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Katalin Friedl1, Gábor Ivanyos2, Miklos Santha3, and Yves F. Verhoeven3,4

1 BME, H-1521 Budapest, P.O.Box 91., Hungary
friedl@cs.bme.hu

2 MTA SZTAKI, H-1518 Budapest, P.O. Box 63., Hungary
Gabor.Ivanyos@sztaki.hu

3 CNRS–LRI, UMR 8623, bâtiment 490, Université Paris XI, 91405 Orsay, France
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Abstract. In this paper, we define three Sperner problems on specific
surfaces and prove that they are complete respectively for the classes
PPAD, PPADS and PPA. This is the first time that locally 2-dimensional
Sperner problems are proved to be complete for any of the polynomial
parity argument classes.

1 Introduction

The complexity class TFNP, the family of all total NP-search problems, was
introduced by Megiddo and Papadimitriou [9]. It contains several important,
computationally probably hard problems for which no classical polynomial time
algorithms are known. On the other hand, these problems are also somewhat
easy in the sense that they can not be NP-hard unless NP = co-NP. The class
TFNP is a semantic complexity class and thus doesn’t seem to have complete
problems. It is therefore natural to look for syntactically definable subclasses of
TFNP. Indeed, several such subclasses have been identified along the lines of
the mathematical proofs establishing the existence of a solution. The important
subclasses Polynomial Pigeonhole Principle (PPP) and Polynomial Local Search
(PLS) were defined respectively in [12] and [7]. The elements of PPP are problems
which by their combinatorial nature obey the pigeonhole principle and therefore
have a solution. In a PLS problem, one is looking for a local optimum for a
particular objective function, in some easily computable neighborhood structure.

The parity argument subclasses PPA, PPAD, and PSK of TFNP were defined
by Papadimitriou in [11, 12]. The class PSK was renamed PPADS in [1]. These
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classes can be characterized by some simple graph theoretical principles. The
class Polynomial Parity Argument (PPA) is the class of NP search problems,
where the existence of the solution is guaranteed by the fact that in every finite
graph whose vertices are of degree at most two, the number of leaves is even.
The class PPAD is the directed version of PPA, and its basic search problem
is the following: in a directed graph, where the in-degree and the out-degree of
every vertex is at most one, given a source, find another source or a sink. In the
class PPADS the basic search problem is more restricted than in PPAD: given
a source, find a sink.

Another point that makes the parity argument classes interesting is that there
are several natural problems from different branches of mathematics that belong
to them. For example, in a graph with odd degrees, when a Hamiltonian path is
given, a theorem of Smith [15] ensures that there is another Hamiltonian path.
It turns out that finding this second path belongs to the class PPA [12]. A search
problem coming from a modulo 2 version of Chevalley’s theorem [12] from num-
ber theory is also in PPA. Complete problems in PPAD are the search versions
of Brouwer’s fixed point theorem, Kakutani’s fixed point theorem, Borsuk-Ulam
theorem, and Nash equilibrium (see [12]).

The classical Sperner’s Lemma [14] states that in a triangle with a regular
triangulation whose vertices are labeled with three colors, there is always a
trichromatic triangle. This lemma is of special interest since some customary
proofs for the above topological fixed point theorems rely on its combinatorial
content. However, it is unknown whether the corresponding search problem,
that Papadimitriou [12] calls 2D-SPERNER, is complete in PPAD. Variants of
Sperner’s Lemma also give rise to other problems in the parity argument classes.
Papadimitriou [12] has proved that a 3-dimensional analogue of 2D-SPERNER
is in fact complete in PPAD. In [6], Grigni described a non-oriented version of
3-dimensional Sperner’s Lemma that is complete for the class PPA. In this paper
we show that appropriately chosen locally 2-dimensional versions of the problem
are already complete for PPAD, for PPADS, and for PPA, respectively.

This work was completed early 2005 [5]. Recently it has been announced
by Chen and Deng that they have proven the PPAD completeness of 2D-
SPERNER in reference 2 in [2].

2 Results

An NP-search problem is specified by a polynomial time relation R(x, y), such
that for some polynomial p(n), for every x and y such that R(x, y), we have
|y| ≤ p(|x|). Given an input x to the problem, the task is to find a y such that
R(x, y) if there is one, and else report failure. We call an NP-search problem total
if for every x there exists a solution y. The class of total NP-search problems is
called TFNP by Megiddo and Papadimitriou [9].

