Exercise 1 (A streaming algorithm for the second moment of the frequencies). We are given a stream of numbers $x_{1}, \ldots, x_{n} \in\{0, \ldots, m-1\}$ and we want to compute the sum of the squares of the frequencies of each values 0 to $m-1$ in this stream: if $f_{a}(x)=\#\left\{i: x_{i}=\right.$ $a\}$, we want to compute $F_{2}(x)=\sum_{a=0}^{m-1} f_{a}(x)^{2}$.

Take a random function $h:\{1, \ldots, m\} \rightarrow\{-1,1\}$, i.e.: for all $a, h(a)$ is chosen at independently and uniformly at random in $\{-1,1\}$. And do the following:

```
Algorithm 1 Second frequency moment random algorithm
    Pick a hash function }h:{0,\ldots,m-1}->{-1,1} uniformly at random
    Compute Z =h(x, )+\cdots+h(x ) while reading the stream
    Output Z}\mp@subsup{Z}{}{2
```

Question 1.1) Show that $\mathbb{E}\left[Z^{2}\right]=F_{2}(x)$ where the expectation is taken over all the possible values for h. \triangleright Hint. For $a \neq b$, show that $\mathbb{E}_{h}[h(a) h(b)]=0$ and $\mathbb{E}_{h}\left[h(a)^{2}\right]=1$.

Answer. \triangleright First remark that, $\mathbb{E}\left[h(a)^{2}\right]=\mathbb{E}[1]=1$ and $\mathbb{E}[h(a)]=\frac{1}{2} \times-1+\frac{1}{2} \times 1=0$. Now, if $a \neq b$, then $h(a)$ and $h(b)$ are independent and $\mathbb{E}[h(a) h(b)]=\mathbb{E}[h(a)] \mathbb{E}[h(b)]=$ 0 . It follows:

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(h\left(x_{1}\right)+\cdots h\left(x_{n}\right)\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{a=0}^{m-1} f_{a}(x) h(a)\right)^{2}\right] \\
& =\sum_{a=0}^{m-1} f_{a}(x)^{2} \mathbb{E}\left[h(a)^{2}\right]+\sum_{a \neq b} f_{a}(x) f_{b}(x) \mathbb{E}[h(a) h(b)] \\
& =\sum_{a=0}^{m-1} f_{a}(x)^{2}=F_{2}(x) .
\end{aligned}
$$

\triangleleft

- Question 1.2) Show that $\operatorname{Var}\left(Z^{2}\right)=\mathbb{E}\left[Z^{4}\right]-\mathbb{E}\left[Z^{2}\right]^{2}=2 \sum_{a \neq b} f_{a}(x)^{2} f_{b}(x)^{2} \leqslant$ $2 F_{2}(x)^{2}$.

Answer. \triangleright As before, note that if b, c, d are all different from a, by independence of $h(a)$ from $h(b), h(c)$ and $h(d)$, we have: $\mathbb{E}\left[h(a)^{3} h(b)\right]=\mathbb{E}[h(a) h(b)]=0$ and
$\mathbb{E}[h(a) h(b) h(c) h(d)]=\mathbb{E}[h(a)] \mathbb{E}[h(b) h(c) h(d)]=0$. It follows that:

$$
\begin{aligned}
\mathbb{E}\left[Z^{4}\right]= & \mathbb{E}\left[\left(\sum_{a=0}^{m-1} f_{a}(x) h(a)\right)^{4}\right] \\
= & \sum_{a=0}^{m-1} f_{a}(x)^{4} \mathbb{E}\left[h(a)^{4}\right] \\
& +4 \sum_{a=0}^{m-1} \sum_{b \neq a} f_{a}(x)^{3} f_{b}(x) \mathbb{E}\left[h(a)^{3} h(b)\right] \\
& +\frac{1}{2}\binom{4}{2} \sum_{a=0}^{m-1} \sum_{b \neq a} f_{a}(x)^{2} f_{b}(x)^{2} \mathbb{E}\left[h(a)^{2} h(b)^{2}\right] \\
& +\binom{4}{2} \sum_{a=0}^{m-1} \sum_{\text {distinct } b, c \neq a}^{m-1} f_{a}(x)^{2} f_{b}(x) f_{c}(x) \mathbb{E}\left[h(a)^{2} h(b) h(c)\right] \\
& +\sum_{a=0}^{m-1} \sum_{\text {distinct } b, c, d \neq a} f_{a}(x) f_{b}(x) f_{c}(x) f_{d}(x) \mathbb{E}[h(a) h(b) h(c) f(d)] \\
& \sum_{a=0} f_{a}(x)^{4}+3 \sum_{a, b: a \neq b} f_{a}(x)^{2} f_{b}(x)^{2} . \\
= & 2 \sum_{a, b: a \neq b} f_{a}(x)^{2} f_{b}(x)^{2} \leqslant 2\left(\sum_{a=0}^{m-1} f_{a}(x)^{2}\right)^{2}=2 F_{2}(x)^{2} .
\end{aligned}
$$

\triangleleft

Remark that this algorithm requires a lot of memory to store h : $O(m \log m)$ bits, almost as much as counting the frequencies independently ($O(m \log n$) bits). But remark that we only need the values of h to be 4 -wise independent to obtain the results above. Let us thus use the following construction for h that will require much less memory.

