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1 Loglog-counter
Theorem 1. There is no deterministic counter that can count up to n with less than [log, n | bits of memory.

Proof. A machine with K bits of memory can be in at most 2X differents states. If X' < [logy n], then 2K <
and there are two distinct integers ¢ 7 j for which the counter is in the same state and the counter may thus not
distinguish between them. O

Consider the following randomized counter:

VARIABLES: A variable?

INIT: 2:=0
. i + 1 with probability 1/2
INC: 1 := H.— m pPF>a11y /
1 otherwise

VAL: return?2’—1

INIT is called to reset the counter. INC is called every time the counter needs to be incremented. And VAL

is called every time we want to know the value of the counter.
Let I,, and X, be the two random variables for the value of ¢ and the value returned by VAL after n calls to

INC (X, = 2/» — 1).
Note that this algorithm requires only O(log i) = O(log log 1) bits of memory to store i and to increment 4
with probability 1/2" since it is enough to flip 7 times an unbaised coins which requires only to count up to i, i.e.

O(log i) bits of memory.
Theorem 2. Foralln > 0,E[X,,] = n.

Proof. We proceed by recurrence. Forn = 0, Xg = 2° — 1 = 0. Let us now assume that E[X,] = n. Then,

, 1, . 1 ;
ELXpalX, =2 =2~ 1] = L% 1)+ (1 - 1)@~ )
; 1
—2- 42114
=2'=X, +1
It follows that E[ X ,+1] = E[X,,] + 1 = n + 1 by recurrence hypothesis. O

In order to get a precise evaluation of the quality of the approximation, let us evaluate the variance for X,.
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Theorem 3. Foralin > 0, E[X?2] < 3n”

Proof. Let us proceed by recurrence to show that E[X?2] < (an + b)? for some constants a and b to be chosen
later. Forn = 0, X2 = 0 < (a - 0 + b)? forall a and b. Let us now assume that E[X 2] < (an + b)2. Then,

' L o 1.
(X2, X, =2 =2 — 1] = (21 = 1)2 + (1 - )(2" — 1)

2 2
1 4 . 1. . .
:5(4-222—4-22+1)+(1—?)(222—2-2%1)
) 1 9 ) ) 1
:4-21—4+§+21—2-2Z+1—21+2—§
=242 -1

=(2'=1)*+3-(2"=1)+1
= (X,)?+3X,+1

It follows that:
E[X,11] = E[X2] + 3E[X,] + 1

< (an+b)? +3n+4=a’n?+ (2ab+3)n+1 (by recurrence hypothesis)
< (a(n+1) 4+ b)* = a*n? + 2a(a + b)n + (a + b)?,

for a and b chosen such that 2a% > 3and (a + b)? > 1, for instance take a? = % and b = 0 which yields the
claimed result. [

It follows that Var(X,,) = E[X2] —E[X,,]? < n?/2 = O(E[X,]?). As we will see in the next section, one
can sample very efficiently and with an arbitrarily small error, an arbitrarily close approximation of the expected
value of a random variable whose variance is of the same order as the square of its expectation.

2 (€, 0)-estimators
Definition 1. An (¢, 0)-estimator Z for a value v is a random algorithm computing a random value Z such that:
Pr{|Z —p| > e} <0
where € and § are two values in [0, 1).
Let us consider X,ll, - ,Xf; £ random variables i.i.d as X, (i.e. £ independent randomized counters). Let

X4t XL
p=—7

Lemma3.1. Foralle, {andn, Pr{|pu —n| > en} < 20
€

Note that the bound 1/2¢¢? is independent of n!

Proof. Note that the expectation of each X3, is n, so is the expectation of their average . furthermore, since the

. 1 n2
X, are independent, Var(u) = ZVar(Xn) < o7 Thus, applying Chebychev inequality yields:
Var(p) 1 n?
Pr{lu —n| = en} < (en)? < 55 5 = g O

N



Let us now consider k£ groups of £ random variables X}L’l, e ,Xﬁ’k iid. as X,. Let as before

) X17]++X£7]
W o= “ 7 " And let now Z to be the median value of ul, ..., uk.

The key argument is that if the median is outside the interval n £ en, then at least k /2 of the averages
ul, RN // are outside n + en, which is exponentially unlikely as soon as ﬁ < % by Hoeffding's inequality.

Theorem 4. Foralle,5 € (0,1) andalln, Z is a (e, §)-estimator forn when £ = 2/e®> and k = 81n(1/6) (two
constants!).

Proof. Let us introduce the indicator random variable Y7 forthe event“u/ & (1+¢)n"ie. Y7 = 1if ! & [n—
en,n + en] and Y7 = 0 otherwise. According to the lemma above, E[Y7] = Pr{Y7 = 1} < 1/20¢®> < 1/4
for £ > 2/€2. The, from the observation above,

P{|Z —n| > en} <P{Y'+ - - +Y*>E/2}

<
<P{Y' '+ 4 YF—E[Y' .+ YF] > k/4)

k
< exp —2(k/4)2/2(1 —0)2 (by Hoeffding’s inequality)
j=1

= exp(—k/8) < 0,
when k > 81n(1/9). O

Note that the averaging of the counters allows to increase the precision to an arbitrary small e whereas taking
the median allows to reduce exponentially the error probability to an arbitrary small §.

We conclude with the following LogLog-Counter.

VARIABLES: k(variablesi!!, ... i%" with k = [8In(1/6)] and £ = [2/€?]

INIT: Seti”9:=0forallp=1.Landq=1..k

INC: Increment independently all counters:
forallp =1..£and g = 1..k:
. P9 41 with probability 1/2"""
set P? .= . )
P otherwise
gitd Lt it

VAL: forallq = 1..k: compute u? := 7 -1
return the median of the values ,ul, ceey ,uk

Theorem 5. The algorithm above is a randomized counter using O(log(1/9) loglog(n)/€?) = O(loglog n) bits
of memory that returns a value within n. & en with error probability at most § forall €, § € (0, 1), and all number of
calls, n, to INC.

Exercise 1. Consider an arbitrary random variable with finite expectation E[X| and finite variance verifying
Var(X) < A - E[X]? for some constant A. Design a (e, §)-estimator for computing E(X).



	LogLog-counter
	(,)-estimators

