# VPSPACE and a transfer theorem over the complex numbers

The question "P = PSPACE?" in algebraic complexity

Pascal Koiran Sylvain Perifel

LIP, ENS Lyon

Český Krumlov, August 30, 2007

#### Decision problems

Languages (over  $\mathbb{C}$ ), Blum-Shub-Smale model Example: decide whether a system of multivariate polynomials has a solution (NP<sub>C</sub>-complete)

#### Decision problems

Languages (over  $\mathbb{C}$ ), Blum-Shub-Smale model Example: decide whether a system of multivariate polynomials has a solution (NP<sub>C</sub>-complete)

# Evaluation problems Families of polynomials, Valiant's model Example: compute the permanent of a matrix (VNP-complete)

#### Outline

- 1. P and PSPACE (boolean case)
- 2. P and PSPACE in BSS model
- 3. P and PSPACE in Valiant's model
- 4. Sign condition

if VP=VPSPACE then  $P_{\mathbb{C}}=PAR_{\mathbb{C}}$ 

# P and PSPACE (boolean case)

- P: languages over {0, 1} recognized in polynomial time by a Turing machine.
- PSPACE: languages over {0, 1} recognized in polynomial space by a Turing machine.

# P and PSPACE (boolean case)

- P: languages over {0, 1} recognized in polynomial time by a Turing machine.
- PSPACE: languages over {0, 1} recognized in polynomial space by a Turing machine.



Language recognition: one circuit per input length.

- Language recognition: one circuit per input length.
- P: languages recognized by boolean circuits of polynomial size (+ uniformity).
- PSPACE: languages recognized by boolean circuits of polynomial *depth* (of possibly exponential size) (+ uniformity).

Algebraic circuits: gates  $+, -, \times$  and =.



- Languages over C: sets of words over the alphabet C, that is, A ⊆ ∪<sub>n≥0</sub>C<sup>n</sup>.
- Language recognition over  $\mathbb{C}$ : one circuit per input length.

- Languages over C: sets of words over the alphabet C, that is, A ⊆ ∪<sub>n≥0</sub>C<sup>n</sup>.
- Language recognition over C: one circuit per input length.
- P<sub>C</sub>: languages over C recognized by algebraic circuits of polynomial size (+ uniformity).

- Languages over C: sets of words over the alphabet C, that is, A ⊆ ∪<sub>n≥0</sub>C<sup>n</sup>.
- Language recognition over C: one circuit per input length.
- P<sub>C</sub>: languages over C recognized by algebraic circuits of polynomial size (+ uniformity).
- PAR<sub>C</sub>: languages over C recognized by algebraic circuits of polynomial *depth* (of possibly exponential size) (+ uniformity).

#### P and PSPACE in Valiant's model

Arithmetic circuits: gates +, - and  $\times$ , inputs  $x_1, \ldots, x_n$  and constant 1  $\longrightarrow$  multivariate polynomial with integer coefficients.



#### P and PSPACE in Valiant's model

Family of polynomials  $(f_n)$ : one circuit  $C_n$  per polynomial  $f_n \in \mathbb{Z}[x_1, \ldots, x_{u(n)}].$ 

#### P and PSPACE in Valiant's model

- Family of polynomials  $(f_n)$ : one circuit  $C_n$  per polynomial  $f_n \in \mathbb{Z}[x_1, \ldots, x_{u(n)}].$
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).

(= Uniform VP<sup>0</sup><sub>nb</sub>)

- Family of polynomials  $(f_n)$ : one circuit  $C_n$  per polynomial  $f_n \in \mathbb{Z}[x_1, \ldots, x_{u(n)}].$
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).

(= Uniform VP<sup>0</sup><sub>nb</sub>)

 VPSPACE: families of polynomials computed by arithmetic circuits of polynomial *depth* (+ uniformity).

- Decision problems over {0, 1}: boolean circuits (gates ∧, ∨ et ¬).
- ► Decision problems over C (BSS): algebraic circuits (gates +, -, ×, =).
- Evaluation problems (Valiant): arithmetic circuits (gates +, -, ×).