Consider the field $\mathbb{F}_{2^{k}}$ where $k=\left\lceil\log _{2} m\right\rceil$ such that $2^{k-1}<m \leqslant 2^{k}$. Let us identify the elements of $\mathbb{F}_{2^{k}}$ as a string of k bits and as numbers from 0 to $2^{k}-1$ as well. Let $\pi: \mathbb{F}_{2^{k}} \rightarrow$ $\{-1,1\}$ be the function that associates to any number $a \in \mathbb{F}_{2^{k}}$ the value -1 if the first bit of a is 0 and the value +1 otherwise.

For all 4-tuple $(u, v, w, t) \in\left(\mathbb{F}_{2^{k}}\right)^{4}$, let $P_{u v w t}: \mathbb{F}_{2^{k}} \rightarrow \mathbb{F}_{2^{k}}$ be the polynomial:

$$
P_{u v w t}(a)=u a^{3}+v a^{2}+w a+t
$$

and set $h_{u v w t}(a)=\pi\left(P_{u v w t}(a)\right)$.

- Question 1.3) Show that if u, v, w, t are chosen independently and uniformly at random in $\mathbb{F}_{2^{k}}$, then for all fixed distinct values $a, b, c, d \in \mathbb{F}_{2^{k}}$, the random 4-tuple $\left(P_{u v w t}(a), P_{u v w t}(b), P_{u v w t}(c), P_{u v w t}(d)\right)$ is uniform in $\left(\mathbb{F}_{2^{k}}\right)^{4}$.

Answer. \triangleright Let $(p, q, r, s) \in\left(F_{2^{k}}\right)^{4}$.
$\operatorname{Pr}_{u, v, w, t}\left\{\left(P_{u v w t}(a), P_{u v w t}(b), P_{u v w t}(c), P_{u v w t}(d)\right)=(p, q, r, s)\right\}$

$$
=\operatorname{Pr}_{u, v, w, t}\left\{\left(\begin{array}{cccc}
a^{3} & a^{2} & a & 1 \\
b^{3} & b^{2} & b & 1 \\
c^{3} & c^{2} & c & 1 \\
d^{3} & d^{2} & d & 1
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w \\
t
\end{array}\right)=\left(\begin{array}{c}
p \\
q \\
r \\
s
\end{array}\right)\right\}
$$

$$
=\frac{\#\left\{(u, v, w, t) \in\left(F_{2^{k}}\right)^{4}:\left(\begin{array}{cccc}
a^{3} & a^{2} & a & 1 \\
b^{3} & b^{2} & b & 1 \\
c^{3} & c^{2} & c & 1 \\
d^{3} & d^{2} & d & 1
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w \\
t
\end{array}\right)=\left(\begin{array}{c}
p \\
q \\
r \\
s
\end{array}\right)\right\}}{\#\left(F_{\left.2^{k}\right)^{4}}^{4}\right.}
$$

$$
=\frac{1}{\left(2^{k}\right)^{4}}
$$

indeed, the solution (u, v, w, t) is unique since the matrix is a van der Mond matrix which is inversible as soon as a, b, c and d distinct. It follows that all the values in $\left(\mathbb{F}_{2^{k}}\right)^{4}$ are equally probable for the 4 -tuple $\left(P_{u v w t}(a), P_{u v w t}(b), P_{u v w t}(c), P_{u v w t}(d)\right)$, it is thus uniform. \triangleleft

- Question 1.4) Conclude that when u, v, w, t are chosen independently and uniformly at random in $\mathbb{F}_{2^{k}}$, the values $h_{\text {uvwt }}(0), \ldots, h_{\text {uvwt }}(m-1)$ are 4 -wise independent uniform random variables with values in $\{-1,1\}$.
Answer. \triangleright Remark that π maps half the elements in $\mathbb{F}_{2^{k}}$ to -1 and the other half to 1 . Thus, the image by π of a uniform random variable in $\mathbb{F}_{2^{k}}$ is a uniform random variable in $\{-1,1\}$. Formally, for all $(\alpha, \beta, \gamma, \delta) \in\{-1,1\}^{4}$ and distincts $a, b, c, d \in \mathbb{F}_{2^{k}}$,
which implies that $\pi\left(P_{u v w t}(0)\right), \ldots, \pi\left(P_{u v w t}(m-1)\right)$ are 4 -wise independent uniform random variables in $\{-1,1\}$. \triangleleft
- Question 1.5) Conclude that there is a (ε, δ)-estimator computing $F_{2}(x)$ using $O(\log m+$ $\log n$) bits of memory. Describe it and explain the bound on the memory needed as a function of δ and ε.
Answer. \triangleright Consider the following algorithm and let us prove that it is a (ε, δ)-estimator:
Recall that $\operatorname{Var}\left(\mu_{i}\right)=\mathbb{V a r}(Z) / B \leqslant 2 F_{2}(x)^{2} / B$. By Chebychev inequality, for all $i=1 . . A$,