For two problems R1, R2 in TFNP, we say that R1 is reducible to R2 if
there exist two functions f and g computable in polynomial time such that f(x)



is a legal input to R2 whenever x is an input to R1, and R2(f(x), y) implies
R1(x, g(x, y)).

The parity argument classes are defined via concrete problems, by closure
under reduction. The LEAF problem is defined as follows. The input is a pair
(M, 0k) where M is the description of a polynomial time Turing machine that on
every input outputs a set of size at most 2, and k is a positive integer. Moreover,
M is such that M(0k) = {1k}, and 0k ∈ M(1k). Such an input specifies an
undirected graph Gk = (V, E), where V = {0, 1}k, and {u, v} is in E if u ∈ M(v),
and v ∈ M(u). The output of the problem is a leaf of Gk different from 0k. The
class PPA is the set of total search problems reducible to LEAF. In the search
problems defining the classes PPADS and PPAD, the Turing machine defines
a directed graph, where the in-degree and the out-degree of every vertex is at
most one, and where 0k is always a source. The output in the case of PPADS is
a sink, and in the case of PPAD a sink or source different from 0k.

After some preliminaries in Section 3 the definitions of the three Sperner
problems of interest for us will be given in Section 4: OSPS and SOSPS for
the oriented cases, and SPS for the non-oriented case. Our main results are
proven in Section 5: OSPS is complete for PPAD (Theorem 2) and SOSPS
is complete for PPADS (Theorem 3). The proof of the completeness of SPS
for PPA is left for the full paper.

The results of this paper are motivated by an open problem of Papadim-
itriou in [12], asking whether 2D-SPERNER is PPAD-complete. The main
reason why the 3-dimensional Sperner problem could be proved complete in
PPAD is that there exists an embedding of the complete graph of any size in
the 3-dimensional Euclidean space without any two edges crossing. Of course,
such an embedding is impossible in the plane, and it is not clear how to cir-
cumvent this difficulty when one tries to extend Papadimitriou’s proof in 2 di-
mensions. Our approach consists in exhibiting such an embedding in compact
2-dimensional manifolds, i.e. surfaces, of non-zero genus, and proving the com-
pleteness of Sperner problems on these surfaces for the classes PPAD, PPADS
and PPA. Therefore, our results show that the difficulty of the Sperner problems
is independent of the local dimension of the instance, if it is at least 2.

3 Preliminaries

Unless otherwise stated, the graphs considered in the paper will be undirected.
If S is any set, ≡ is an equivalence relation over S, and a is an element of S,
then [a]≡ denotes the equivalence class of a in S for the relation ≡.

3.1 Surfaces

Definition 1 (triangles). Let R be the equivalence relation over triples of dis-
tinct elements such that we have (a, b, c)R (a′, b′, c′) if (a′, b′, c′) is obtained from
(a, b, c) by cyclic permutation. An equivalence class T of R is called a triangle.



If T is the equivalence class of (a, b, c), then T denotes the equivalence class of
(a, c, b).

For a pair (a, b), let (a, b) denote the pair (b, a). For every triangle T and
elements a and b, (a, b) ≺ T indicates that there exists an element c such that
(a, b, c)R T , and {a, b} ≺ T indicates that either (a, b) ≺ T or (a, b) ≺ T .

A finite set of triangles T is called a triangle arrangement. If T is a triangle
arrangement, its skeleton graph GT is the graph GT = (V, E), where V =
⋃

T∈T
T , and {a, b} is an edge if there is a triangle T ∈ T such that {a, b} ≺ T .

A vertex (resp. edge) of T is a vertex (resp. edge) of the skeleton graph of T .

We will often specify a triangle T , which is an equivalence class of R, by a an
element of T .

Definition 2 (pseudosurfaces). A pseudo-surface T is a triangle arrange-
ment T such that for every edge (a, b) of E there are at most two different
triangles T ∈ T such that {a, b} ≺ T . The pseudo-surface T is oriented if for
every two triangles T and T ′ in T and every edge {a, b} ∈ E, when (a, b) ≺ T
and (a, b) ≺ T ′ we have T = T ′. The boundary of T , denoted by ∂T , is the set
of all edges e ∈ E for which there exists exactly one triangle T ∈ T with e ≺ T .
The dual graph HT of T is the graph HT = (T , E′) such that there is an edge
between two triangles T %= T ′ in HT if there are two vertices a and b in T such
that {a, b} ≺ T and {a, b} ≺ T ′.

