Exercise 1 (A streaming algorithm for the second moment of the frequencies). We are given a stream of numbers $x_1, \ldots, x_n \in \{0, \ldots, m-1\}$ and we want to compute the sum of the squares of the frequencies of each values 0 to m-1 in this stream: if $f_a(x) = \#\{i : x_i = a\}$, we want to compute $F_2(x) = \sum_{a=0}^{m-1} f_a(x)^2$.

Take a random function $h : \{1, \ldots, m\} \to \{-1, 1\}$, i.e.: for all a, h(a) is chosen at independently and uniformly at random in $\{-1, 1\}$. And do the following:

Algorithm 1 Second frequency moment random algorithm

Pick a hash function $h: \{0, \ldots, m-1\} \rightarrow \{-1, 1\}$ uniformly at random Compute $Z = h(x_1) + \cdots + h(x_n)$ while reading the stream Output Z^2

▶ Question 1.1) Show that $\mathbb{E}[Z^2] = F_2(x)$ where the expectation is taken over all the possible values for h. ▷ Hint. For $a \neq b$, show that $\mathbb{E}_h[h(a)h(b)] = 0$ and $\mathbb{E}_h[h(a)^2] = 1$.

<u>Answer</u>. \triangleright First remark that, $\mathbb{E}[h(a)^2] = \mathbb{E}[1] = 1$ and $\mathbb{E}[h(a)] = \frac{1}{2} \times -1 + \frac{1}{2} \times 1 = 0$. Now, if $a \neq b$, then h(a) and h(b) are independent and $\mathbb{E}[h(a)h(b)] = \mathbb{E}[h(a)]\mathbb{E}[h(b)] = 0$. It follows:

$$\mathbb{E}[Z^2] = \mathbb{E}[(h(x_1) + \dots + h(x_n))^2] = \mathbb{E}\left[\left(\sum_{a=0}^{m-1} f_a(x)h(a)\right)^2\right]$$
$$= \sum_{a=0}^{m-1} f_a(x)^2 \mathbb{E}[h(a)^2] + \sum_{a\neq b} f_a(x)f_b(x) \mathbb{E}[h(a)h(b)]$$
$$= \sum_{a=0}^{m-1} f_a(x)^2 = F_2(x).$$

• Question 1.2) Show that $\mathbb{V}ar(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2 = 2\sum_{a\neq b} f_a(x)^2 f_b(x)^2 \leq 2F_2(x)^2$.

<u>Answer</u>. \triangleright As before, note that if b, c, d are all different from a, by independence of h(a) from h(b), h(c) and h(d), we have: $\mathbb{E}[h(a)^3h(b)] = \mathbb{E}[h(a)h(b)] = 0$ and

 $\mathbb{E}[h(a)h(b)h(c)h(d)] = \mathbb{E}[h(a)]\mathbb{E}[h(b)h(c)h(d)] = 0$. It follows that:

$$\begin{split} \mathbb{E}[Z^4] &= \mathbb{E}\left[\left(\sum_{a=0}^{m-1} f_a(x)h(a)\right)^4\right] \\ &= \sum_{a=0}^{m-1} f_a(x)^4 \,\mathbb{E}[h(a)^4] \\ &+ 4 \sum_{a=0}^{m-1} \sum_{b \neq a} f_a(x)^3 f_b(x) \,\mathbb{E}[h(a)^3 h(b)] \\ &+ \frac{1}{2} \left(\frac{4}{2}\right) \sum_{a=0}^{m-1} \sum_{b \neq a} f_a(x)^2 f_b(x)^2 \,\mathbb{E}[h(a)^2 h(b)^2] \\ &+ \left(\frac{4}{2}\right) \sum_{a=0}^{m-1} \sum_{d \text{ is tinct } b, c \neq a} f_a(x)^2 f_b(x) f_c(x) \,\mathbb{E}[h(a)^2 h(b) h(c)] \\ &+ \sum_{a=0}^{m-1} \sum_{d \text{ is tinct } b, c, d \neq a} f_a(x) f_b(x) f_c(x) f_d(x) \,\mathbb{E}[h(a)h(b)h(c)f(d)] \\ &= \sum_{a=0}^{m-1} f_a(x)^4 + 3 \sum_{a, b: a \neq b} f_a(x)^2 f_b(x)^2. \end{split}$$
Thus, $\mathbb{V}ar[Z^2] = \mathbb{E}[Z^4] - \mathbb{E}[Z^2] = \sum_{a=0}^{m-1} f_a(x)^4 + 3 \sum_{a, b: a \neq b} f_a(x)^2 f_b(x)^2 - \left(\sum_{a=0}^{m-1} f_a(x)^2\right)^2 \\ &= 2 \sum_{a, b: a \neq b} f_a(x)^2 f_b(x)^2 \leqslant 2 \left(\sum_{a=0}^{m-1} f_a(x)^2\right)^2 = 2F_2(x)^2. \end{split}$