- Decision problems over {0, 1}: boolean circuits (gates ∧, ∨ et ¬).
- ► Decision problems over C (BSS): algebraic circuits (gates +, -, ×, =).
- Evaluation problems (Valiant): arithmetic circuits (gates +, -, ×).
- P: circuits of polynomial size.
- PSPACE: circuits of polynomial depth.

• Original definition: coefficient function in PSPACE.

$$f_n(\bar{x}) = \sum_{\alpha} a(\alpha) \bar{x}^{\alpha}$$

Function  $a : \{0, 1\}^* \to \mathbb{Z}$  computable bit by bit in polynomial space.

Original definition: coefficient function in PSPACE.

$$f_n(\bar{x}) = \sum_{lpha} a(lpha) \bar{x}^{lpha}$$

Function  $a : \{0, 1\}^* \to \mathbb{Z}$  computable bit by bit in polynomial space.

 Poizat: circuits of polynomial size endowed with exponential summation gates

• Original definition: coefficient function in PSPACE.

$$f_n(\bar{x}) = \sum_{lpha} a(lpha) \bar{x}^{lpha}$$

Function  $a : \{0, 1\}^* \to \mathbb{Z}$  computable bit by bit in polynomial space.

 Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1.

• Original definition: coefficient function in PSPACE.

$$f_n(\bar{x}) = \sum_{lpha} a(lpha) \bar{x}^{lpha}$$

Function  $a : \{0, 1\}^* \to \mathbb{Z}$  computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1.
- Example: multivariate resultant of a system of polynomials.

Original definition: coefficient function in PSPACE.

$$f_n(\bar{x}) = \sum_{lpha} a(lpha) \bar{x}^{lpha}$$

Function  $a : \{0, 1\}^* \to \mathbb{Z}$  computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1.
- Example: multivariate resultant of a system of polynomials.
- Proposition:  $VPSPACE = VP \implies PSPACE = P$ .

```
If VPSPACE = VP then PAR_{\mathbb{C}} = P_{\mathbb{C}}.
```

Outline of the proof:

- Goal: for A ∈ PAR<sub>C</sub>, decide in polynomial time (with VPSPACE tests) whether x̄ ∈ A.
- Find the sign condition of  $\bar{x}$

Simulate the circuit on this sign condition.

If VPSPACE = VP then  $PAR_{\mathbb{C}} = P_{\mathbb{C}}$ .

Outline of the proof:

- Goal: for A ∈ PAR<sub>C</sub>, decide in polynomial time (with VPSPACE tests) whether x̄ ∈ A.
- Find the sign condition of  $\bar{x}$ 
  - enumeration of the satisfiable sign conditions (Fichtas, Galligo, Morgenstern);
  - binary search.
- Simulate the circuit on this sign condition.

Test gate:  $f(\bar{x}) = 0$  ?

If the results of the preceding tests are fixed, *f* is a polynomial.

→ enumeration of all possible polynomials (polynomial space): family  $f_1, \ldots, f_s$ .



Test gate:  $f(\bar{x}) = 0$  ?

If the results of the preceding tests are fixed, *f* is a polynomial.

→ enumeration of all possible polynomials (polynomial space): family  $f_1, \ldots, f_s$ .



- Sign condition  $S \in \{0, 1\}^s$ : "sign" of the polynomials  $f_1, \ldots, f_s$ , i.e. 0 if  $f_i(\bar{x}) = 0$  and 1 otherwise.
- Sign condition of  $\bar{x}$ :  $(sign(f_1(\bar{x})), \dots, sign(f_s(\bar{x})))$ .

- Sign condition  $S \in \{0, 1\}^s$ : "sign" of the polynomials  $f_1, \ldots, f_s$ , i.e. 0 if  $f_i(\bar{x}) = 0$  and 1 otherwise.
- Sign condition of  $\bar{x}$ :  $(sign(f_1(\bar{x})), \dots, sign(f_s(\bar{x})))$ .
- If x̄ and ȳ have the same sign condition then every test gives the same result → x̄ and ȳ are simultaneously in the language or outside of the language.
- It is enough to study the sign condition (boolean object).