Definition 3. A surface S is a pseudo-surface such that HS is connected and
∂S is a union of disjoint cycles of GS .

Notice that our definition of surface coincides with the usual definition of trian-
gulated surface.

3.2 Flow graphs

Definition 4. Let S be a surface, V be set of vertices of S, HS = (V ′, E′) be
its dual graph. A function " : V → {0, 1, 2} is called a labeling of S. A triangle
T ∈ S is said to be fully labeled if it is equivalent to a triple (a, b, c) such that
{"(a), "(b), "(c)} = {0, 1, 2}. A fully labeled triangle T has direct orientation if
there exists (a, b, c) in its equivalence class such that ("(a), "(b), "(c)) = (0, 1, 2).
Otherwise, it has indirect orientation.

The undirected flow graph US = (V ′, E′′) of S (relatively to ") is a subgraph of
HS , such that there is an edge between two triangles T and T ′ of S if there are two
vertices a and b of S such that {a, b} ≺ T , {a, b} ≺ T ′, and {"(a), "(b)} = {0, 1}.

If S is oriented, then we define the directed flow graph DS = (V ′, E′′′) of
S (relatively to ") as a a directed graph, such that there is an edge between two
triangles T and T ′ of S if there are two vertices a and b of S such that (a, b) ≺ T ,
(a, b) ≺ T ′, and ("(a), "(b)) = (0, 1).

The proof of the following theorem is straightforward.



Theorem 1. Let S be a surface, and " be a labeling of S. Then,

(i) the degree of every vertex of the undirected flow graph US is at most 2,
(ii) if S is oriented, then the in-degree and out-degree of every vertex of the

directed flow graph DS are at most 1.

Corollary 1 (Sperner’s lemma for surfaces with empty boundary). Let
S be a surface with empty boundary, and " be a labeling of S. Then,

(i) the number of fully labeled triangles in the undirected flow graph US is even,
(ii) if S is oriented, then there are as many fully labeled triangles with direct

orientation as fully labeled triangles with indirect orientation in the directed
flow graph DS.

Proof. First, observe that the fully labeled triangles in S are exactly the nodes of
degree 1 in US , and that the fully labeled triangles having direct (resp. indirect)
orientation in S are exactly the nodes of out-degree (resp. in-degree) 1 in DS .
Since by Theorem 1 (i) in US the maximal degree is at most two, the number
vertices having degree 1 is even. By Theorem 1 (ii) in DS the in- and outdegrees
are at most 1, therefore there has to be the same number of sources as sinks.

3.3 Rotation systems

Definition 5. Let G = (V, E) be a graph. For every vertex v ∈ V , a local
rotation of G at v is a cyclic permutation πv of the neighbors of v in G. A
rotation system for G is a set Π = {πv | v ∈ V } of local rotations. Let T be a
triangle arrangement, and v be a vertex of T . A local rotation πv of GT at v is
a local orientation of T at v if, for every neighbor v′ of v in GT , (v′, v, πv(v′))
is a triangle of T .

Fact 1. Let S be an oriented surface with empty boundary, and let v be a vertex
of S. There exists a unique local orientation πv of S at v such that, for every
neighbor v′ of v in GS , (v′, v, πv(v′)) is a triangle of S.

Definition 6. Let S be an oriented surface with empty boundary. The rotation
system defined in Fact 1 is called the rotation system of S.

Definition 7. Let (Gn)n∈N = (Vn, En)n∈N be a family of undirected graphs
where |Vn| = n, and Πn = {πv | v ∈ Vn} be a rotation system for Gn. The
rotation system Πn is said to be efficiently computable if there exists a Turing
machine M such that

(i) on input n and pair (v, v′), with {v, v′} ∈ En, computes the vertices v′′

and v′′′ such that πv(v′) = v′′ and π−1
v (v′) = v′′′ using time polynomial in

log n,
(ii) on input n and triple (v, v′, v′′), with {v, v′} and {v, v′′} in En, computes

the smallest non-negative integer i such that πi
v(v′) = v′′ using time poly-

nomial in log n. Later, we will refer to the integer i by logπv

v′ (v′′).



Lemma 1. If m is an integer that is equal to 7 modulo 12, then the complete
graph Km is the skeleton graph of an oriented surface Sm with empty boundary.
Moreover, the rotation system of Sm can be efficiently computed.

