Lower bounds for "explicit" and "non-explicit" polynomials

Sylvain Perifel (LIAFA, Paris)

Budapest - July 6, 2011

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?
- Lower bounds for bad reasons:
 - $p(x_0,\ldots,x_s) = \sum_{i=0}^s x_i$ requires $\geq s$ operations;

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?
- Lower bounds for bad reasons:
 - $p(x_0, ..., x_s) = \sum_{i=0}^{s} x_i$ requires $\geq s$ operations; $p(x) = x^{2^s}$ requires $\geq s$ operations;

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?

Lower bounds for bad reasons:

- $p(x_0, ..., x_s) = \sum_{i=0}^{s} x_i$ requires $\geq s$ operations; $p(x) = x^{2^s}$ requires $\geq s$ operations; $p(x) = \sum_{i=1}^{s} \alpha_i x^i$, where the α_i are algebraically
- independent, requires $\geq s$ operations.

- How many operations + and × are necessary to compute a polynomial?
- Baur and Strassen (1983): $p(x_1,...,x_n) = \sum_{i=1}^n x_i^d$ requires $\Omega(n \log d)$ operations.
- Raz: no better lower bound for "explicit" polynomials?

Lower bounds for bad reasons:

 $p(x_0, ..., x_s) = \sum_{i=0}^{s} x_i \text{ requires} \ge s \text{ operations};$ $p(x) = x^{2^s} \text{ requires} \ge s \text{ operations};$ $p(x) = \sum_{i=1}^{s} \alpha_i x^i, \text{ where the } \alpha_i \text{ are algebraically} \text{ independent, requires} \ge s \text{ operations}.$

Remark: in the computations, arbitrary constants from \mathbb{C} can be used.

For all s, find an explicit polynomial:

- ▷ $p \in \mathbb{Z}[x]$ (one variable);
- > coefficients in {0, 1};
- degree polynomial in s

such that computing p requires $\geq s$ operations.

For all k, find an explicit family of polynomials (p_n) :

- ▷ $p_n \in \mathbb{Z}[x]$ (one variable);
- coefficients of p_n in $\{0, 1\}$;
- degree of p_n polynomial in n

such that computing p_n requires $\geq n^k$ operations.

For all k, find an explicit family of polynomials (p_n) :

- ▷ $p_n \in \mathbb{Z}[x]$ (one variable);
- coefficients of p_n in $\{0, 1\}$;
- degree of p_n polynomial in n

such that computing p_n requires $\geq n^k$ operations.

Remarks:

- example of a family (p_n) : $p_n(x) = \sum_{i=0}^n x^i$;
- \triangleright arbitrary constants from $\mathbb C$ can be used.

For all k, find an explicit family of polynomials (p_n) :

- ▷ $p_n \in \mathbb{Z}[x]$ (one variable);
- coefficients of p_n in $\{0, 1\}$;
- degree of p_n polynomial in n

such that computing p_n requires $\geq n^k$ operations.

Remarks:

- example of a family (p_n) : $p_n(x) = \sum_{i=0}^n x^i$;
- \triangleright arbitrary constants from $\mathbb C$ can be used.

 \rightarrow What does "explicit" mean?

Outline

1. Non-explicit polynomials

2. Explicit polynomials

Outline

1. Non-explicit polynomials

2. Explicit polynomials

Arithmetic circuits

- Directed acyclic graph
- ▷ Inputs labeled x_i or $\alpha \in \mathbb{C}$
- \triangleright Gates labeled + or \times
 - One output
 - Size = number of vertices
 - = number of operations

Aka SLP

(straight-line program)

Based on works of Strassen (1974) and Lipton (1975): For all k, there exist polynomials $p_n(x)$: \triangleright one variable x; \triangleright coefficients in {0, 1}; degree $O(n^{2k})$ such that p_n has no circuits of size $< n^k$ (even using arbitrary constants from \mathbb{C}).

Idea of the proof

The coefficients of p(x) are polynomials in the "description" of the circuit for p

Idea of the proof

- The coefficients of p(x) are polynomials in the "description" of the circuit for p
- thus there exists a polynomial H_s such that: if $p(x) = \sum_{i=0}^{d} \alpha_i x^i$ is computed by a circuit of size *s* then $H_s(\alpha_0, \dots, \alpha_d) = 0$.

