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Introduction

I Decision problems
Languages (over C), Blum-Shub-Smale model
Example: decide whether a system of multivariate
polynomials has a solution (NPC-complete)

I Evaluation problems
Families of polynomials, Valiant’s model
Example: compute the permanent of a matrix (VNP-complete)
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1. P and PSPACE (boolean case)
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3. P and PSPACE in Valiant’s model
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if VP = VPSPACE then PC = PARC



P and PSPACE (boolean case)

I P: languages over {0, 1} recognized in polynomial time by a
Turing machine.

I PSPACE: languages over {0, 1} recognized in polynomial
space by a Turing machine.

Turing machines
←→

boolean circuits
(gates ∧, ∨, ¬).
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Algebraic circuits: gates +, −, × and =.
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P and PSPACE in Valiant’s model

Arithmetic circuits: gates +, − and ×, inputs x1, . . . , xn and
constant 1 −→ multivariate polynomial with integer coefficients.
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P and PSPACE in Valiant’s model

I Family of polynomials (fn): one circuit Cn per polynomial
fn ∈ Z[x1, . . . , xu(n)].

I VP: families of polynomials computed by arithmetic circuits of
polynomial size (+ uniformity).

(= Uniform VP0
nb)

I VPSPACE: families of polynomials computed by arithmetic
circuits of polynomial depth (+ uniformity).
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Other characterizations of VPSPACE

I Original definition: coefficient function in PSPACE.

fn(x̄) =
∑
α

a(α)x̄α

Function a : {0, 1}∗ → Z computable bit by bit in polynomial
space.

I Poizat: circuits of polynomial size endowed with exponential
summation gates
or gates of evaluation at 0 and 1.

I Example: multivariate resultant of a system of polynomials.

I Proposition: VPSPACE = VP =⇒ PSPACE = P.
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Transfer theorem

If VPSPACE = VP then PARC = PC.

Outline of the proof:

I Goal: for A ∈ PARC, decide in polynomial time (with VPSPACE
tests) whether x̄ ∈ A .

I Find the sign condition of x̄

I enumeration of the satisfiable sign conditions (Fichtas, Galligo,
Morgenstern);

I binary search.

I Simulate the circuit on this sign condition.
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Polynomials tested by a circuit

Test gate: f(x̄) = 0 ?

If the results of the
preceding tests are
fixed, f is a polynomial.
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(polynomial space):
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Sign conditions

I Sign condition S ∈ {0, 1}s : “sign” of the polynomials f1, . . . , fs ,
i.e. 0 if fi(x̄) = 0 and 1 otherwise.

I Sign condition of x̄ : (sign(f1(x̄)), . . . , sign(fs(x̄))).

I If x̄ and ȳ have the same sign condition then every test gives
the same result −→ x̄ and ȳ are simultaneously in the
language or outside of the language.

I It is enough to study the sign condition (boolean object).
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Satisfiable sign conditions

I Sign condition S ∈ {0, 1}s : sign of the polynomials f1, . . . , fs .

I A sign condition is not necessarily satisfiable.

I Example: x and x + 1 cannot be both zero, hence (0, 0) is not
satisfiable.

Theorem (Fichtas, Galligo, Morgenstern 1990)

I There are N = (sd)O(n) satisfiable sign conditions (s: number
of polynomials, n: number of variables, d: max degree).

I Satisfiable sign conditions can be enumerated in PSPACE.
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Finding the sign condition

I Linear order compatible with inclusion on satisfiable sign
conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk (x̄) = 0.

I Over R, easy thanks to VPSPACE tests∏
j≤i

( ∑
S(j)

k =0

fk (x̄)2
)
= 0 (true iff S ≤ i)
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Membership to a variety

I Over C: no “sum of squares” trick.

I We have to test with a polynomial number of tests if x̄ ∈ V for
a variety V given by an exponential number of polynomials.

I Nonconstructively: use the following lemma.

Lemma

Let V ∈ Cn be a variety defined by s polynomials f1, . . . , fs . Then V
is defined by n + 1 generic linear combinations g1, . . . gn+1 of the fi .

“generic”: gi =
∑s

j=1 αi,j fj where the αi,j are algebraically
independent.

I Problem: we can only use integers.
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Constructive tests

Lemma (Nonconstructive, reminder)

Let V ∈ Cn be a variety defined by s polynomials f1, . . . , fs . Then V
is defined by n + 1 generic linear combinations g1, . . . gn+1 of the fi .

Replace transcendant numbers by integers growing sufficiently
fast.

Lemma

Let φ(x1, . . . , xn) be a first order formula which is true on any
algebraically independent coefficients α1, . . . , αn. Then
φ(β1, . . . , βn) is true for any integers βi growing sufficiently fast.

Proof idea: lack of “big” roots of multivariate polynomials.



Membership tests

I V defined by f1, . . . , fs (s exponential). Decide x ∈ V with a
polynomial number of tests.

I Let φ(ᾱ) ≡ the n + 1 linear combinations of the fi with
coefficients ᾱ also define V .

I By the first lemma, φ(ᾱ) is true for all algebraically
independent coefficients ᾱ.

I By the second lemma, φ(β̄) is true for integers β̄ growing
sufficiently fast: V is then defined by the n + 1 linear
combinations of the fi with coefficients β̄.

I Hence n + 1 polynomials to test to zero.
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Union of varieties

I Actual tests to be performed: membership to a union of an
exponential number of varieties.

I Naive approach: products of the polynomials. But too many of
them.

I → Divide and conquer.

I We can perform the binary search for the sign condition in
polynomial time (with VPSPACE tests).
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Recapitulation

In order to show that VPSPACE = VP⇒ PARC = PC:

I For A ∈ PARC we want to decide in polynomial time (with
VPSPACE tests) whether x̄ ∈ A .

I We enumerate all the polynomials possibly tested in the cricuit
(polynomial space).

I Thanks to VPSPACE tests, a binary search gives the sign
condition of x̄.

I Once the sign condition of x̄ is obtained, we can simulate the
circuit and conclude.

Main ideas:

1. sign conditions;

2. binary search thanks to tests of membership to varieties;

3. integers instead of transcendant numbers.
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Conclusion

I Study of the question P = PSPACE in different contexts
(boolean, BSS, Valiant).

I Similar results over R but different techniques: we have to
take into account the sign (→ a vector orthogonal to roughly
half a collection of vectors).

I Converse? Nullstellensatz⇒ work only up to a multiple.
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