The surface Sm is completely specified by giving an appropriate rotation system
for Km. There are actually several such rotation systems [3, 8]. The proof of the
efficient computability of the rotation system is straightforward. It is based on
the constructions in [10, 3]. We omit the details.

3.4 Regular subdivisions

In the following definition, we will formalize the notion of “a regular subdivision”
of a surface, which consists in substituting every triangle of the surface with a
“regular subdivision” of it, as shown on Figure 1, such that the small triangles of
the subdivision have the same orientation as the large triangle that is subdivided.

We will make use of the free Abelian monoid N[V ] over the set of vertices
V of a surface S: the elements are those of the form

∑

v∈V cv · v, where cv is
a non-negative integer, and v is a vertex of S. For any subset V ′ ⊆ V and
positive integer r let Nr[V ′] denote those elements

∑

v∈V ′ cv · v of N[V ] such
that

∑

v∈V ′ cv = r. If s =
∑

v∈V sv · v and t =
∑

v∈V tv · v are two elements of
N[V ], we denote by d(s, t) the distance 1/2

∑

v∈V |sv − tv|.

Definition 8. Let S be a surface, and r be a positive integer. Let S(r) be a tri-
angle arrangement whose triangles are of the form (s1, s2, s3) with {s1, s2, s3} ⊆
Nr[{a, b, c}], for some triangle (a, b, c) in S, such that there exists ε ∈ {−1, 1}
with s2 = s1 + ε(a − b) and s3 = s1 + ε(a − c). We call S(r) the regular r-
subdivision of S.

a b

c

4 · a

4 · c

4 · b

s1

s3

s2

Fig. 1: A triangle (a, b, c) and its regular 4-subdivision.

Notice that two vertices of S(r) are neighbors if and only if they are at
distance 1. It implies that the distance between two vertices in the skeleton
graph of S(r) is equal to their distance according to d.



4 Sperner Problems

The NP-search problems for which we prove completeness in Section 5 are the
following. The surface Sm is the one given by Lemma 1. Its skeleton graph is

Km. The surface S(4)
m is the regular 4-subdivision of Sm.

Oriented Sperner Problem for the Surface S(4)
m (OSPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine

M that on input vertex v of S(4)
m outputs a label "(v) in {0, 1, 2} using

time polynomial in log m, and also a fully labeled triangle T of S(4)
m ,

which has indirect orientation.

Output: a fully labeled triangle T ′ %= T of S(4)
m .

Strict Oriented Sperner Problem for the Surface S(4)
m (SOSPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine

M that on input vertex v of S(4)
m outputs a label "(v) in {0, 1, 2} using

time polynomial in log m, and also a fully labeled triangle T of S(4)
m ,

which has indirect orientation.

Output: a fully labeled triangle T ′ of S(4)
m , which has direct orientation.

To prove completeness for a non-oriented Sperner problem, we will use the non-

oriented surface Nm, derived from the regular 12-subdivision S(12)
m of Sm by

adding some cross-caps. Its precise definition will not be given in this extended
abstract.

Sperner Problem for the Surface N (12)
m (SPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine

M that on input vertex v of N (12)
m outputs a label "(v) in {0, 1, 2} using

time polynomial in log m, and also a fully labeled triangle T of N (12)
m .

Output: a fully labeled triangle T ′ %= T of N (12)
m .

We would like to emphasize that these Sperner problems are in fact not promise
problems, since the input requirements can be syntactically enforced. Let us
describe this in details for the case of OSPS. We can easily provide a syntactical
way to force the Turing machine to always give a correct output. For instance,
one can assume that every output value not in {0, 1, 2} is interpreted as 0. We
can also ensure syntactically that T is a fully labeled triangle which has indirect
orientation with the help of an arbitrary polynomial time computable total order

< on the vertices of S(4)
m . Let s1 < s2 < s3 be the vertices of T . The label of s3

is fixed to 2. The vertex s1 will get label 0 and s2 label 1 if (s1, s2, s3) is in the
equivalence class T , and the labels are exchanged in the opposite case.

In fact, the membership of each of these problems in the class TFNP follows
immediately from Corollary 1.



5 Completeness results for oriented Sperner problems

Let m be a positive integer equal to 7 modulo 12. We will work with the regular

4-subdivision S(4)
m of Sm.

Theorem 2. The problem OSPS is PPAD-complete.