 $\mathbf{2}$

 \triangleleft

Remark that this algorithm requires a lot of memory to store $h: O(m \log m)$ bits, almost as much as counting the frequencies independently ($O(m \log n)$ bits). But remark that we only need the values of h to be 4-wise independent to obtain the results above. Let us thus use the following construction for h that will require much less memory.

Consider the field \mathbb{F}_{2^k} where $k = \lceil \log_2 m \rceil$ such that $2^{k-1} < m \leq 2^k$. Let us identify the elements of \mathbb{F}_{2^k} as a string of k bits and as numbers from 0 to $2^k - 1$ as well. Let $\pi : \mathbb{F}_{2^k} \rightarrow \{-1, 1\}$ be the function that associates to any number $a \in \mathbb{F}_{2^k}$ the value -1 if the first bit of a is 0 and the value +1 otherwise.

For all 4-tuple $(u, v, w, t) \in (\mathbb{F}_{2^k})^4$, let $P_{uvwt} : \mathbb{F}_{2^k} \to \mathbb{F}_{2^k}$ be the polynomial:

$$P_{uvwt}(a) = ua^3 + va^2 + wa + t,$$

and set $h_{uvwt}(a) = \pi(P_{uvwt}(a)).$

▶ Question 1.3) Show that if u, v, w, t are chosen independently and uniformly at random in \mathbb{F}_{2^k} , then for all fixed distinct values $a, b, c, d \in \mathbb{F}_{2^k}$, the random 4-tuple $(P_{uvwt}(a), P_{uvwt}(b), P_{uvwt}(c), P_{uvwt}(d))$ is uniform in $(\mathbb{F}_{2^k})^4$. <u>Answer</u>. \triangleright Let $(p, q, r, s) \in (F_{2^k})^4$.

$$\begin{split} & \Pr_{u,v,w,t} \{ (P_{uvwt}(a), P_{uvwt}(b), P_{uvwt}(c), P_{uvwt}(d)) = (p, q, r, s) \} \\ &= \Pr_{u,v,w,t} \left\{ \begin{pmatrix} a^3 & a^2 & a & 1 \\ b^3 & b^2 & b & 1 \\ c^3 & c^2 & c & 1 \\ d^3 & d^2 & d & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ t \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix} \right\} \\ &= \frac{\# \left\{ (u, v, w, t) \in (F_{2^k})^4 : \begin{pmatrix} a^3 & a^2 & a & 1 \\ b^3 & b^2 & b & 1 \\ c^3 & c^2 & c & 1 \\ d^3 & d^2 & d & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ t \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix} \right\} \\ &= \frac{1}{(2^k)^4}, \end{split}$$

indeed, the solution (u, v, w, t) is unique since the matrix is a van der Mond matrix which is inversible as soon as a, b, c and d distinct. It follows that all the values in $(\mathbb{F}_{2^k})^4$ are equally probable for the 4-tuple $(P_{uvwt}(a), P_{uvwt}(b), P_{uvwt}(c), P_{uvwt}(d))$, it is thus uniform. \triangleleft

▶ Question 1.4) Conclude that when u, v, w, t are chosen independently and uniformly at random in \mathbb{F}_{2^k} , the values $h_{uvwt}(0), \ldots, h_{uvwt}(m-1)$ are 4-wise independent uniform random variables with values in $\{-1, 1\}$.