#### Satisfiable sign conditions

- ▶ Sign condition  $S \in \{0, 1\}^s$ : sign of the polynomials  $f_1, \ldots, f_s$ .
- A sign condition is not necessarily satisfiable.
- Example: x and x + 1 cannot be both zero, hence (0,0) is not satisfiable.

#### Satisfiable sign conditions

- ▶ Sign condition  $S \in \{0, 1\}^s$ : sign of the polynomials  $f_1, \ldots, f_s$ .
- A sign condition is not necessarily satisfiable.
- Example: x and x + 1 cannot be both zero, hence (0,0) is not satisfiable.

#### Theorem (Fichtas, Galligo, Morgenstern 1990)

- There are N = (sd)<sup>O(n)</sup> satisfiable sign conditions (s: number of polynomials, n: number of variables, d: max degree).
- Satisfiable sign conditions can be enumerated in PSPACE.

Linear order compatible with inclusion on satisfiable sign conditions:

Linear order compatible with inclusion on satisfiable sign conditions:



$$\forall k \leq s, S_k = 0 \Longrightarrow f_k(\bar{x}) = 0.$$

Linear order compatible with inclusion on satisfiable sign conditions:



$$\forall k \leq s, S_k = 0 \Longrightarrow f_k(\bar{x}) = 0.$$

Linear order compatible with inclusion on satisfiable sign conditions:



$$\forall k \leq s, S_k = 0 \Longrightarrow f_k(\bar{x}) = 0.$$

Linear order compatible with inclusion on satisfiable sign conditions:



$$\forall k \leq s, S_k = 0 \Longrightarrow f_k(\bar{x}) = 0.$$

Linear order compatible with inclusion on satisfiable sign conditions:



Search of the minimal satisfiable sign condition S satisfying

$$\forall k \leq s, S_k = 0 \Longrightarrow f_k(\bar{x}) = 0.$$

• Over  $\mathbb{R}$ , easy thanks to VPSPACE tests

$$\prod_{j \leq i} \left( \sum_{S_k^{(j)} = 0} f_k(\bar{x})^2 \right) = 0 \text{ (true iff } S \leq i)$$

- Over  $\mathbb{C}$ : no "sum of squares" trick.
- We have to test with a polynomial number of tests if x̄ ∈ V for a variety V given by an exponential number of polynomials.

- Over  $\mathbb{C}$ : no "sum of squares" trick.
- We have to test with a polynomial number of tests if x̄ ∈ V for a variety V given by an exponential number of polynomials.
- Nonconstructively: use the following lemma.

#### Lemma

Let  $V \in \mathbb{C}^n$  be a variety defined by s polynomials  $f_1, \ldots, f_s$ . Then V is defined by n + 1 generic linear combinations  $g_1, \ldots, g_{n+1}$  of the  $f_i$ .

"generic":  $g_i = \sum_{j=1}^{s} \alpha_{i,j} f_j$  where the  $\alpha_{i,j}$  are algebraically independent.

- Over  $\mathbb{C}$ : no "sum of squares" trick.
- We have to test with a polynomial number of tests if x̄ ∈ V for a variety V given by an exponential number of polynomials.
- Nonconstructively: use the following lemma.

#### Lemma

Let  $V \in \mathbb{C}^n$  be a variety defined by s polynomials  $f_1, \ldots, f_s$ . Then V is defined by n + 1 generic linear combinations  $g_1, \ldots, g_{n+1}$  of the  $f_i$ .

"generic":  $g_i = \sum_{j=1}^{s} \alpha_{i,j} f_j$  where the  $\alpha_{i,j}$  are algebraically independent.

Problem: we can only use integers.

#### Lemma (Nonconstructive, reminder)

Let  $V \in \mathbb{C}^n$  be a variety defined by s polynomials  $f_1, \ldots, f_s$ . Then V is defined by n + 1 generic linear combinations  $g_1, \ldots, g_{n+1}$  of the  $f_i$ .