Proof. To see membership in PPAD, we reduce OSPS to the natural complete
problem for PPAD. First, notice that from Theorem 1, we know that the directed
flow graph D

S
(4)
m

has in- and out-degree at most 1 at every vertex. Notice also
that, given a polynomial Turing machine that outputs the label of vertices of

S(4)
m , it is easy to design a polynomial time Turing machine that, given a vertex

T in the directed flow graph D
S

(4)
m

outputs its predecessor and its successor, if
they exist: the Turing machine only has to calculate the labels of the vertices
in T , and to calculate which are the neighbors of T in H

S
(4)
m

. Finally, observe
that, as we previously mentioned in the proof of Corollary 1, the fully labeled
triangles having direct (resp. indirect) orientation in S are exactly the nodes
of out-degree (resp. in-degree) 1 in D

S
(12)
m

. These three arguments show that

there is a reduction (in the sense of total problems) from OSPS to the natural
complete problem for PPAD.

We turn to the proof of completeness. Let k be any positive integer. Let
G = (V, E) be a graph which is specified by an instance of the natural complete
problem for PPAD (see Section 2). It is an undirected graph over V = {0, 1}k,
such that each vertex has in-degree at most one, and out-degree at most one.
Moreover, 0k is a source in G. Let us denote by M the polynomial time Turing
machine that, given a vertex v ∈ V , outputs its predecessor and its successor, if
they exist. From G we make an instance of OSPS such that a solution can be
efficiently turned into a source or a sink of the graph G different from 0k.

Let m be the smallest integer greater than 2k that is equal to 7 modulo
12. We assume that V is included in the set of vertices of Sm. We denote by
Π = {πv | v vertex of Sm} the rotation system for Sm.

Informally, we give a labeling such that the directed flow graph D
S

(4)
m

imitates

the graph G as follows: if (a, b) is an edge of G, then there will be a path in D
S

(4)
m

along the edges near the (a, b) side of the triangle “above” (a, b) (that is the
triangle {a, b, π−1

a (b)}). If moreover (b, c) is an edge in G then there will be a path
around b in the direction given by the rotation system, leading to the triangle
above (b, c). To manage the latter, we need a tool for deciding whether, for a
vertex d %∈ {a, b, c}, the edge {b, d} is “between” {a, b} and {b, c} according to the
rotation πb. This tool is provided by the function logπb

a defined in Definition 7:
the edge {b, d} is between {a, b} and {b, c} if 0 < logπb

a (d) < logπb

a (c). The
function logπb

a is efficiently computable by Lemma 1.

We design a Turing machine M ′ that for every vertex v in S(4)
m outputs a

label "(v) in {0, 1, 2}, using M as a subroutine. Let (a, b, c) be a triangle in
Sm, S = {a, b, c}, and let ia, ib and ic be three non-negative integers such
that ia + ib + ic = 4. Denote by σ the permutation

(

a,b,c
b,c,a

)

. Observe that the



definition of the rotation system implies that for every v ∈ {a, b, c} the equality
πv(σ−1(v)) = σ(v) holds. On input z = ia · a + ib · b + ic · c the Turing machine
M ′ outputs

"(z) =







































0 if ∃v, v′ ∈ S, iv + iv′ = 4, (v, v′) ∈ E, (1)

0 if ∃v ∈ S, iv = 4, ∃w %∈ S, (v, w) ∈ E or (w, v) ∈ E, (2)

1 if ∃v ∈ S, (iv, iσ(v)) ∈ {(2, 1), (1, 2)}, (v, σ(v)) ∈ E, (3)

1 if ∃v ∈ S, ∃v′ ∈ {σ−1(v), σ(v)}, (iv, iv′) = (3, 1),

∃w, w′ ∈ V, (w, v), (v, w′) ∈ E and logπv

w (v′) < logπv

w (w′), (4)

2 otherwise. (5)

Notice that conditions 1 and 2 can be matched simultaneously, but the value
of " is the same. Notice also that, although less obvious, it is impossible for
conditions 1 and 4 to be matched simultaneously. The other pairs of conditions
can not be matched simultaneously.

Finding the case in which z falls can be done in time polynomial in k, as the
Turing machine M , on input v ∈ {a, b, c}, outputs the neighbors of v, and the
rotation system Π can be efficiently computed.

