ALGEBRAIC COMPLEXITY – EXERCISE SESSION 2 Quantifiers, (non)uniformity

We investigate the links between the question $P_M = NP_M$ and the efficient elimination of quantifiers over the structure M.

We also study the notion of algebraic Turing machine and see the "equivalence" with uniform circuits.

Exercise 1 Elimination of quantifiers

- 1. Show that if $P_M = NP_M$ then the structure M has quantifier elimination.
- 2. Show that $\mathbb{P}_M = \mathbb{NP}_M$ if and only if there exists a tuple $\bar{c} \in M$ of parameters, a polynomial p(n) and a family (C_n) of circuits of size p(n) such that every existential formula $f(\bar{x}) = (\exists \bar{y})\phi(\bar{x}, \bar{y})$ of size n is equivalent to the formula $C_n(f, \bar{x}, \bar{c}) = 1.$
- 3. Prove a similar statement for the uniform version " $P_M = NP_M$ ".

Exercise 2 Algebraic Turing machine

- 1. Let M be a structure. Define a Turing machine over M in a similar way as boolean Turing machines, but able to manipulate elements of M.
- 2. Define the class of languages over M recognized by an algebraic Turing machine working in polynomial time. Show that this class is P_M (i.e. show the equivalence with a uniform family of algebraic circuits of polynomial size).