Replace transcendant numbers by integers growing sufficiently fast.

#### Lemma

Let  $\phi(x_1, ..., x_n)$  be a first order formula which is true on any algebraically independent coefficients  $\alpha_1, ..., \alpha_n$ . Then  $\phi(\beta_1, ..., \beta_n)$  is true for any integers  $\beta_i$  growing sufficiently fast.

Proof idea: lack of "big" roots of multivariate polynomials.

V defined by f<sub>1</sub>,..., f<sub>s</sub> (s exponential). Decide x ∈ V with a polynomial number of tests.

- V defined by f<sub>1</sub>,..., f<sub>s</sub> (s exponential). Decide x ∈ V with a polynomial number of tests.
- ► Let  $\phi(\bar{\alpha}) \equiv$  the *n* + 1 linear combinations of the *f<sub>i</sub>* with coefficients  $\bar{\alpha}$  also define *V*.
- By the first lemma, φ(ā) is true for all algebraically independent coefficients ā.

- V defined by f<sub>1</sub>,..., f<sub>s</sub> (s exponential). Decide x ∈ V with a polynomial number of tests.
- ► Let  $\phi(\bar{\alpha}) \equiv$  the *n* + 1 linear combinations of the *f<sub>i</sub>* with coefficients  $\bar{\alpha}$  also define *V*.
- By the first lemma, φ(ā) is true for all algebraically independent coefficients ā.
- By the second lemma, φ(β̄) is true for integers β̄ growing sufficiently fast: V is then defined by the n + 1 linear combinations of the f<sub>i</sub> with coefficients β̄.
- Hence n + 1 polynomials to test to zero.

 Actual tests to be performed: membership to a union of an exponential number of varieties.

- Actual tests to be performed: membership to a union of an exponential number of varieties.
- Naive approach: products of the polynomials. But too many of them.
- $\blacktriangleright$   $\rightarrow$  Divide and conquer.

- Actual tests to be performed: membership to a union of an exponential number of varieties.
- Naive approach: products of the polynomials. But too many of them.
- $\blacktriangleright$   $\rightarrow$  Divide and conquer.
- We can perform the binary search for the sign condition in polynomial time (with VPSPACE tests).

#### Recapitulation

In order to show that  $VPSPACE = VP \Rightarrow PAR_{\mathbb{C}} = P_{\mathbb{C}}$ :

- For  $A \in PAR_{\mathbb{C}}$  we want to decide in polynomial time (with VPSPACE tests) whether  $\bar{x} \in A$ .
- We enumerate all the polynomials possibly tested in the cricuit (polynomial space).
- Thanks to VPSPACE tests, a binary search gives the sign condition of x̄.
- Once the sign condition of x̄ is obtained, we can simulate the circuit and conclude.

### Recapitulation

In order to show that  $VPSPACE = VP \Rightarrow PAR_{\mathbb{C}} = P_{\mathbb{C}}$ :

- For  $A \in PAR_{\mathbb{C}}$  we want to decide in polynomial time (with VPSPACE tests) whether  $\bar{x} \in A$ .
- We enumerate all the polynomials possibly tested in the cricuit (polynomial space).
- Thanks to VPSPACE tests, a binary search gives the sign condition of x̄.
- Once the sign condition of x̄ is obtained, we can simulate the circuit and conclude.

Main ideas:

- 1. sign conditions;
- 2. binary search thanks to tests of membership to varieties;
- 3. integers instead of transcendant numbers.

- Study of the question P = PSPACE in different contexts (boolean, BSS, Valiant).
- Similar results over ℝ but different techniques: we have to take into account the sign (→ a vector orthogonal to roughly half a collection of vectors).
- Converse? Nullstellensatz  $\Rightarrow$  work only up to a multiple.

- 1. P and PSPACE (boolean case)
- 2. P and PSPACE in BSS model
- 3. P and PSPACE in Valiant's model
- 4. Sign condition