<u>Answer</u>. \triangleright Remark that π maps half the elements in \mathbb{F}_{2^k} to -1 and the other half to 1. Thus, the image by π of a uniform random variable in \mathbb{F}_{2^k} is a uniform random variable in $\{-1,1\}$. Formally, for all $(\alpha,\beta,\gamma,\delta)\in\{-1,1\}^4$ and distincts $a,b,c,d\in\mathbb{F}_{2^k}$,

$$\begin{split} \Pr_{u,v,w,t} \{ (\pi(P_{uvwt}(a)), \pi(P_{uvwt}(b)), \pi(P_{uvwt}(c)), \pi(P_{uvwt}(d))) &= (\alpha, \beta, \gamma, \delta) \} \\ &= \sum_{\substack{(p,q,r,s) \in \mathbb{F}_{2^k} \\ (\pi(p), \pi(q), \pi(r), \pi(s)) &= (\alpha, \beta, \gamma, \delta) \\ &= (2^{k-1})^4 \cdot \frac{1}{(2^k)^4} = \frac{1}{2^4}, \end{split}$$

which implies that $\pi(P_{uvwt}(0)), \ldots, \pi(P_{uvwt}(m-1))$ are 4-wise independent uniform random variables in $\{-1, 1\}$.

▶ Question 1.5) Conclude that there is a (ε, δ) -estimator computing $F_2(x)$ using $O(\log m + \log n)$ bits of memory. Describe it and explain the bound on the memory needed as a function of δ and ε .

<u>Answer</u>. \triangleright Consider the following algorithm and let us prove that it is a (ε, δ) -estimator: Recall that $\mathbb{V}ar(\mu_i) = \mathbb{V}ar(Z)/B \leq 2F_2(x)^2/B$. By Chebychev inequality, for all i = 1..A,

$$\Pr\{|\mu_i - F_2(x)| \ge \varepsilon F_2(x)\} \leqslant \frac{\mathbb{V}ar(\mu_i)}{\varepsilon^2 F_2(x)^2} \leqslant \frac{2}{B\varepsilon^2} \leqslant \frac{1}{4}.$$

Furthermore, if the median of the values μ_1, \ldots, μ_A lies outside $(1 \pm \varepsilon)F_2(x)$, then at least A/2 of the values lie outside as well. Then, if Y_i denotes the indicator random variable for the event $\mu_i \notin (1 \pm \varepsilon)F_2(x)$ (note that $\mathbb{E}[Y_i] \leq 1/4$), then by Hoeffding inequality,

$$\begin{split} \Pr\{|output - F_2(x)| \geqslant \varepsilon F_2(x)\} &\leqslant \Pr\{Y_1 + \dots + Y_A \geqslant A/2\} \\ &\leqslant \Pr\{Y_1 + \dots + Y_A - \mathbb{E}[Y_1 + \dots + Y_A] \geqslant A/4\} \\ &\leqslant \exp\left(-\frac{2(A/4)^2}{A}\right) \leqslant \delta. \end{split}$$

Algorithm 2 Memory efficient second frequency moment (ε, δ) -estimator

Let $k = \lceil \log_2 m \rceil$, $A = \lceil 8 \ln(1/\delta) \rceil$ and $B = \lceil 8/\varepsilon^2 \rceil$ for i = 1..A and j = 1..B do Pick $u_{ij}, v_{ij}, w_{ij}, t_{ij}$ independently and uniformly at random in the field \mathbb{F}_{2^k} Let h_{ij} be the hash function: $h_{ij}(a) = \pi(u_{ij}a^3 + v_{ij}a^2 + w_{ij}a + t_{ij})$ Compute $Z_{ij} = h_{ij}(x_1) + \dots + h_{ij}(x_n)$ for all i = 1..A and j = 1..B simultaneously while reading the stream for i = 1..A do $(Z_{i1})^2 + \dots + (Z_{iB})^2$

Compute the average $\mu_i = \frac{(Z_{i1})^2 + \dots + (Z_{iB})^2}{B}$

return the median of the values μ_1, \ldots, μ_A

Now, the algorithm is memory efficient since it uses: 4AB variables of k bits each (the $u_{ij}, v_{ij}, w_{ij}, t_{ij}$) and AB + A variables of at most $2\log n$ bits (the Z_{ij} and μ_i). The total number of bits of memory used by the (ε, δ) -estimator for $F_2(x)$ is thus: $O\left(\frac{\ln(1/\delta)}{\varepsilon^2}(\log m + \log n)\right)$.