Algebraic complexity - Exercise session 1 NP-completeness

The goal of the following exercises is to study two usual NP-complete problems over the structures $(\mathbf{C},+,-, \times,=)$ and $(\mathbf{R},+,-, \times,=, \leq)$.

Let $\mathrm{HN}_{\mathbf{C}}$ (sometimes called $\mathrm{FEAS}_{\mathbf{C}}$) be the following problem over the structure $(\mathbf{C},+,-, \times,=)$.

- Input: k multivariate polynomials $f_{1}, \ldots, f_{k} \in \mathbf{C}\left[X_{1}, \ldots, X_{n}\right]$.
- Problem: decide whether the polynomials f_{i} share a common complex root.

Exercise 1

1. The name $\mathrm{HN}_{\mathbf{C}}$ comes from Hilbert's Nullstellensatz. Why?
2. Show that the problem $\mathrm{HN}_{\mathbf{C}}$ is decidable over $(\mathbf{C},+,-, \times,=)$ (i.e. can be decided by a uniform family of algebraic circuits - no matter their size).
3. Show that $\mathrm{HN}_{\mathbf{C}}$ is in $\mathrm{NP}_{\mathbf{C}}$.
4. Let x be a variable. Define via a conjunction of polynomial equalities (with possibly existential quantifiers) a variable z whose value is 1 if $x=0$ and 0 otherwise.
5. Show that $\mathrm{HN}_{\mathbf{C}}$ is $\mathrm{NP}_{\mathbf{C}}$-hard.

Let 4FEAS be the following problem over the structure ($\mathbf{R},+,-, \times,=, \leq)$.

- Input: a multivariate polynomial $f \in \mathbf{R}\left[X_{1}, \ldots, X_{n}\right]$ of degree ≤ 4.
- Problem: decide whether the polynomial f has a real root.

Exercise 2

1. Show that the problem 4 FEAS is decidable over $(\mathbf{R},+,-, \times,=, \leq)$.
2. Show that 4FEAS is in $\mathrm{NP}_{\mathbf{R}}$.
3. Let x be a variable. Define via a conjunction of polynomial identities (with possibly existential quantifiers) a variable z whose value is 1 if $x \geq 0$ and 0 otherwise.
4. Show that 4FEAS is $\mathrm{NP}_{\mathbf{R}}$-hard. Hints: compared to the problem $\mathrm{HN}_{\mathbf{C}}$, why is only one polynomial enough? How to reduce the degree to 4 ?
