VPSPACE and a transfer theorem over the reals

 Algebraic versions of the question "P = PSPACE?"Pascal Koiran Sylvain Perifel

LIP, ENS Lyon

Aachen, February 23rd, 2007

Introduction

- Decision problems

Languages (over \mathbb{R}), Blum-Shub-Smale model
Example: decide whether a multivariate polynomial has a real root $\left(\mathrm{NP}_{\mathbb{R}^{-}}\right.$complete $)$

Introduction

- Decision problems

Languages (over \mathbb{R}), Blum-Shub-Smale model
Example: decide whether a multivariate polynomial has a real root $\left(\mathrm{NP}_{\mathbb{R}^{-}}\right.$complete)

- Evaluation problems Families of polynomials, Valiant's model
Example: compute the permanent of a matrix (VNP-complete)

Outline

1. P and PSPACE (boolean case)
2. P and PSPACE in BSS model
3. P and PSPACE in Valiant's model
4. Sign condition
5. An orthogonal vector

$$
\text { if } \mathrm{VP}=\mathrm{VPSPACE} \text { then } \mathrm{P}_{\mathbb{R}}=\mathrm{PAR}_{\mathbb{R}}
$$

P and PSPACE (boolean case)

- P: languages over $\{0,1\}$ recognized in polynomial time by a Turing machine.
- PSPACE: languages over $\{0,1\}$ recognized in polynomial space by a Turing machine.

P and PSPACE (boolean case)

> P: languages over $\{0,1\}$ recognized in polynomial time by a Turing machine.

- PSPACE: languages over $\{0,1\}$ recognized in polynomial space by a Turing machine.
\triangleright Turing machines \longleftrightarrow boolean circuits (gates \wedge, \vee, \neg).
- Language recognition: one circuit per input length.

P and PSPACE (boolean case)

- P: languages over $\{0,1\}$ recognized in polynomial time by a Turing machine.
- PSPACE: languages over $\{0,1\}$ recognized in polynomial space by a Turing machine.
\triangleright Turing machines \longleftrightarrow boolean circuits (gates \wedge, \vee, \neg).
- Language recognition: one circuit per input length.
- P: languages recognized by boolean circuits of polynomial size (+ uniformity).
- PSPACE: languages recognized by boolean circuits of polynomial depth (of possibly exponential size) (+ uniformity).

P and PSPACE in BSS model

\downarrow Algebraic circuits: gates,,$+- \times$ and \leq.
$>$ Languages over \mathbb{R} : sets of words over the alphabet \mathbb{R}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{R}^{n}$.

- Language recognition over \mathbb{R} : one circuit per input length.

P and PSPACE in BSS model

\downarrow Algebraic circuits: gates,,$+- \times$ and \leq.
$>$ Languages over \mathbb{R} : sets of words over the alphabet \mathbb{R}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{R}^{n}$.

- Language recognition over \mathbb{R} : one circuit per input length.
- $\mathrm{P}_{\mathbb{R}}$: languages over \mathbb{R} recognized by algebraic circuits of polynomial size (+ uniformity).

P and PSPACE in BSS model

\downarrow Algebraic circuits: gates,,$+- \times$ and \leq.

- Languages over \mathbb{R} : sets of words over the alphabet \mathbb{R}, that is, $A \subseteq \cup_{n \geq 0} \mathbb{R}^{n}$.
- Language recognition over \mathbb{R} : one circuit per input length.
- $\mathrm{P}_{\mathbb{R}}$: languages over \mathbb{R} recognized by algebraic circuits of polynomial size (+ uniformity).
$-\mathrm{PAR}_{\mathbb{R}}$: languages over \mathbb{R} recognized by algebraic circuits of polynomial depth (of possibly exponential size) (+ uniformity).

P and PSPACE in Valiant's model

- Arithmetic circuits: gates,+- and \times, inputs x_{1}, \ldots, x_{n} and constant $1 \longrightarrow$ multivariate polynomial with integer coefficients.
- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.

P and PSPACE in Valiant's model

- Arithmetic circuits: gates,+- and \times, inputs x_{1}, \ldots, x_{n} and constant $1 \longrightarrow$ multivariate polynomial with integer coefficients.
- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).
$\left(=\right.$ Uniform $\left.\mathrm{VP}_{\mathrm{nb}}^{0}\right)$

P and PSPACE in Valiant's model

- Arithmetic circuits: gates,+- and \times, inputs x_{1}, \ldots, x_{n} and constant $1 \longrightarrow$ multivariate polynomial with integer coefficients.
- Family of polynomials $\left(f_{n}\right)$: one circuit C_{n} per polynomial $f_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{u(n)}\right]$.
- VP: families of polynomials computed by arithmetic circuits of polynomial size (+ uniformity).

$$
\left(=\text { Uniform } \mathrm{VP}_{\mathrm{nb}}^{0}\right)
$$

- VPSPACE: families of polynomials computed by arithmetic circuits of polynomial depth (+ uniformity).