$$
\operatorname{Pr}\left\{\left|\mu_{i}-F_{2}(x)\right| \geqslant \varepsilon F_{2}(x)\right\} \leqslant \frac{\mathbb{V} a r\left(\mu_{i}\right)}{\varepsilon^{2} F_{2}(x)^{2}} \leqslant \frac{2}{B \varepsilon^{2}} \leqslant \frac{1}{4}
$$

Furthermore, if the median of the values μ_{1}, \ldots, μ_{A} lies outside $(1 \pm \varepsilon) F_{2}(x)$, then at least $A / 2$ of the values lie outside as well. Then, if Y_{i} denotes the indicator random variable for the event $\mu_{i} \notin(1 \pm \varepsilon) F_{2}(x)$ (note that $\left.\mathbb{E}\left[Y_{i}\right] \leqslant 1 / 4\right)$, then by Hoeffding inequality,

$$
\begin{aligned}
\operatorname{Pr}\left\{\mid \text { output }-F_{2}(x) \mid \geqslant \varepsilon F_{2}(x)\right\} & \leqslant \operatorname{Pr}\left\{Y_{1}+\cdots+Y_{A} \geqslant A / 2\right\} \\
& \leqslant \operatorname{Pr}\left\{Y_{1}+\cdots+Y_{A}-\mathbb{E}\left[Y_{1}+\cdots+Y_{A}\right] \geqslant A / 4\right\} \\
& \leqslant \exp \left(-\frac{2(A / 4)^{2}}{A}\right) \leqslant \delta
\end{aligned}
$$

$$
\begin{aligned}
& \underset{u, v, w, t}{\operatorname{Pr}}\left\{\left(\pi\left(P_{u v w t}(a)\right), \pi\left(P_{u v w t}(b)\right), \pi\left(P_{\text {uvwt }}(c)\right), \pi\left(P_{u v w t}(d)\right)\right)=(\alpha, \beta, \gamma, \delta)\right\} \\
& =\sum_{(p, q, r, s) \in \mathbb{F}_{2^{k}}} \operatorname{Pr}_{u, v, w, t}\left\{\left(P_{u v w t}(a), P_{u v w t}(b), P_{u v w t}(c), P_{u v w t}(d)\right)=(p, q, r, s)\right\} \\
& (\pi(p), \pi(q), \pi(r), \pi(s))=(\alpha, \beta, \gamma, \delta) \\
& =\left(2^{k-1}\right)^{4} \cdot \frac{1}{\left(2^{k}\right)^{4}}=\frac{1}{2^{4}},
\end{aligned}
$$

```
Algorithm 2 Memory efficient second frequency moment \((\varepsilon, \delta)\)-estimator
    Let \(k=\left\lceil\log _{2} m\right\rceil, A=\lceil 8 \ln (1 / \delta)\rceil\) and \(B=\left\lceil 8 / \varepsilon^{2}\right\rceil\)
    for \(i=1 . . A\) and \(j=1 . . B\) do
            Pick \(u_{i j}, v_{i j}, w_{i j}, t_{i j}\) independently and uniformly at random in the field \(\mathbb{F}_{2^{k}}\)
            Let \(h_{i j}\) be the hash function: \(h_{i j}(a)=\pi\left(u_{i j} a^{3}+v_{i j} a^{2}+w_{i j} a+t_{i j}\right)\)
    Compute \(Z_{i j}=h_{i j}\left(x_{1}\right)+\cdots+h_{i j}\left(x_{n}\right)\) for all \(i=1 . . A\) and \(j=1 . . B\) simultaneously
    while reading the stream
    for \(i=1\).. \(A\) do
        Compute the average \(\mu_{i}=\frac{\left(Z_{i 1}\right)^{2}+\cdots+\left(Z_{i B}\right)^{2}}{B}\)
    return the median of the values \(\mu_{1}, \ldots, \mu_{A}\)
```

Now, the algorithm is memory efficient since it uses: $4 A B$ variables of k bits each (the $u_{i j}, v_{i j}, w_{i j}, t_{i j}$) and $A B+A$ variables of at most $2 \log n$ bits (the $Z_{i j}$ and μ_{i}). The total number of bits of memory used by the (ε, δ)-estimator for $F_{2}(x)$ is thus: $O\left(\frac{\ln (1 / \delta)}{\varepsilon^{2}}(\log m+\log n)\right)$.

