Algebraic complexity – Exercise session 1 NP-completeness

The goal of the following exercises is to study two usual NP-complete problems over the structures $(\mathbf{C}, +, -, \times, =)$ and $(\mathbf{R}, +, -, \times, =, \leq)$.

Let $HN_{\mathbf{C}}$ (sometimes called $FEAS_{\mathbf{C}}$) be the following problem over the structure ($\mathbf{C}, +, -, \times, =$).

- Input: k multivariate polynomials $f_1, \ldots, f_k \in \mathbf{C}[X_1, \ldots, X_n]$.
- Problem: decide whether the polynomials f_i share a common complex root.

Exercise 1

- 1. The name HN_C comes from Hilbert's Nullstellensatz. Why?
- 2. Show that the problem $HN_{\mathbf{C}}$ is decidable over $(\mathbf{C}, +, -, \times, =)$ (i.e. can be decided by a uniform family of algebraic circuits—no matter their size).
- 3. Show that $HN_{\mathbf{C}}$ is in $NP_{\mathbf{C}}$.
- 4. Let x be a variable. Define via a conjunction of polynomial equalities (with possibly existential quantifiers) a variable z whose value is 1 if x = 0 and 0 otherwise.
- 5. Show that $HN_{\mathbf{C}}$ is $NP_{\mathbf{C}}$ -hard.

Let 4FEAS be the following problem over the structure $(\mathbf{R}, +, -, \times, =, \leq)$.

- Input: a multivariate polynomial $f \in \mathbf{R}[X_1, \ldots, X_n]$ of degree ≤ 4 .
- Problem: decide whether the polynomial f has a real root.

Exercise 2

- 1. Show that the problem 4FEAS is decidable over $(\mathbf{R}, +, -, \times, =, \leq)$.
- 2. Show that 4FEAS is in $NP_{\mathbf{R}}$.
- 3. Let x be a variable. Define via a conjunction of polynomial identities (with possibly existential quantifiers) a variable z whose value is 1 if $x \ge 0$ and 0 otherwise.
- 4. Show that 4FEAS is NP_R-hard. Hints: compared to the problem HN_C, why is only one polynomial enough? How to reduce the degree to 4?