

Test gate: $f(\bar{x})=0$?
If the results of the preceding tests are fixed, f is a polynomial.
\rightarrow enumeration of all possible polynomials (polynomial space): family f_{1}, \ldots, f_{s}.

Sign conditions

- Sign condition $S \in\{0,1\}^{s}$: "sign" of the polynomials f_{1}, \ldots, f_{s}, i.e. 0 if $f_{i}(\bar{x})=0$ and 1 otherwise.
- Sign condition of $\bar{x}:\left(\operatorname{sign}\left(f_{1}(\bar{x})\right), \ldots, \operatorname{sign}\left(f_{s}(\bar{x})\right)\right)$.

Sign conditions

- Sign condition $S \in\{0,1\}^{s}$: "sign" of the polynomials f_{1}, \ldots, f_{s}, i.e. 0 if $f_{i}(\bar{x})=0$ and 1 otherwise.
- Sign condition of $\bar{x}:\left(\operatorname{sign}\left(f_{1}(\bar{x})\right), \ldots, \operatorname{sign}\left(f_{s}(\bar{x})\right)\right)$.
- If \bar{x} and \bar{y} have the same sign condition then every test gives the same result $\longrightarrow \bar{x}$ and \bar{y} are simultaneously in the language or outside of the language.
- It is enough to study the sign condition (boolean object).

Satisfiable sign conditions

- Sign condition $S \in\{0,1\}^{s}$: sign of the polynomials f_{1}, \ldots, f_{s}.
- A sign condition is not necessarily satisfiable.
- Example: x and $x+1$ cannot be both zero, hence $(0,0)$ is not satisfiable.

Satisfiable sign conditions

- Sign condition $S \in\{0,1\}^{s}$: sign of the polynomials f_{1}, \ldots, f_{s}.
- A sign condition is not necessarily satisfiable.
- Example: x and $x+1$ cannot be both zero, hence $(0,0)$ is not satisfiable.

Theorem (Fichtas, Galligo, Morgenstern 1990)

- There are $N=(s d)^{O(n)}$ satisfiable sign conditions (s: number of polynomials, n: number of variables, d: max degree).
- Satisfiable sign conditions can be enumerated in PSPACE.

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

Finding the sign condition

- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

- Over \mathbb{R}, easy thanks to VPSPACE tests

$$
\prod_{j \leq i}\left(\sum_{S_{k}^{(j)}=0} f_{k}(\bar{x})^{2}\right)=0 \quad(\text { true iff } S \leq i)
$$

Membership to a variety

- Over \mathbb{C} : no "sum of squares" trick.
- We have to test with a polynomial number of tests if $\bar{x} \in V$ for a variety V given by an exponential number of polynomials.

Membership to a variety

- Over \mathbb{C} : no "sum of squares" trick.
- We have to test with a polynomial number of tests if $\bar{x} \in V$ for a variety V given by an exponential number of polynomials.
- Nonconstructively: use the following lemma.

Lemma

Let $V \in \mathbb{C}^{n}$ be a variety defined by s polynomials f_{1}, \ldots, f_{s}. Then V is defined by $n+1$ generic linear combinations $g_{1}, \ldots g_{n+1}$ of the f_{i}.
"generic": $g_{i}=\sum_{j=1}^{s} \alpha_{i, j} f_{j}$ where the $\alpha_{i, j}$ are algebraically independent.

Membership to a variety

- Over \mathbb{C} : no "sum of squares" trick.
- We have to test with a polynomial number of tests if $\bar{x} \in V$ for a variety V given by an exponential number of polynomials.
- Nonconstructively: use the following lemma.

Lemma

Let $V \in \mathbb{C}^{n}$ be a variety defined by s polynomials f_{1}, \ldots, f_{s}. Then V is defined by $n+1$ generic linear combinations $g_{1}, \ldots g_{n+1}$ of the f_{i}.
"generic": $g_{i}=\sum_{j=1}^{s} \alpha_{i, j} f_{j}$ where the $\alpha_{i, j}$ are algebraically independent.

- Problem: we can only use integers.

