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» Decision problems
Languages (over C), Blum-Shub-Smale model
Example: decide whether a system of multivariate
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» Evaluation problems
Families of polynomials, Valiant’s model
Example: compute the permanent of a matrix (VNP-complete)
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3. P and PSPACE in Valiant’'s model

4. Sign condition

if VP = VPSPACE then Pc = PARc
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Turing machines
«—>
boolean circuits
(gates A, V, —).
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» Language recognition over C: one circuit per input length.

v

Pc: languages over C recognized by algebraic circuits of
polynomial size (+ uniformity).

v

PARc: languages over C recognized by algebraic circuits of
polynomial depth (of possibly exponential size)
(+ uniformity).



P and PSPACE in Valiant’s model

Arithmetic circuits: gates +, — and X, inputs xi, ..., X, and
constant 1 — multivariate polynomial with integer coefficients.
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» Family of polynomials (f,): one circuit C, per polynomial
fo € Z[x1, ..., Xy(m)]-
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P and PSPACE in Valiant’s model

» Family of polynomials (f,): one circuit C, per polynomial
fo € Z[x1, ..., Xy(m)]-

» VP: families of polynomials computed by arithmetic circuits of

polynomial size (+ uniformity).
(= Uniform VPgb)

» VPSPACE: families of polynomials computed by arithmetic
circuits of polynomial depth (+ uniformity).
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Recapitulation

» Decision problems over {0, 1}: boolean circuits
(gates A, V et ).

» Decision problems over C (BSS): algebraic circuits
(gates +, —, X, =).

» Evaluation problems (Valiant): arithmetic circuits
(gates +, —, X).

» P: circuits of polynomial size.
» PSPACE: circuits of polynomial depth.
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Other characterizations of VPSPACE

>

Original definition: coefficient function in PSPACE.

fn(X) = ) a(@)x”

Function a : {0, 1}* — Z computable bit by bit in polynomial
space.

Poizat: circuits of polynomial size endowed with exponential
summation gates
or gates of evaluation at 0 and 1.

Example: multivariate resultant of a system of polynomials.

Proposition: VPSPACE = VP — PSPACE = P.



Transfer theorem

If VPSPACE = VP then PAR¢ = Pc.

Outline of the proof:

» Goal: for A € PARc, decide in polynomial time (with VPSPACE
tests) whether x € A.
» Find the sign condition of x

» Simulate the circuit on this sign condition.



Transfer theorem

If VPSPACE = VP then PAR¢ = Pc.

Outline of the proof:
» Goal: for A € PARc, decide in polynomial time (with VPSPACE
tests) whether x € A.
» Find the sign condition of x

» enumeration of the satisfiable sign conditions (Fichtas, Galligo,
Morgenstern);
» binary search.

» Simulate the circuit on this sign condition.
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» Sign condition S € {0, 1}°: “sign” of the polynomials fi,. .., fs,
i.e. 0if fi(x) = 0 and 1 otherwise.

» Sign condition of X : (sign(fi(X)), ..., sign(fs(X))).



\4

Sign condition S € {0, 1}°: “sign” of the polynomials fi, ..., fs,
i.e. 0if fi(x) = 0 and 1 otherwise.

\{

Sign condition of x : (sign(f1(X)), ..., sign(fs(x))).

\4

If X and y have the same sign condition then every test gives
the same result — x and y are simultaneously in the
language or outside of the language.

v

It is enough to study the sign condition (boolean object).
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» A sign condition is not necessarily satisfiable.

» Example: x and x + 1 cannot be both zero, hence (0, 0) is not
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Satisfiable sign conditions

» Sign condition S € {0, 1}°: sign of the polynomials fi, ..., fs.
» A sign condition is not necessarily satisfiable.

» Example: x and x + 1 cannot be both zero, hence (0, 0) is not
satisfiable.

Theorem (Fichtas, Galligo, Morgenstern 1990)

> There are N = (sd)°(" satisfiable sign conditions (s: number
of polynomials, n: number of variables, d: max degree).

» Satisfiable sign conditions can be enumerated in PSPACE.



Finding the sign condition

» Linear order compatible with inclusion on satisfiable sign
conditions:
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Finding the sign condition

» Linear order compatible with inclusion on satisfiable sign
conditions:

| ————>
S

» Search of the minimal satisfiable sign condition S satisfying

Vk <5, S = 0 = f(x) = 0.

» Over R, easy thanks to VPSPACE tests

l—[( Z fk()_()z) =0 (trueiff S <)

i<i \a()_
=g =o0
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Membership to a variety

» Over C: no “sum of squares” trick.

» We have to test with a polynomial number of tests if x € V for
a variety V given by an exponential number of polynomials.

» Nonconstructively: use the following lemma.
Lemma
Let V € C" be a variety defined by s polynomials fi, ..., fs. Then V
is defined by n+ 1 generic linear combinations g, . .. gn+1 of the f;.
“generic”: gi = 2721 ajjfi where the «;; are algebraically
independent.

» Problem: we can only use integers.



Constructive tests

Lemma (Nonconstructive, reminder)

Let V € C" be a variety defined by s polynomials fi,...,fs. Then V
is defined by n+ 1 generic linear combinations g1, . .. gn+1 Of the f;.

Replace transcendant numbers by integers growing sufficiently

fast.

Lemma

Let ¢(xi,...,xn) be a first order formula which is true on any
algebraically independent coefficients a1, . ..,an. Then

#(B1, - -.,Bn) is true for any integers B; growing sufficiently fast.

Proof idea: lack of “big” roots of multivariate polynomials.
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Membership tests

» V defined by fy,...,fs (s exponential). Decide x € V with a
polynomial number of tests.

» Let ¢(@) = the n + 1 linear combinations of the f; with
coefficients @ also define V.

» By the first lemma, ¢(&@) is true for all algebraically
independent coefficients a.

» By the second lemma, ¢(B) is true for integers 8 growing
sufficiently fast: V is then defined by the n+ 1 linear
combinations of the f; with coefficients .

» Hence n + 1 polynomials to test to zero.
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Actual tests to be performed: membership to a union of an
exponential number of varieties.
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v

Naive approach: products of the polynomials. But too many of
them.

v

— Divide and conquer.

v

We can perform the binary search for the sign condition in
polynomial time (with VPSPACE tests).



Recapitulation

In order to show that VPSPACE = VP = PAR¢ = P¢:

» For A € PAR¢ we want to decide in polynomial time (with
VPSPACE tests) whether x € A.

» We enumerate all the polynomials possibly tested in the cricuit
(polynomial space).

» Thanks to VPSPACE tests, a binary search gives the sign
condition of x.

» Once the sign condition of x is obtained, we can simulate the
circuit and conclude.



Recapitulation

In order to show that VPSPACE = VP = PAR¢ = P¢:

» For A € PAR¢ we want to decide in polynomial time (with
VPSPACE tests) whether x € A.

» We enumerate all the polynomials possibly tested in the cricuit
(polynomial space).

» Thanks to VPSPACE tests, a binary search gives the sign
condition of x.

» Once the sign condition of x is obtained, we can simulate the
circuit and conclude.

Main ideas:
1. sign conditions;
2. binary search thanks to tests of membership to varieties;

3. integers instead of transcendant numbers.



Conclusion

» Study of the question P = PSPACE in different contexts
(boolean, BSS, Valiant).

» Similar results over R but different techniques: we have to
take into account the sign (— a vector orthogonal to roughly
half a collection of vectors).

» Converse? Nullstellensatz = work only up to a multiple.
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