Idea of the proof

- The coefficients of p(x) are polynomials in the "description" of the circuit for p
- thus there exists a polynomial H_s such that: if $p(x) = \sum_{i=0}^{d} \alpha_i x^i$ is computed by a circuit of size *s* then $H_s(\alpha_0, \dots, \alpha_d) = 0$.
 - Hence, if $(\beta_0, ..., \beta_d)$ is not a root of H_s , then $p(x) = \sum_i \beta_i x^i$ does not have circuits of size s.

Expliciteness

- Existence result: non explicit.
- Coefficients computable in exponential time.

Expliciteness

- Existence result: non explicit.
- Coefficients computable in exponential time.

- Expliciteness: coefficients computable efficiently
- \rightarrow Can we do better than exponential time?

Outline

1. Non-explicit polynomials

2. Explicit polynomials

Expliciteness

Family of polynomials $p_n(x) = \sum_{i=0}^{n^k} \alpha_i x^i$, coefficients $\alpha_i \in \{0, 1\}$.

Strongest notion of expliciteness: $i \mapsto \alpha_i$ computable in time polynomial in *n*

Expliciteness

Family of polynomials $p_n(x) = \sum_{i=0}^{n^k} \alpha_i x^i$, coefficients $\alpha_i \in \{0, 1\}$.

- Strongest notion of expliciteness: $i \mapsto \alpha_i$ computable in time polynomial in *n*
- Other notion of interest: coefficients in #P
 - → polynomial in "uniform-VNP⁰"
 = the complexity of the permanent:

$$\operatorname{per}_n(x_{1,1},\ldots,x_{n,n}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

Diagonalisation

Can we use diagonalisation?

Diagonalisation

Can we use diagonalisation?

Problem: arbitrary constants from C! (no counting argument possible) Idea: go to finite fields.

THEOREM (Koiran 1996, Bürgisser 2000)

Assuming GRH,

if a system of polynomial equations with integer coefficients has a solution over \mathbb{C}

then it has a solution over $\mathbb{Z}/r\mathbb{Z}$ for "small" r.

(if $#eq=2^n$, #var=n, coef $\le 2^{2^n}$ and degree $\le 2^n$ then $r \le 2^{n^c}$)

Application

▶ Polynomial $p(x) = \sum \alpha_i x^i$ computed by a circuit C with constants $\beta_1, ..., \beta_m$: $C(x, \overline{\beta}) = p(x)$

The system: equations in \bar{y}

$$C(i, \bar{y}) = p(i) \text{ for } 0 \le i \le 2^n$$

Application

- Polynomial $p(x) = \sum \alpha_i x^i$ computed by a circuit C with constants β_1, \dots, β_m : $C(x, \overline{\beta}) = p(x)$
- The system: equations in \bar{y}

$$C(i, \bar{y}) = p(i) \text{ for } 0 \le i \le 2^n$$

- Solution over \mathbb{C} (the constants $\overline{\beta}$) \Longrightarrow solution over $\mathbb{Z}/r\mathbb{Z}$
- the new constants $\bar{\gamma}$ are now $\in \{0, \dots, r-1\}$ and the values $C(i, \bar{\gamma})$ coincide with p(i) for $i \in \{0, \dots, 2^n\}$.

Application

- Polynomial $p(x) = \sum \alpha_i x^i$ computed by a circuit C with constants β_1, \ldots, β_m : $C(x, \overline{\beta}) = p(x)$
- The system: equations in \bar{y}

$$C(i, \bar{y}) = p(i) \text{ for } 0 \le i \le 2^n$$

- Solution over \mathbb{C} (the constants $\overline{\beta}$) \Longrightarrow solution over $\mathbb{Z}/r\mathbb{Z}$
- the new constants $\bar{\gamma}$ are now $\in \{0, \dots, r-1\}$ and the values $C(i, \bar{\gamma})$ coincide with p(i) for $i \in \{0, \dots, 2^n\}$.

Counting argument:

existence of a polynomial with no circuits of size n^k .

Computing the coefficients ā in PH:
∃ā ∀r, ∀C, ∀γ ∈ Z/rZ C(x, γ) ≠ ∑α_ixⁱ.
"Almost" in #P due to Toda's theorem (PH ⊆ P^{#P})

Complexity

Computing the coefficients ā in PH:
∃ā ∀r, ∀C, ∀γ ∈ Z/rZ C(x, γ) ≠ ∑ α_ixⁱ.
"Almost" in #P due to Toda's theorem (PH ⊆ P^{#P})

 \rightarrow Can we make it really in $\sharp P$?