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Introduction
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Families of polynomials, Valiant’s model

Example: compute the permanent of a matrix

(VNP-complete)
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P and PSPACE (boolean case)

I P: languages over {0, 1} recognized in polynomial time by a

Turing machine.

I PSPACE: languages over {0, 1} recognized in polynomial

space by a Turing machine.

I Turing machines ←→ boolean circuits (gates ∧, ∨, ¬).

I Language recognition: one circuit per input length.

I P: languages recognized by boolean circuits of polynomial size

(+ uniformity).

I PSPACE: languages recognized by boolean circuits of

polynomial depth (of possibly exponential size)

(+ uniformity).
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P and PSPACE in BSS model

I Algebraic circuits: gates +, −, × and ≤.

I Languages over R: sets of words over the alphabet R, that is,

A ⊆ ∪n≥0Rn.

I Language recognition over R: one circuit per input length.

I PR: languages over R recognized by algebraic circuits of

polynomial size (+ uniformity).

I PARR: languages over R recognized by algebraic circuits of

polynomial depth (of possibly exponential size)

(+ uniformity).
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P and PSPACE in Valiant’s model

I Arithmetic circuits: gates +, − and ×, inputs x1, . . . , xn and

constant 1 −→ multivariate polynomial with integer

coefficients.

I Family of polynomials (fn): one circuit Cn per polynomial

fn ∈ Z[x1, . . . , xu(n)].

I VP: families of polynomials computed by arithmetic circuits

of polynomial size (+ uniformity).

(= Uniform VP0
nb)

I VPSPACE: families of polynomials computed by arithmetic

circuits of polynomial depth (+ uniformity).
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I Decision problems over {0, 1}: boolean circuits

(gates ∧, ∨ et ¬).

I Decision problems over R (BSS): algebraic circuits

(gates +, −, ×, ≤).

I Evaluation problems (Valiant): arithmetic circuits

(gates +, −, ×).

I P: circuits of polynomial size.

I PSPACE: circuits of polynomial depth.
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Other characterizations of VPSPACE

I Original definition: coefficient function in PSPACE.

fn(x̄) =
∑
α

a(α)x̄α

Function a : {0, 1}∗ → Z computable bit by bit in polynomial

space.

I Poizat: circuits of polynomial size endowed with exponential

summation gates

or gates of evaluation at 0 and 1.

I Example: multivariate resultant of a system of polynomials.
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Transfer theorem

If VPSPACE = VP then PARR = PR.

Outline of the proof:

I Goal: for A ∈ PARR, decide in polynomial time whether

x̄ ∈ A.

I Find the sign condition of x̄

I enumeration of the satisfiable sign conditions (Renegar);
I binary search (orthogonal vector).

I Simulate the circuit on this sign condition.
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Polynomials tested by a circuit

Test gate: f (x̄) ≤ 0 ?

If the results of the

preceding tests are fixed,

f is a polynomial.

→ enumeration of all

possible polynomials

(polynomial space):

family f1, . . . , fs .

≤≤

≤
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Sign conditions

I Sign condition S ∈ {−1, 0, 1}s : sign of the polynomials

f1, . . . , fs .

I Sign condition of x̄ : (sign(f1(x̄)), . . . , sign(fs(x̄))).

I If x̄ and ȳ have the same sign condition then every test gives

the same result −→ x̄ and ȳ are simultaneously in the

language or outside of the language.

I It is enough to study the sign condition (boolean object).
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Satisfiable sign conditions

I Sign condition S ∈ {−1, 0, 1}s : sign of the polynomials

f1, . . . , fs .

I A sign condition is not necessarily satisfiable.

I Example: x2 + 1 always yields 1 (always positive over R).

Theorem (Thom-Milnor 1964, Grigoriev 1988, Renegar 1992)

I There are N = (sd)O(n) satisfiable sign conditions (s: number

of polynomials, n: number of variables, d: max degree).

I Satisfiable sign conditions can be enumerated in PSPACE.
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Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Finding the partial sign condition

I We first want to distinguish only between = 0 and 6= 0.

I Linear order compatible with inclusion on satisfiable sign

conditions:

S

I Search of the minimal satisfiable sign condition S satisfying

∀k ≤ s,Sk = 0 =⇒ fk(x̄) = 0.

I Binary search thanks to VPSPACE tests∏
j≤i

( ∑
S

(j)
k =0

fk(x̄)2
)

= 0 (true iff S ≤ i)



Complete sign condition

I Partial sign condition is known: we know which polynomials

vanish. We are now looking for the sign of the others.

I There is no natural order in which the sign condition would be

a maximum.

I Candidates will be eliminated step by step.



Binary search

I New convention: 0 for positive and 1 for negative.

I “Inner product” over {0, 1}s : u.v =
∑s

i=1 uivi mod 2.

I Let S be the sign condition of x̄ . Let u ∈ {0, 1}s . We have:

u.S = 1⇐⇒
∏

i |ui=1

fi (x̄) < 0

I If u is orthogonal to roughly half the satisfiable sign conditions

then we have “eliminated” roughly half of the candidates.

−→ Logarithmic number of repetitions.
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An orthogonal vector

I Problem: given is a family of vectors S (1), . . . ,S (k) ∈ {0, 1}s .
Find a vector orthogonal to roughly half of the vectors S (i).

I Grigoriev 1998: there always exists a vector orthogonal to at

least k/3 and at most 2k/3 vectors. Nonconstructive.

I Charbit, Jeandel, Koiran, Perifel, Thomassé 2006:
I a random vector → interval [k/2−

√
k; k/2 +

√
k] with

probability 3/4 (Chebyshev’s inequality, still nonconstructive);
I it can be derandomized in parallel (hence logarithmic space).
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Recapitulation

In order to show that VPSPACE = VP⇒ PARR = PR:

I For A ∈ PARR we want to decide in polynomial time whether

x̄ ∈ A.

I We enumerate all the polynomials possibly tested in the

cricuit (polynomial space).

I Thanks to VPSPACE tests, a binary search gives the partial

sign condition of x̄ .

I In order to find the complete sign condition of x̄ :
I we are back on {0, 1};
I thanks to the orthogonal vector and VPSPACE tests, we

eliminate at each step half of the candidate sign conditions.

I Once the sign condition of x̄ is obtained, we can simulate the

circuit and conclude.



Conclusion

I Study of the question P = PSPACE in different contexts

(boolean, BSS, Valiant).

I Similar results over C but different techniques: a variety

requires more than one equation (unlike over R where we can

make sums of squares).

I Converse? Over C, Nullstellensatz ⇒ work only up to a

multiple.
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