Using these rules, we describe (see Figure 2) the possible cases for a triangle
(a, b, c) in Sm (we assume that the rotation system is clockwise, and hence the
orientation is counter-clockwise):

Case 1: (a, b), (b, c), (c, a) ∈ E.
Case 2: (a, b), (b, c) ∈ E, but (c, a) %∈ E. The value of "(3 · a + c) is 2 if a is a

source in G, and 1 otherwise. Similarly, the value of "(3 · c + a) is 2 if c
is a sink in G, and 1 otherwise.

Case 3: (a, b) ∈ E, but (b, c) and (c, a) are not in E. The value of "(4 · c) is 2 if
c is isolated in G, and otherwise 0. The value of "(a+ 3 · c) = "(b + 3 · c)
is 1 if logπc

w (b) < logπc

w (a) < logπc

w (w′), and otherwise 2. The value of
"(3 · a + c) is 2 if a is a source in G, and 1 otherwise. The value of
"(3 · b + c) is 2 if b is a sink in G, and 1 otherwise.

Case 4: (a, b), (b, c) and (c, a) are not in E. Let v be in {a, b, c}. We do not enu-
merate all the possible sub-cases, but only state the essential relations
between the labels:

(i) "(3 · v + σ(v)) = 1 ⇐⇒ "(3 · v + σ−1(v)) = 1, as both
3 ·v+σ−1(v) and 3 ·v+σ(v) simultaneously fall in one of the cases
(1), (4) and (5) in the definition of ".

(ii) "(3·v+σ(v)) = 0 ⇐⇒ "(2·v+2·σ(v)) = 0, as if "(3·v+σ(v)) =
0 or "(2 · v + 2 · σ(v)) = 0 then case (1) in the definition of " must
apply,

(iii) "(3 · v + σ−1(v)) = 0 ⇐⇒ "(2 · v + 2 · σ−1(v)) = 0, for the
same reasons as in (ii).

These are the only possible cases, up to renaming the vertices a, b and c of the
triangle (a, b, c).



a b

c

0 0 0 0 0

0
1 1

0

0
1

0

0 0

0

a b

c

0 0 0 0 0

"(3 · a + c)
1 1

0

2
1

0

"(a + 3 · c) 0

0

Case 1 Case 2

a b

c

0 0 0 0 0

"(3 · a + c)
1 1

"(3 · b + c)

2
2

2

"(a + 3 · c) "(b + 3 · c)

"(4 · c)

a b

c

"(4 · a) "(3 · a + b)

"(2 · a + 2 · b)

"(a + 3 · b) "(4 · b)

"(3 · a + c)
2 2

"(3 · b + c)

"(2 · a + 2 · c)
2

"(2 · b + 2 · c)

"(a + 3 · c) "(b + 3 · c)

"(4 · c)

Case 3 Case 4

Fig. 2: The different possible cases in the labeling of a triangle (a, b, c) of S(4)
m .

We have to prove that this labeling scheme " is correctly defined among
different triangles. It is easy to check that it is correctly defined on 4 · v, where
v is a vertex of V : if v is an isolated vertex in G, then in every face to which it
belongs only the case (5) in the definition of " applies, and therefore "(4 · v) = 2.
If v is not isolated, then case (2) in the definition of " applies, and therefore
"(4 · v) = 0.

So, finally, proving that the labeling has been correctly defined amounts to
proving that the label "(z) of a vertex z = ia · a + ib · b, 0 < ia, ib < 4 with
ia + ib = 4, that we have defined is the same for the two triangles (a, b, π−1

a (b))
and (a, πa(b), b). We study the different cases:

– (ia, ib) = (3, 1) or (1, 3): if (a, b) or (b, a) is in E, then case (1) in the definition
of " applies to z, and "(z) = 0. Otherwise, either case (4) applies and therefore
"(z) = 1, or case (5) applies and therefore "(z) = 2.

– (ia, ib) = (2, 2): if (a, b) or (b, a) is in E, then case (1) in the definition of "
applies to z, and "(z) = 0. Otherwise, case (5) applies.

Let (a′, b′, c′) be a fully labeled triangle in the subdivision of a triangle (a, b, c)
in Sm. We prove that there exists a unique v = v(a′, b′, c′) ∈ {a, b, c} such
that (a′, b′, c′) = (3 · v + σ(v), 2 · v + σ−1(v) + σ(v), 3 · v + σ−1(v)), and v is a
source in G if (a′, b′, c′) is a fully labeled triangle having indirect orientation,
and a sink if (a′, b′, c′) is a fully labeled triangle having direct orientation. Also,



given (a′, b′, c′), one can efficiently retrieve v(a′, b′, c′). The proof is done for the
different cases of Figure 2.