Recapitulation

- Decision problems over $\{0,1\}$: boolean circuits (gates \wedge, \vee et \neg).
- Decision problems over \mathbb{R} (BSS): algebraic circuits (gates,,$+- \times, \leq$).
- Evaluation problems (Valiant): arithmetic circuits (gates,,$+- \times$).

Recapitulation

- Decision problems over $\{0,1\}$: boolean circuits (gates \wedge, \vee et \neg).
- Decision problems over \mathbb{R} (BSS): algebraic circuits (gates,,$+- \times, \leq$).
- Evaluation problems (Valiant): arithmetic circuits (gates,,$+- \times$).
- P: circuits of polynomial size.
- PSPACE: circuits of polynomial depth.

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function $a:\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1 .

Other characterizations of VPSPACE

- Original definition: coefficient function in PSPACE.

$$
f_{n}(\bar{x})=\sum_{\alpha} a(\alpha) \bar{x}^{\alpha}
$$

Function a : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ computable bit by bit in polynomial space.

- Poizat: circuits of polynomial size endowed with exponential summation gates or gates of evaluation at 0 and 1 .
- Example: multivariate resultant of a system of polynomials.

Transfer theorem

$$
\text { If } \operatorname{VPSPACE}=\mathrm{VP} \text { then } \mathrm{PAR}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}}
$$

Outline of the proof:
\triangleright Goal: for $A \in \mathrm{PAR}_{\mathbb{R}}$, decide in polynomial time whether $\bar{x} \in A$.

- Find the sign condition of \bar{x}
- Simulate the circuit on this sign condition.

Transfer theorem

$$
\text { If } \operatorname{VPSPACE}=\mathrm{VP} \text { then } \mathrm{PAR}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}}
$$

Outline of the proof:
\triangleright Goal: for $A \in \mathrm{PAR}_{\mathbb{R}}$, decide in polynomial time whether $\bar{x} \in A$.

- Find the sign condition of \bar{x}
> enumeration of the satisfiable sign conditions (Renegar);
- binary search (orthogonal vector).
- Simulate the circuit on this sign condition.

Polynomials tested by a circuit

Test gate: $f(\bar{x}) \leq 0$?
If the results of the preceding tests are fixed, f is a polynomial.
\rightarrow enumeration of all possible polynomials (polynomial space): family f_{1}, \ldots, f_{s}.

Polynomials tested by a circuit

Test gate: $f(\bar{x}) \leq 0$?
If the results of the preceding tests are fixed, f is a polynomial.
\rightarrow enumeration of all possible polynomials (polynomial space): family f_{1}, \ldots, f_{s}.

Sign conditions

$>$ Sign condition $S \in\{-1,0,1\}^{s}$: sign of the polynomials f_{1}, \ldots, f_{s}.
\downarrow Sign condition of $\bar{x}:\left(\operatorname{sign}\left(f_{1}(\bar{x})\right), \ldots, \operatorname{sign}\left(f_{s}(\bar{x})\right)\right)$.

Sign conditions

- Sign condition $S \in\{-1,0,1\}^{s}$: sign of the polynomials f_{1}, \ldots, f_{s}.
\downarrow Sign condition of $\bar{x}:\left(\operatorname{sign}\left(f_{1}(\bar{x})\right), \ldots, \operatorname{sign}\left(f_{s}(\bar{x})\right)\right)$.
- If \bar{x} and \bar{y} have the same sign condition then every test gives the same result $\longrightarrow \bar{x}$ and \bar{y} are simultaneously in the language or outside of the language.
- It is enough to study the sign condition (boolean object).

Satisfiable sign conditions

- Sign condition $S \in\{-1,0,1\}^{\text {s }}$: sign of the polynomials f_{1}, \ldots, f_{s}.
- A sign condition is not necessarily satisfiable.
- Example: $x^{2}+1$ always yields 1 (always positive over \mathbb{R}).

Satisfiable sign conditions

- Sign condition $S \in\{-1,0,1\}^{\text {s }}$: sign of the polynomials f_{1}, \ldots, f_{s}.
- A sign condition is not necessarily satisfiable.
- Example: $x^{2}+1$ always yields 1 (always positive over \mathbb{R}).

Theorem (Thom-Milnor 1964, Grigoriev 1988, Renegar 1992)

- There are $N=(s d)^{O(n)}$ satisfiable sign conditions (s : number of polynomials, n : number of variables, d : max degree).
- Satisfiable sign conditions can be enumerated in PSPACE.

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0 .
$$

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

- Binary search thanks to VPSPACE tests

$$
\prod_{j \leq i}\left(\sum_{s_{k}^{(j)}=0} f_{k}(\bar{x})^{2}\right)=0 \quad(\text { true iff } S \leq i)
$$

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0
$$

- Binary search thanks to VPSPACE tests

$$
\prod_{j \leq i}\left(\sum_{s_{k}^{(j)}=0} f_{k}(\bar{x})^{2}\right)=0 \quad(\text { true iff } S \leq i)
$$

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

S

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0 .
$$

- Binary search thanks to VPSPACE tests

$$
\prod_{j \leq i}\left(\sum_{s_{k}^{(j)}=0} f_{k}(\bar{x})^{2}\right)=0 \quad(\text { true iff } S \leq i)
$$

