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Evaluation problems

Families of polynomials, Valiant’s model
Example: compute the permanent of a matrix
(VNP-complete)
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3. P and PSPACE in Valiant's model
4. Sign condition

5. An orthogonal vector

if VP = VPSPACE then Pr = PARR
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Algebraic circuits: gates +, —, x and <.

Languages over R: sets of words over the alphabet R, that is,
A C Up>oR".

Language recognition over R: one circuit per input length.
Pgr: languages over R recognized by algebraic circuits of
polynomial size (+ uniformity).

PARRg: languages over R recognized by algebraic circuits of
polynomial depth (of possibly exponential size)
(4 uniformity).
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P and PSPACE in Valiant's model

Arithmetic circuits: gates 4+, — and X, inputs xi,..., X, and
constant 1 — multivariate polynomial with integer
coefficients.

Family of polynomials (f,): one circuit C, per polynomial

fo € Z[x, - - -, Xu(n)]-

VP: families of polynomials computed by arithmetic circuits

of polynomial size (+ uniformity).
(= Uniform VPY,)

VPSPACE: families of polynomials computed by arithmetic
circuits of polynomial depth (4 uniformity).
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Recapitulation

Decision problems over {0,1}: boolean circuits
(gates A, V et ).

Decision problems over R (BSS): algebraic circuits
(gates +, —, x, <).

Evaluation problems (Valiant): arithmetic circuits
(gates +, —, X).

P: circuits of polynomial size.

PSPACE: circuits of polynomial depth.
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Other characterizations of VPSPACE

Original definition: coefficient function in PSPACE.

Function a: {0,1}* — Z computable bit by bit in polynomial
space.

Poizat: circuits of polynomial size endowed with exponential
summation gates

or gates of evaluation at 0 and 1.

Example: multivariate resultant of a system of polynomials.
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Outline of the proof:

Goal: for A € PARRg, decide in polynomial time whether
x € A.

Find the sign condition of x

Simulate the circuit on this sign condition.



Transfer theorem

If VPSPACE = VP then PARR = Pg.

Outline of the proof:
Goal: for A € PARRg, decide in polynomial time whether
x € A.
Find the sign condition of x

enumeration of the satisfiable sign conditions (Renegar);
binary search (orthogonal vector).

Simulate the circuit on this sign condition.
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Sign condition S € {—1,0,1}°: sign of the polynomials
f,...,f.

Sign condition of x : (sign(fi(x)),...,sign(f(x))).

If X and y have the same sign condition then every test gives
the same result — X and y are simultaneously in the
language or outside of the language.

It is enough to study the sign condition (boolean object).
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f,...,f.

A sign condition is not necessarily satisfiable.

Example: x? + 1 always yields 1 (always positive over R).



Satisfiable sign conditions

Sign condition S € {—1,0,1}°: sign of the polynomials
f,...,f.

A sign condition is not necessarily satisfiable.

Example: x? + 1 always yields 1 (always positive over R).

There are N = (sd)©(") satisfiable sign conditions (s: number
of polynomials, n: number of variables, d: max degree).

Satisfiable sign conditions can be enumerated in PSPACE.
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Finding the partial sign condition

We first want to distinguish only between = 0 and # 0.

Linear order compatible with inclusion on satisfiable sign
conditions:
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S

Search of the minimal satisfiable sign condition S satisfying

Yk <'s,Sk =0 => fi(%) = 0.

Binary search thanks to VPSPACE tests

H< > fk(>‘<)2> =0 (trueiff S <)
s¥—=o
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Complete sign condition

Partial sign condition is known: we know which polynomials
vanish. We are now looking for the sign of the others.

There is no natural order in which the sign condition would be

a maximum.

Candidates will be eliminated step by step.
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“Inner product” over {0,1}°: u.v =3 7_; ujv; mod 2.
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New convention: 0 for positive and 1 for negative.
“Inner product” over {0,1}°: u.v =3 7_; ujv; mod 2.

Let S be the sign condition of x. Let u € {0,1}°. We have:

uS=1«< [] fix)<o0

i|u,-:1

If uis orthogonal to roughly half the satisfiable sign conditions
then we have “eliminated” roughly half of the candidates.
— Logarithmic number of repetitions.
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An orthogonal vector

Problem: given is a family of vectors S, ... S ¢ {0,1}5.
Find a vector orthogonal to roughly half of the vectors S().

Grigoriev 1998: there always exists a vector orthogonal to at
least k/3 and at most 2k /3 vectors. Nonconstructive.

Charbit, Jeandel, Koiran, Perifel, Thomassé 2006:

a random vector — interval [k/2 — v/k; k/2 4 v/k]| with
probability 3/4 (Chebyshev's inequality, still nonconstructive);
it can be derandomized in parallel (hence logarithmic space).



Recapitulation

In order to show that VPSPACE = VP = PARR = Pk:

For A € PARR we want to decide in polynomial time whether
x € A.
We enumerate all the polynomials possibly tested in the
cricuit (polynomial space).
Thanks to VPSPACE tests, a binary search gives the partial
sign condition of x.
In order to find the complete sign condition of x:
we are back on {0,1};
thanks to the orthogonal vector and VPSPACE tests, we
eliminate at each step half of the candidate sign conditions.
Once the sign condition of X is obtained, we can simulate the
circuit and conclude.



Conclusion

Study of the question P = PSPACE in different contexts
(boolean, BSS, Valiant).

Similar results over C but different techniques: a variety
requires more than one equation (unlike over R where we can
make sums of squares).

Converse? Over C, Nullstellensatz = work only up to a
multiple.
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