Exercise 1 (Streaming algorithm for frequent items). We want to design a streaming algorithm that finds all the items in a stream of n items with frequency strictly greater than n / k for some fixed k. Consider the following algorithm:

```
Algorithm 1 Misra-Gries algorithm for frequent items
    Initialize: \(A:=\) empty dictionnary
    for \(i=1 . . n\) do
            if \(x_{i} \in \operatorname{keys}(A)\) then
                \(A\left[x_{i}\right]:=A\left[x_{i}\right]+1\)
            else
                if \# keys \((A)<k-1\) then
                \(A\left[x_{i}\right]:=1\)
            else
                for each \(a \in \operatorname{keys}(A)\) do
                    \(A[a]:=A[a]-1\)
                    if \(A[a]==0\) then
                    Remove \(a\) from \(A\)
    Output: On query \(a\), if \(a \in \operatorname{keys}(A)\), then report \(\hat{f_{a}}:=A[a]\), else report \(\hat{f_{a}}:=0\).
```

We denote by $f_{a}=\#\left\{i: x_{i}=a\right\}$ the frequency of a in the stream.

- Question 1.1) Show that for all $a, \quad f_{a}-\frac{n}{k} \leqslant \hat{f}_{a} \leqslant f_{a}$.
\triangleright Hint. Show that the decrement loop is performed at most $\frac{n}{k}$ times while reading the stream.
Answer. \triangleright For the analysis purposes, we associate to every increment of a value of A, the corresponding item in the stream. Every time a decrement is made in A, we bar the corresponding items in the stream, including the item at the origin at the decrement. It follows that every decrement loop correspond to baring k (unbarred) items in the stream. As there are n items in the stream, the decrement loop is performed at most n / k times in total.

Now, $A[a]$ is incremented at most f_{a} times, thus $\hat{f}_{a} \leqslant f_{a}$. Furthermore, every time item a is read in the stream, either the value of $A[a]$ is increased by 1 or is unchanged and the decrement loop is run. Every time an item $b \neq a$ is read, either $A[a]$ is unchanged or it is decreased by 1 if the decrement loop is performed. It follows that $A[a]$ is at least f_{a} minus the number of times the decrement loop is performed, which implies that $\hat{f}_{a} \geqslant f_{a}-n / k . \triangleleft$

- Question 1.2) Conclude that one can find the items with frequency larger than n / k with two passes on the stream.
Answer. \triangleright According the inequality proven above, if $f_{a}>n / k$, then $\hat{f}_{a}>0$ which implies that a belongs to A. Thus all the frequent items belong to A. One can compute the exact frequency of each of these k items in a second pass to determine which in the items of A have indeed a frequency $>n / k$. The total number of bits needed is $O(k \log n)$. \triangleleft
- Question 1.3) Let $\hat{n}=\sum_{a \in \operatorname{keys}(A)} A[a]$. Show that for all $a, \quad f_{a}-\frac{n-\hat{n}}{k} \leqslant \hat{f}_{a} \leqslant f_{a}$.

Answer. \triangleright Recall the baring scheme in the answer to question 1.1. Just remark that \hat{n} items are "unbarred" at the end of the algorithm since they correspond to values in A that have not been decreased. As every decrement loop bars k items in the stream, there has been in fact no more than $(n-\hat{n}) / k$ executions of the decrement loop. We then conclude as in question 1.1. \triangleleft

Exercise 2 (Streaming algorithm for counting triangles). We want to estimate the number of triangles in a graph given as a stream of its edges. Let us consider the following algorithm (we assume that the number of vertices and edges, n and m resp., are known).

```
Algorithm 2 Counting triangles
    Pick an edge \(u v\) uniformly at random in the stream
    Pick a vertex \(w \in[n] \backslash\{u, v\}\) at uniformly at random
    if edges \(u w\) and \(v w\) appear after edge \(u v\) in the stream then
        output \(m(n-2)\)
    else
        output 0
```