In Case 1 there is no such triangle (a′, b′, c′).
Let us examine Case 2. The possible values for "(3 ·a+c) and "(a+3 ·c) are 1

and 2. Therefore, the only possibilities for (a′, b′, c′) are (b+3·c, a+b+2·c, a+3·c)
when "(a + 3 · c) = 2, and (3 · a + c, 2 · a + b + c, 3 · a + b) when "(3 · a + c) = 2.
These values correspond respectively to the case when c is a sink and (a′, b′, c′)
is a fully labeled triangle having direct orientation, and to the case when a is a
source and (a′, b′, c′) is a fully labeled triangle having indirect orientation.

Let us turn to Case 3. In this case, we always have "(a + 3 · c) = "(b + 3 · c).
So, the only possibilities for (a′, b′, c′) are (3 · b + a, a + 2 · b + c, 3 · b + c) when
"(3 · b + c) = 2, and (3 · a + c, 2 · a + b + c, 3 · a + b) when "(3 · a + c) = 2.
These values correspond respectively to the case when b is a sink and (a′, b′, c′)
is a fully labeled triangle having direct orientation, and to the case when a is a
source and (a′, b′, c′) is a fully labeled triangle having indirect orientation.

We finish the case study by proving that in Case 4, there can be no fully la-
beled triangle (a′, b′, c′). All the triangles that have twice the label 2 can immedi-
ately be discarded. By symmetry between a, b and c, we can assume without loss
of generality that a′, b′ and c′ should be in {ia ·a+ib ·b+ic ·c ∈ N4[{a, b, c}] | ia ≥
2}. Assume that (a′, b′, c′) is a fully labeled triangle. The possibilities are:

– (a′, b′, c′) = (3 · a + c, 4 · a, 3 · a + b): "(4 · a) ∈ {0, 2}, so "(3 · a + c) = 1 or
"(3 · a + b) = 1, and therefore relation (i) implies "(3 · a + c) = "(3 · a + b),
which is impossible,

– (a′, b′, c′) = (3 · a + c, 3 · a + b, 2 · a + b + c): similar to the previous case,
– (a′, b′, c′) = (2 · a + 2 · c, 3 · a + c, 2 · a + b + c): "(2 · a + 2 · c) ∈ {0, 2} and

"(2 · a + b + c) = 2, so "(2 · a + 2 · c) = 0 and therefore relation (ii) implies
"(3 · a + c) = 0, which is impossible,

– (a′, b′, c′) = (3 · a + b, 2 · a + 2 · b, 2 · a + b + c): similar to the previous case,
using relation (iii).

Our next step is showing that the map (a′, b′, c′) -→ v(a′, b′, c′) is a bijection
between fully labeled triangles (a′, b′, c′) having indirect orientation and sources
of G. It is onto, as if v is a source in G, v′ is the successor of v and v′′ = π−1

v (v′)
then v = v(a′, b′, c′), where (a′, b′, c′) = (3 · v + v′′, 2 · v + v′ + v′′, 3 · v + v′). The

case study also shows that if (a′, b′, c′) is a fully labeled triangle of S(4)
m having

indirect orientation and v = v(a′, b′, c′) then (a′, b′, c′) = (3 · v + v′′, 2 · v + v′ +
v′′, 3 ·v+v′), where v′ is the successor of v in G and v′′ = π−1

v (v′). Therefore the
map is injective as well. A similar bijection exists between fully labeled triangles
(a′, b′, c′) having direct orientation and sinks of G.

Let (a0, b0, c0) = (0k, 1k, π−1
0k (1k)). The triangle T , which is part of the input

for OSPS, is (3 ·a0 +c, 2 ·a0 +b0 +c0, 3 ·a0 +b0). We conclude that if we can find
a fully labeled triangle (a′, b′, c′) %= T then we can efficiently retrieve a source or
sink v of G with v = v(a′, b′, c′) different from 0k.

The problem SOPS is the hand-made analogue of OSPS for PPADS, and
therefore it is naturally complete in the class. Indeed, both for the easiness and



the hardness results the proofs used for the completeness of OSPS in PPAD
can be applied. The only substantial remark to be made is that the bijections
defined between fully labeled triangles and nodes of degree one bijectively map
fully labeled triangles having direct orientations onto sinks. Therefore, we obtain
the following result.

Theorem 3. The problem SOSPS is PPADS-complete.
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