Constructive tests

Lemma (Nonconstructive, reminder)

Let $V \in \mathbb{C}^{n}$ be a variety defined by s polynomials f_{1}, \ldots, f_{s}. Then V is defined by $n+1$ generic linear combinations $g_{1}, \ldots g_{n+1}$ of the f_{i}.

Replace transcendant numbers by integers growing sufficiently fast.

Lemma

Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a first order formula which is true on any algebraically independent coefficients $\alpha_{1}, \ldots, \alpha_{n}$. Then $\phi\left(\beta_{1}, \ldots, \beta_{n}\right)$ is true for any integers β_{i} growing sufficiently fast.

Proof idea: lack of "big" roots of multivariate polynomials.

Membership tests

- V defined by f_{1}, \ldots, f_{s} (s exponential). Decide $x \in V$ with a polynomial number of tests.

Membership tests

- V defined by f_{1}, \ldots, f_{s} (s exponential). Decide $x \in V$ with a polynomial number of tests.
- Let $\phi(\bar{\alpha}) \equiv$ the $n+1$ linear combinations of the f_{i} with coefficients $\bar{\alpha}$ also define V.
- By the first lemma, $\phi(\bar{\alpha})$ is true for all algebraically independent coefficients $\bar{\alpha}$.

Membership tests

- V defined by f_{1}, \ldots, f_{s} (s exponential). Decide $x \in V$ with a polynomial number of tests.
- Let $\phi(\bar{\alpha}) \equiv$ the $n+1$ linear combinations of the f_{i} with coefficients $\bar{\alpha}$ also define V.
- By the first lemma, $\phi(\bar{\alpha})$ is true for all algebraically independent coefficients $\bar{\alpha}$.
- By the second lemma, $\phi(\bar{\beta})$ is true for integers $\bar{\beta}$ growing sufficiently fast: V is then defined by the $n+1$ linear combinations of the f_{i} with coefficients $\bar{\beta}$.
- Hence $n+1$ polynomials to test to zero.

Union of varieties

- Actual tests to be performed: membership to a union of an exponential number of varieties.

Union of varieties

- Actual tests to be performed: membership to a union of an exponential number of varieties.
- Naive approach: products of the polynomials. But too many of them.
- \rightarrow Divide and conquer.

Union of varieties

- Actual tests to be performed: membership to a union of an exponential number of varieties.
- Naive approach: products of the polynomials. But too many of them.
- \rightarrow Divide and conquer.
- We can perform the binary search for the sign condition in polynomial time (with VPSPACE tests).

Recapitulation

In order to show that VPSPACE $=\mathrm{VP} \Rightarrow \mathrm{PAR}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}}$:

- For $A \in \operatorname{PAR}_{\mathbb{C}}$ we want to decide in polynomial time (with VPSPACE tests) whether $\bar{x} \in A$.
- We enumerate all the polynomials possibly tested in the cricuit (polynomial space).
- Thanks to VPSPACE tests, a binary search gives the sign condition of \bar{x}.
- Once the sign condition of \bar{x} is obtained, we can simulate the circuit and conclude.

Recapitulation

In order to show that VPSPACE $=\mathrm{VP} \Rightarrow \mathrm{PAR}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}}$:

- For $A \in \operatorname{PAR}_{\mathbb{C}}$ we want to decide in polynomial time (with VPSPACE tests) whether $\bar{x} \in A$.
- We enumerate all the polynomials possibly tested in the cricuit (polynomial space).
- Thanks to VPSPACE tests, a binary search gives the sign condition of \bar{x}.
- Once the sign condition of \bar{x} is obtained, we can simulate the circuit and conclude.

Main ideas:

1. sign conditions;
2. binary search thanks to tests of membership to varieties;
3. integers instead of transcendant numbers.

Conclusion

- Study of the question $\mathrm{P}=$ PSPACE in different contexts (boolean, BSS, Valiant).
- Similar results over \mathbb{R} but different techniques: we have to take into account the sign (\rightarrow a vector orthogonal to roughly half a collection of vectors).
- Converse? Nullstellensatz \Rightarrow work only up to a multiple.

Outline

1. P and PSPACE (boolean case)
2. P and PSPACE in BSS model
3. P and PSPACE in Valiant's model
4. Sign condition
