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1 LogLog-counter

Theorem 1. There is no deterministic counter that can count up tonwith less than ⌈log2 n⌉ bits of memory.

Proof. Amachine withK bits of memory can be in at most 2K differents states. IfK < ⌈log2 n⌉, then 2K < n
and there are two distinct integers i ̸= j for which the counter is in the same state and the counter may thus not
distinguish between them.

Consider the following randomized counter:

VARIABLES: A variable i

INIT: i := 0

INC: i :=

{
i+ 1 with probability 1/2i

i otherwise

VAL: return 2i − 1

INIT is called to reset the counter. INC is called every time the counter needs to be incremented. And VAL
is called every time we want to know the value of the counter.

Let In andXn be the two random variables for the value of i and the value returned by VAL after n calls to
INC (Xn = 2In − 1).

Note that this algorithm requires onlyO(log i) = O(log logn) bits of memory to store i and to increment i
with probability 1/2i since it is enough to øip i times an unbaised coins which requires only to count up to i, i.e.
O(log i) bits of memory.

Theorem 2. For alln > 0,E[Xn] = n.

Proof. We proceed by recurrence. For n = 0,X0 = 20 − 1 = 0. Let us now assume thatE[Xn] = n. Then,

E[Xn+1|Xn = x = 2i − 1] =
1

2i
(2i+1 − 1) + (1− 1

2i
)(2i − 1)

= 2− 1

2i
+ 2i − 1− 1 +

1

2i

= 2i = Xn + 1

It follows thatE[Xn+1] = E[Xn] + 1 = n+ 1 by recurrence hypothesis.

In order to get a precise evaluation of the quality of the approximation, let us evaluate the variance forXn.
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Theorem 3. For alln > 0,E[X2
n] 6 3

2n
2.

Proof. Let us proceed by recurrence to show thatE[X2
n] 6 (an+ b)2 for some constants a and b to be chosen

later. For n = 0,X2
0 = 0 6 (a · 0 + b)2 for all a and b. Let us now assume thatE[X2

n] 6 (an+ b)2. Then,

E[X2
n+1|Xn = x = 2i − 1] =

1

2i
(2i+1 − 1)2 + (1− 1

2i
)(2i − 1)2

=
1

2i
(4 · 22i − 4 · 2i + 1) + (1− 1

2i
)(22i − 2 · 2i + 1)

= 4 · 2i − 4 +
1

2i
+ 22i − 2 · 2i + 1− 2i + 2− 1

2i

= 22i + 2i − 1

= (2i − 1)2 + 3 · (2i − 1) + 1

= (Xn)
2 + 3Xn + 1

It follows that:

E[Xn+1] = E[X2
n] + 3E[Xn] + 1

6 (an+ b)2 + 3n+ 4 = a2n2 + (2ab+ 3)n+ 1 (by recurrence hypothesis)

6 (a(n+ 1) + b)2 = a2n2 + 2a(a+ b)n+ (a+ b)2,

for a and b chosen such that 2a2 > 3 and (a + b)2 > 1, for instance take a2 = 3
2 and b = 0 which yields the

claimed result.

It follows thatVar(Xn) = E[X2
n]−E[Xn]

2 6 n2/2 = O(E[Xn]
2). As wewill see in the next section, one

can sample very efficiently and with an arbitrarily small error, an arbitrarily close approximation of the expected
value of a random variable whose variance is of the same order as the square of its expectation.

2 (ϵ, δ)-estimators

Deönition 1. An (ϵ, δ)-estimatorZ for a valueµ is a random algorithm computing a random valueZ such that:

Pr{|Z − µ| > ϵµ} 6 δ

where ϵ and δ are two values in [0, 1).

Let us consider X1
n, . . . , X

ℓ
n ℓ random variables i.i.d as Xn (i.e. ℓ independent randomized counters). Let

µ =
X1

n + · · ·+Xℓ
n

ℓ
.

Lemma 3.1. For all ϵ, ℓ andn, Pr {|µ− n| > ϵn} 6 1

2ℓϵ2
.

Note that the bound 1/2ℓϵ2 is independent of n!

Proof. Note that the expectation of eachXj
n is n, so is the expectation of their average µ. furthermore, since the

Xj
n are independent,Var(µ) =

1

ℓ
Var(Xn) 6

n2

2ℓ
. Thus, applying Chebychev inequality yields:

Pr {|µ− n| > ϵn} 6 Var(µ)
(ϵn)2

6 1

ϵ2n2
· n

2

2ℓ
=

1

2ℓϵ2
.
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Let us now consider k groups of ℓ random variables X1,1
n , . . . , Xℓ,k

n i.i.d. as Xn. Let as before

µj =
X1,j

n + · · ·+Xℓ,j
n

ℓ
. And let nowZ to be the median value of µ1, . . . , µk .

The key argument is that if the median is outside the interval n ± ϵn, then at least k/2 of the averages
µ1, . . . , µℓ are outsiden± ϵn, which is exponentially unlikely as soon as 1

2ℓϵ2
< 1

2 by Hoeffding’s inequality.

Theorem 4. For all ϵ, δ ∈ (0, 1) and all n,Z is a (ϵ, δ)-estimator for nwhen ℓ = 2/ϵ2 and k = 8 ln(1/δ) (two
constants!).

Proof. Let us introduce the indicator random variableY j for the event “µj ̸∈ (1± ϵ)n”, i.e. Y j = 1 ifµj ̸∈ [n−
ϵn, n + ϵn] and Y j = 0 otherwise. According to the lemma above, E[Y j ] = Pr{Y j = 1} 6 1/2ℓϵ2 6 1/4
for ℓ > 2/ϵ2. The, from the observation above,

Pr{|Z − n| > ϵn} 6 Pr{Y 1 + · · ·+ Y k > k/2}
6 Pr{Y 1 + · · ·+ Y k − E[Y 1 + · · ·+ Y k] > k/4}

6 exp

−2(k/4)2
/ k∑

j=1

(1− 0)2

 (by Hoeffding’s inequality)

= exp(−k/8) 6 δ,

when k > 8 ln(1/δ).

Note that the averaging of the counters allows to increase the precision to an arbitrary small ϵwhereas taking
the median allows to reduce exponentially the error probability to an arbitrary small δ.

We conclude with the following LogLog-Counter.

VARIABLES: kℓ variables i1,1, . . . , iℓ,k with k = ⌈8 ln(1/δ)⌉ and ℓ =
⌈
2/ϵ2

⌉
INIT: Set ip,q := 0 for all p = 1..ℓ and q = 1..k

INC: Increment independently all counters:
for all p = 1..ℓ and q = 1..k:

set ip,q :=
{

ip,q + 1 with probability 1/2i
p,q

ip,q otherwise

VAL: for all q = 1..k: compute µq :=
2i

1,q
+ · · ·+ 2i

ℓ,q

ℓ
− 1

return the median of the values µ1, . . . , µk

Theorem 5. The algorithm above is a randomized counter usingO(log(1/δ) log log(n)/ϵ2) = O(log logn) bits
of memory that returns a value withinn± ϵnwith error probability at most δ for all ϵ, δ ∈ (0, 1), and all number of
calls,n, to INC.

Exercise 1. Consider an arbitrary random variable with önite expectation E[X] and önite variance verifying
Var(X) 6 A · E[X]2 for some constantA. Design a (ϵ, δ)-estimator for computingE(X).
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