Lower bounds for "explicit" and "non-explicit" polynomials

Sylvain Perifel (LIAFA, Paris)

Budapest - July 6, 2011

Introduction

- How many operations + and \times are necessary to compute a polynomial?
- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.

Introduction

- How many operations + and \times are necessary to compute a polynomial?
- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.
> Raz: no better lower bound for "explicit" polynomials?

Introduction

- How many operations + and \times are necessary to compute a polynomial?
- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.
> Raz: no better lower bound for "explicit" polynomials?
- Lower bounds for bad reasons:
- $p\left(x_{0}, \ldots, x_{s}\right)=\sum_{i=0}^{s} x_{i}$ requires $\geq s$ operations;

Introduction

> How many operations + and \times are necessary to compute a polynomial?

- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.

Raz: no better lower bound for "explicit" polynomials?
Lower bounds for bad reasons:
$p\left(x_{0}, \ldots, x_{s}\right)=\sum_{i=0}^{s} x_{i}$ requires $\geq s$ operations;
$p(x)=x^{2^{s}}$ requires $\geq s$ operations;

Introduction

> How many operations + and \times are necessary to compute a polynomial?

- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?
- Lower bounds for bad reasons:
$p\left(x_{0}, \ldots, x_{s}\right)=\sum_{i=0}^{s} x_{i}$ requires $\geq s$ operations;
$p(x)=x^{2^{5}}$ requires $\geq s$ operations;
$p(x)=\sum_{i=1}^{s} \alpha_{i} x^{i}$, where the α_{i} are algebraically independent, requires $\geq s$ operations.

Introduction

> How many operations + and \times are necessary to compute a polynomial?

- Baur and Strassen (1983): $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{d}$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?

Lower bounds for bad reasons:
$p\left(x_{0}, \ldots, x_{s}\right)=\sum_{i=0}^{s} x_{i}$ requires $\geq s$ operations;
$p(x)=x^{2^{s}}$ requires \geq s operations;
$p(x)=\sum_{i=1}^{s} \alpha_{i} x^{i}$, where the α_{i} are algebraically independent, requires $\geq s$ operations.
Remark: in the computations, arbitrary constants from \mathbb{C} can be used.

Precise question

For all s, find an explicit polynomial:
> $p \in \mathbb{Z}[x]$ (one variable);
> coefficients in $\{0,1\}$;

- degree polynomial in s
such that computing p requires $\geq s$ operations.

Precise question

For all k, find an explicit family of polynomials $\left(p_{n}\right)$:

- $p_{n} \in \mathbb{Z}[x]$ (one variable);
> coefficients of p_{n} in $\{0,1\}$;
- degree of p_{n} polynomial in n
such that computing p_{n} requires $\geq n^{k}$ operations.

Precise question

For all k, find an explicit family of polynomials $\left(p_{n}\right)$:

- $p_{n} \in \mathbb{Z}[x]$ (one variable);
coefficients of p_{n} in $\{0,1\}$;
- degree of p_{n} polynomial in n
such that computing p_{n} requires $\geq n^{k}$ operations.
Remarks:
- example of a family $\left(p_{n}\right): \quad p_{n}(x)=\sum_{i=0}^{n} x^{i}$;
arbitrary constants from \mathbb{C} can be used.

Precise question

For all k, find an explicit family of polynomials $\left(p_{n}\right)$:
> $p_{n} \in \mathbb{Z}[x]$ (one variable);
> coefficients of p_{n} in $\{0,1\}$;

- degree of p_{n} polynomial in n
such that computing p_{n} requires $\geq n^{k}$ operations.
Remarks:
- example of a family $\left(p_{n}\right): \quad p_{n}(x)=\sum_{i=0}^{n} x^{i} ;$
arbitrary constants from \mathbb{C} can be used.
\rightarrow What does "explicit" mean?

Outline

1. Non-explicit polynomials
2. Explicit polynomials

Outline

1. Non-explicit polynomials
2. Explicit polynomials

Arithmetic circuits

- Directed acyclic graph
- Inputs labeled x_{i} or $\alpha \in \mathbb{C}$
- Gates labeled + or \times
- One output

Size $=$ number of vertices = number of operations
Aka SLP (straight-line program)

Lipton and Schnorr

Based on works of Strassen (1974) and Lipton (1975):

- THEOREM (Schnorr, 1978)

For all k, there exist polynomials $p_{n}(x)$:
> one variable x;
coefficients in $\{0,1\}$;
d degree $O\left(n^{2 k}\right)$
such that p_{n} has no circuits of size $\leq n^{k}$ (even using arbitrary constants from \mathbb{C}).

Idea of the proof

- The coefficients of $p(x)$ are polynomials in the "description" of the circuit for p

Idea of the proof

- The coefficients of $p(x)$ are polynomials in the "description" of the circuit for p
- thus there exists a polynomial H_{s} such that:
if $p(x)=\sum_{i=0}^{d} \alpha_{i} x^{i}$ is computed by a circuit of size s then $H_{s}\left(\alpha_{0}, \ldots, \alpha_{d}\right)=0$.

Idea of the proof

- The coefficients of $p(x)$ are polynomials in the "description" of the circuit for p
- thus there exists a polynomial H_{s} such that: if $p(x)=\sum_{i=0}^{d} \alpha_{i} x^{i}$ is computed by a circuit of size s then $H_{s}\left(\alpha_{0}, \ldots, \alpha_{d}\right)=0$.

