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Introduction

I How many operations + and × are necessary to compute
a polynomial?

I Baur and Strassen (1983):
p(x1, . . . , xn) =

∑n
i=1 xd

i requires Ω(n log d) operations.

I Raz: no better lower bound for “explicit” polynomials?

I Lower bounds for bad reasons:
• p(x0, . . . , xs) =

∑s
i=0 xi requires ≥ s operations;

• p(x) = x2s
requires ≥ s operations;

• p(x) =
∑s

i=1 αixi, where the αi are algebraically
independent, requires ≥ s operations.

Remark: in the computations, arbitrary constants
from C can be used.
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Precise question

For all s, find an explicit polynomial:
I p ∈ Z[x] (one variable);
I coefficients in {0, 1};
I degree polynomial in s

such that computing p requires ≥ s operations.

Remarks:
I example of a family (pn): pn(x) =

∑n
i=0 xi;

I arbitrary constants from C can be used.

→What does “explicit” mean?
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Arithmetic circuits

x1 x2 −1

× ×

++

+

I Directed acyclic graph
I Inputs labeled xi or α ∈ C
I Gates labeled + or ×
I One output
I Size = number of vertices

= number of operations
I Aka SLP

(straight-line program)



Lipton and Schnorr

Based on works of Strassen (1974) and Lipton (1975):
THEOREM (Schnorr, 1978)

For all k, there exist polynomials pn(x):
I one variable x;
I coefficients in {0, 1};
I degree O(n2k)

such that pn has no circuits of size ≤ nk

(even using arbitrary constants from C).



Idea of the proof

I The coefficients of p(x) are polynomials in the
“description” of the circuit for p

I thus there exists a polynomial Hs such that:

if p(x) =
∑d

i=0 αixi is computed by a circuit of size s

then Hs(α0, . . . , αd) = 0.

I Hence, if (β0, . . . , βd) is not a root of Hs,

then p(x) =
∑

i βixi does not have circuits of size s.
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Expliciteness

I Existence result: non explicit.

I Coefficients computable in exponential time.

I Expliciteness: coefficients computable efficiently

→ Can we do better than exponential time?
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Expliciteness

Family of polynomials pn(x) =
∑nk

i=0 αixi,
coefficients αi ∈ {0, 1}.

I Strongest notion of expliciteness:
i 7→ αi computable in time polynomial in n

I Other notion of interest: coefficients in ]P

→ polynomial in “uniform-VNP0”
= the complexity of the permanent:

pern(x1,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).
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Diagonalisation

Can we use diagonalisation?

Problem: arbitrary constants from C!
(no counting argument possible)

Idea: go to finite fields.

THEOREM (Koiran 1996, Bürgisser 2000)

Assuming GRH,

if a system of polynomial equations with integer
coefficients has a solution over C

then it has a solution over Z/rZ for “small” r.

(if #eq=2n, #var=n, coef≤ 22n and degree≤ 2n then r ≤ 2nc )
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Application

I Polynomial p(x) =
∑
αixi computed by a circuit C

with constants β1, . . . , βm: C(x, β̄) = p(x)

I The system: equations in ȳ

C(i, ȳ) = p(i) for 0 ≤ i ≤ 2n

I Solution over C (the constants β̄) =⇒ solution over Z/rZ

I the new constants γ̄ are now ∈ {0, . . . , r − 1} and
the values C(i, γ̄) coincide with p(i) for i ∈ {0, . . . , 2n}.

I Counting argument:
existence of a polynomial with no circuits of size nk.
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Complexity

I Computing the coefficients ᾱ in PH:

∃ᾱ ∀r, ∀C, ∀γ̄ ∈ Z/rZ C(x, γ̄) 6≡
∑

αixi.

I “Almost” in ]P due to Toda’s theorem (PH ⊆ P]P)

→ Can we make it really in ]P?
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