- Question 2.1) Show that $\mathbb{E}[$ output $]=\# \mathcal{T}$ where \mathcal{T} denotes the set of triangles in the graph: $\mathcal{T}=\{\{u, v, w\} \subset[n]: u v, v w, w u \in \operatorname{edges}(G)\}$. \triangleright Hint. What is the probability that the algorithm outputs $m(n-2)$?
Answer. \triangleright For all $T \in \mathcal{T}$, let $X_{T}=\mathbb{1}(T$ is detected by the algorithm $)$. Then, output $=$ $\sum_{T \in \mathcal{T}} m(n-2) \cdot X_{T}$ and $\mathbb{E}[$ output $]=\sum_{T \in \mathcal{T}} m(n-2) \cdot \mathbb{E}\left[X_{T}\right]$. Now, $\mathbb{E}\left[X_{T}\right]=\operatorname{Pr}\left\{X_{T}=\right.$ $1\}$. Consider a triangle $T=\{u, v, w\}$ and suppose without loss of generality that u, v, and w are named such that the edges $u v, u w$, and $v w$ appear in the stream in that precise order. Triangle T will be detected by the algorithm if and only if edge $u v$ is selected in the first phase of the algorithm and w is selected in the second phase, which occur with probability $1 / m$ for the first event and $1 /(n-2)$ for the second. It follows that for all triangle $T, \operatorname{Pr}\left\{X_{T}=1\right\}=1 / m(n-2)$. Thus, $\mathbb{E}[$ output $]=\sum_{T \in \mathcal{T}} m(n-2) / m(n-2)=$ $\# \mathcal{T} . \triangleleft$

Assume that we know a lower bound t on \# \mathcal{T}.

- Question 2.2) Design an one-pass (ε, δ)-estimator for counting the number of triangles in the graph given as a stream using $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \cdot \frac{m n}{t}\right)$ bits of memory.
\triangleright Hint. Compute the variance for the output of the previous algorithm.
Answer. \triangleright According to the previous question, since at most one triangle is detected at a time by the algorithm: $\operatorname{Pr}\{$ output $=m(n-2)\}=\sum_{T \in \mathcal{T}} \operatorname{Pr}\left\{X_{T}=1\right\}=\# \mathcal{T} / m(n-2)$. It follows that $\mathbb{E}\left(\right.$ output $\left.^{2}\right)=m^{2}(n-2)^{2} \cdot \# \mathcal{T} / m(n-2)=m(n-2) \# \mathcal{T}$. Thus, $\operatorname{Var}[$ output $]=$ $\# \mathcal{T} \cdot(m(n-2)-\# \mathcal{T})$.

Let $X_{11}, \ldots, X_{k \ell}$ the results of $k \ell$ (parallel) independent runs of the algorithm and Y_{1}, \ldots, Y_{k} be the averages of each lot ℓ values: $Y_{j}=\frac{X_{j 1}+\cdots+X_{j \ell}}{\ell}$ for $j=1 . . k$. Then, by independence, $\operatorname{Var}\left(Y_{j}\right)=\frac{\operatorname{Var}(\text { output })}{\ell}=\frac{\sharp \mathcal{T} \cdot(m(n-2)-\# \mathcal{T})}{\ell}$ for all $j=1 . . k$. By Chebyshev's inequality, $\operatorname{Pr}\left\{\left|Y_{j}-\# \mathcal{T}\right| \geqslant \varepsilon \# \mathcal{T}\right\} \leqslant \frac{\# \mathcal{T} \cdot(m(n-2)-\# \mathcal{T})}{\ell \varepsilon^{2}(\# \mathcal{T})^{2}} \leqslant \frac{m n}{\ell \varepsilon^{2} \# \mathcal{T}} \leqslant \frac{1}{4}$ as soon as $\ell \geqslant \frac{4 m n}{t \varepsilon^{2}}$. Let Z be the median of Y_{1}, \ldots, Y_{k}. If $Z \notin(1 \pm \varepsilon) \# \mathcal{T}$, then at least $k / 2$ values among Y_{1}, \ldots, Y_{k} are outside $(1 \pm \varepsilon) \mathcal{T}$, and if $\xi_{j}=\mathbb{1}\left(Y_{j} \notin(1 \pm \varepsilon) \# \mathcal{T}\right)$, this occurs by Hoeffding's inequality with probability at most : $\operatorname{Pr}\{|Z-\# \mathcal{T}| \geqslant \varepsilon \# \mathcal{T}\} \leqslant \operatorname{Pr}\left\{\xi_{1}+\cdots+\xi_{k} \geqslant \frac{k}{2}\right\} \leqslant$ $\operatorname{Pr}\left\{\xi_{1}+\cdots+\xi_{k}-\mathbb{E}\left[\xi_{1}+\cdots+\xi_{k}\right] \geqslant \frac{k}{4}\right\} \leqslant \exp \left(-\frac{2(k / 4)^{2}}{k}\right) \leqslant \delta$ as soon as $k \geqslant 8 \ln \frac{1}{\delta}$.

It follows that we get a one-pass (ε, δ)-estimator for counting the number of triangles in the graph using at most $O\left(\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta} \cdot \frac{m n}{t}\right)$ bits of memory (since we only need to remember if $X_{i j}>0$ or $=0$).
\triangleleft
Note that it can be shown that there is no $o\left(n^{2}\right)$-space algorithm that approximates multiplicatively the number of triangles in a graph unless some lower bound is known on the number of triangles.