Hence, if $\left(\beta_{0}, \ldots, \beta_{d}\right)$ is not a root of H_{s}, then $p(x)=\sum_{i} \beta_{i} x^{i}$ does not have circuits of size s.

Expliciteness

Existence result: non explicit.

Coefficients computable in exponential time.

Expliciteness

- Existence result: non explicit.
- Coefficients computable in exponential time.

Expliciteness: coefficients computable efficiently
\rightarrow Can we do better than exponential time?

Outline

1. Non-explicit polynomials
2. Explicit polynomials

Expliciteness

Family of polynomials $p_{n}(x)=\sum_{i=0}^{n^{k}} \alpha_{i} x^{i}$, coefficients $\alpha_{i} \in\{0,1\}$.

- Strongest notion of expliciteness:
$i \mapsto \alpha_{i}$ computable in time polynomial in n

Expliciteness

Family of polynomials $p_{n}(x)=\sum_{i=0}^{n^{k}} \alpha_{i} x^{i}$, coefficients $\alpha_{i} \in\{0,1\}$.

- Strongest notion of expliciteness:
$i \mapsto \alpha_{i}$ computable in time polynomial in n
- Other notion of interest: coefficients in $\sharp P$
\rightarrow polynomial in "uniform-VNP ${ }^{0}$ "
$=$ the complexity of the permanent:

$$
\operatorname{per}_{n}\left(x_{1,1}, \ldots, x_{n, n}\right)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)} .
$$

Diagonalisation

Can we use diagonalisation?

Diagonalisation

Can we use diagonalisation?

Problem: arbitrary constants from \mathbb{C} ! (no counting argument possible)

Idea: go to finite fields.
Theorem (Koiran 1996, Bürgisser 2000) -
Assuming GRH,
if a system of polynomial equations with integer coefficients has a solution over \mathbb{C}
then it has a solution over $\mathbb{Z} / r \mathbb{Z}$ for "small" r.
(if \#eq $=2^{n}$, \#var $=n$, coef $\leq 2^{2^{n}}$ and degree $\leq 2^{n}$ then $r \leq 2^{n^{c}}$)

Application

- Polynomial $p(x)=\sum \alpha_{i} x^{i}$ computed by a circuit C with constants $\beta_{1}, \ldots, \beta_{m}: \quad C(x, \bar{\beta})=p(x)$
- The system: equations in \bar{y}

$$
C(i, \bar{y})=p(i) \quad \text { for } 0 \leq i \leq 2^{n}
$$

Application

- Polynomial $p(x)=\sum \alpha_{i} x^{i}$ computed by a circuit C with constants $\beta_{1}, \ldots, \beta_{m}: \quad C(x, \bar{\beta})=p(x)$
- The system: equations in \bar{y}

$$
C(i, \bar{y})=p(i) \quad \text { for } 0 \leq i \leq 2^{n}
$$

Solution over \mathbb{C} (the constants $\bar{\beta}) \Longrightarrow$ solution over $\mathbb{Z} / r \mathbb{Z}$
the new constants $\bar{\gamma}$ are now $\in\{0, \ldots, r-1\}$ and the values $C(i, \bar{\gamma})$ coincide with $p(i)$ for $i \in\left\{0, \ldots, 2^{n}\right\}$.

Application

- Polynomial $p(x)=\sum \alpha_{i} x^{i}$ computed by a circuit C with constants $\beta_{1}, \ldots, \beta_{m}: \quad C(x, \bar{\beta})=p(x)$
- The system: equations in \bar{y}

$$
C(i, \bar{y})=p(i) \quad \text { for } 0 \leq i \leq 2^{n}
$$

Solution over \mathbb{C} (the constants $\bar{\beta}) \Longrightarrow$ solution over $\mathbb{Z} / r \mathbb{Z}$
the new constants $\bar{\gamma}$ are now $\in\{0, \ldots, r-1\}$ and the values $C(i, \bar{\gamma})$ coincide with $p(i)$ for $i \in\left\{0, \ldots, 2^{n}\right\}$.

Counting argument: existence of a polynomial with no circuits of size n^{k}.

Complexity

- Computing the coefficients $\bar{\alpha}$ in PH :

$$
\exists \bar{\alpha} \quad \forall r, \forall C, \forall \bar{\gamma} \in \mathbb{Z} / r \mathbb{Z} \quad C(x, \bar{\gamma}) \not \equiv \sum \alpha_{i} x^{i} .
$$

"Almost" in $\sharp P$ due to Toda’s theorem ($\mathrm{PH} \subseteq \mathrm{P}^{\sharp P}$)

Complexity

- Computing the coefficients $\bar{\alpha}$ in PH :

$$
\exists \bar{\alpha} \quad \forall r, \forall C, \forall \bar{\gamma} \in \mathbb{Z} / r \mathbb{Z} \quad C(x, \bar{\gamma}) \not \equiv \sum \alpha_{i} x^{i} .
$$

"Almost" in $\sharp P$ due to Toda's theorem ($P \mathrm{PH} \subseteq P^{\sharp P}$)
\rightarrow Can we make it really in $\sharp P$?