Finding the partial sign condition

- We first want to distinguish only between $=0$ and $\neq 0$.
- Linear order compatible with inclusion on satisfiable sign conditions:

- Search of the minimal satisfiable sign condition S satisfying

$$
\forall k \leq s, S_{k}=0 \Longrightarrow f_{k}(\bar{x})=0 .
$$

- Binary search thanks to VPSPACE tests

$$
\prod_{j \leq i}\left(\sum_{s_{k}^{(j)}=0} f_{k}(\bar{x})^{2}\right)=0 \quad(\text { true iff } S \leq i)
$$

Complete sign condition

- Partial sign condition is known: we know which polynomials vanish. We are now looking for the sign of the others.
- There is no natural order in which the sign condition would be a maximum.
- Candidates will be eliminated step by step.

Binary search

- New convention: 0 for positive and 1 for negative.
> "Inner product" over $\{0,1\}^{s}: u . v=\sum_{i=1}^{s} u_{i} v_{i} \bmod 2$.
$>$ Let S be the sign condition of \bar{x}. Let $u \in\{0,1\}^{s}$. We have:

$$
u . S=1 \Longleftrightarrow \prod_{i \mid u_{i}=1} f_{i}(\bar{x})<0
$$

Binary search

- New convention: 0 for positive and 1 for negative.
> "Inner product" over $\{0,1\}^{s}: u \cdot v=\sum_{i=1}^{s} u_{i} v_{i} \bmod 2$.
$>$ Let S be the sign condition of \bar{x}. Let $u \in\{0,1\}^{s}$. We have:

$$
u . S=1 \Longleftrightarrow \prod_{i \mid u_{i}=1} f_{i}(\bar{x})<0
$$

- If u is orthogonal to roughly half the satisfiable sign conditions then we have "eliminated" roughly half of the candidates.
\longrightarrow Logarithmic number of repetitions.

An orthogonal vector

- Problem: given is a family of vectors $S^{(1)}, \ldots, S^{(k)} \in\{0,1\}^{s}$. Find a vector orthogonal to roughly half of the vectors $S^{(i)}$.

An orthogonal vector

- Problem: given is a family of vectors $S^{(1)}, \ldots, S^{(k)} \in\{0,1\}^{s}$. Find a vector orthogonal to roughly half of the vectors $S^{(i)}$.
- Grigoriev 1998: there always exists a vector orthogonal to at least $k / 3$ and at most $2 k / 3$ vectors. Nonconstructive.

An orthogonal vector

- Problem: given is a family of vectors $S^{(1)}, \ldots, S^{(k)} \in\{0,1\}^{s}$. Find a vector orthogonal to roughly half of the vectors $S^{(i)}$.
- Grigoriev 1998: there always exists a vector orthogonal to at least $k / 3$ and at most $2 k / 3$ vectors. Nonconstructive.
- Charbit, Jeandel, Koiran, Perifel, Thomassé 2006:
> a random vector \rightarrow interval $[k / 2-\sqrt{k} ; k / 2+\sqrt{k}]$ with probability $3 / 4$ (Chebyshev's inequality, still nonconstructive);

An orthogonal vector

- Problem: given is a family of vectors $S^{(1)}, \ldots, S^{(k)} \in\{0,1\}^{s}$. Find a vector orthogonal to roughly half of the vectors $S^{(i)}$.
- Grigoriev 1998: there always exists a vector orthogonal to at least $k / 3$ and at most $2 k / 3$ vectors. Nonconstructive.
- Charbit, Jeandel, Koiran, Perifel, Thomassé 2006:
> a random vector \rightarrow interval $[k / 2-\sqrt{k} ; k / 2+\sqrt{k}]$ with probability $3 / 4$ (Chebyshev's inequality, still nonconstructive);
- it can be derandomized in parallel (hence logarithmic space).

Recapitulation

In order to show that VPSPACE $=\mathrm{VP} \Rightarrow \mathrm{PAR}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}}$:
$>$ For $A \in \mathrm{PAR}_{\mathbb{R}}$ we want to decide in polynomial time whether $\bar{x} \in A$.

- We enumerate all the polynomials possibly tested in the cricuit (polynomial space).
- Thanks to VPSPACE tests, a binary search gives the partial sign condition of \bar{x}.
\vee In order to find the complete sign condition of \bar{x} :
- we are back on $\{0,1\}$;
- thanks to the orthogonal vector and VPSPACE tests, we eliminate at each step half of the candidate sign conditions.
- Once the sign condition of \bar{x} is obtained, we can simulate the circuit and conclude.

Conclusion

- Study of the question $\mathrm{P}=$ PSPACE in different contexts (boolean, BSS, Valiant).
- Similar results over \mathbb{C} but different techniques: a variety requires more than one equation (unlike over \mathbb{R} where we can make sums of squares).
- Converse? Over \mathbb{C}, Nullstellensatz \Rightarrow work only up to a multiple.

Outline

1. P and PSPACE (boolean case)
2. P and PSPACE in BSS model
3. P and PSPACE in Valiant's model
4. Sign condition
5. An orthogonal vector
