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Networks, Crowds, and Markets: Reasoning About a Highly 
Connected World

D. Easley, J. Kleinberg

Networks, An introduction

M. Newman
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–Definitions 
–Network statistical characterisation 
–Empirics 

• Models 
• Processes on networks 

–Resilience 
–Epidemics 

• Social Networks analysis
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L. Euler:
Can one walk once across each of the seven bridges, 
come back to the starting point and never cross the same 
bridge twice?     

The bridges of Koenigsberg



1735: Leonhard Euler’s theorem:	
  

(a) If a graph has nodes of odd degree, there is no path. 	
  

(b) If a graph is connected and has no odd degree nodes, it has at least one path.

Representation of the question as a graph problem

areas = nodes
bridges = links



Graphs and networks

Graph=set V of nodes joined by links (set E)

very abstract representation

very general
convenient to represent 
many different systems



Graphs

graph theory 

abstract tools for the description of graphs 
(degrees, paths, distances, cliques, etc…) 



Networks

Nodes: 
persons 
computers 
webpages 
airports 
molecules 
....

Links: 
social relationships 
cables 
hyperlinks 
air-transportation 
chemical reactions 
....



Metabolic Network

Nodes: proteins                       
Links: interactions 

Protein Interactions

Nodes: metabolites              
Links:chemical reactions 



Food-webs

N. Martinez, R. Williams



M. E. J. Newman and M. Girvan, Physical Review E 69, 026113 (2004).  
Image: MEJ Newman, http://www-personal.umich.edu/~mejn/networks/

Scientific collaboration networks



Primary school, 
cumulative contact network

Contact networks



World airport network



Graph representation

different  
granularities

Internet



CAIDA AS  cross section map 



Online (virtual) social networks



Networks & Graphs

Networks: of very different origins

Do they have anything in common? 
Possibility to find common properties?

the abstract character of the graph representation 
and graph theory allow to answer….



Interdisciplinary science

Science of complex networks  
(“Network science”) 
-graph theory 
-social sciences 
-communication science 
-biology 
-physics 
-computer science

Data-driven
Tools both from graph theory and outside graph theory



Interdisciplinary science

Science of complex networks: 
• Empirics 
• Characterization 
• Modeling 
• Dynamical processes 
• … and more…

Data-driven
Tools both from graph theory and outside graph theory



Maximum number of edges 
• Undirected: N(N-1)/2 
• Directed: N(N-1)

Graph theory: basics

Complete graph:

(all to all interaction/communication)

Graph: G=(V,E) ; |V|=N



How to represent a network

• List of nodes + list of edges 
i,j 

• List of nodes + list of neighbors of each node 
(adjacency lists) 

1: 2,3,10,... 
2: 1,12,11 
3: 1,... 

• Adjacency matrix



Adjacency matrix
N nodes i=1,…,N 

aij= 1 if (i,j) ∈ E 
0 if (i,j) ∉ E

0 1 2 3
0 0 1 1 1
1 1 0 1 1
2 1 1 0 1
3 1 1 1 0

0

3

1

2



Adjacency matrix
N nodes i=1,…,N 

aij= 1 if (i,j) ∈ E 
0 if (i,j) ∉ E

0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 1 0 1
3 0 1 1 0

0

3

1

2

Symmetric 
for undirected networks



Adjacency matrix
N nodes i=1,…,N 

aij= 1 if (i,j) ∈ E 
0 if (i,j) ∉ E

0 1 2 3
0 0 1 0 1
1 0 0 0 0
2 0 1 0 0
3 0 1 1 0

0

3

1

2

Non symmetric 
for directed networks



Matrix of weights
N nodes i=1,…,N 

wij= ≠ 0 if (i,j) ∈ E 
0 if (i,j) ∉ E

0 1 2 3
0 0 2 0 10
1 0 0 0 0
2 0 5 0 0
3 0 1 2 0

0

3

1

2

(Non symmetric 
for directed networks)



Sparse graphs

Density of a graph D=|E|/(N(N-1)/2)

Number of edges

Maximal number of edges
D=

Sparse graph: D <<1 Sparse adjacency matrix

Representation by lists of neighbours of each 
node (adjacency lists) better suited



Node characteristics: 
Degrees and strengths



Node characteristics
• Degree=number of neighbours=∑j aij

i
ki=5

NB: in a sparse graph we expect ki << N

0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 1 0 1
3 0 1 1 0

0

3

1

2
i



Node characteristics
• Degree in directed graphs:  

–in-degree= number of in-neighbours=∑j aji 

–out-degree= number of out-neighbours=∑j aij

0 1 2 3
0 0 1 0 1
1 0 0 0 0
2 0 1 0 0
3 0 1 1 0

0

3

1

2



Node characteristics
• Weighted graphs: Strength  si = ∑j  wij 

• Directed Weighted graphs:  

–in-strength  si = ∑j  wji 

–out-strength si = ∑j  wij

0 1 2 3
0 0 2 0 10
1 0 0 0 0
2 0 5 0 0
3 0 1 2 0

0

3

1

2



Paths, connectedness,  
small-world effect

34



Paths
G=(V,E) 
Path of length n = ordered collection of  
• n+1 vertices i0,i1,…,in ∈ V 
• n edges (i0,i1), (i1,i2)…,(in-1,in) ∈ E

i2i0 i1

i5
i4

i3

Cycle/loop = closed path (i0=in) 
Tree=graph with no loops



Paths and connectedness

G=(V,E) is connected if and only if there exists a 
path connecting any two nodes in G

is connected

•is not connected 
•is formed by two components



Paths and connectedness

G=(V,E)=> distribution of components’ sizes

Giant component= component whose 
size scales with the number of vertices N

Existence of a giant 
component

Macroscopic fraction of 
the graph is connected



Paths and connectedness: 
directed graphs

Tube Tendril
Tendrils

Giant SCC: Strongly  
Connected Component Giant OUT  

Component
Giant IN  
Component

Disconnected 
components

Paths are directed



Shortest paths

i

j

Shortest path between i and j: minimum number 
of traversed edges

distance l(i,j)=minimum 
number of edges traversed 
on a path between i and j

Diameter of the graph= max(l(i,j)) 
Average shortest path= ∑ij l(i,j)/(N(N-1)/2)

Complete graph: l(i,j)=1 for all i,j 
“Small-world”: “small” diameter



Ranking nodes



Centrality measures
How to quantify the importance of a node? 
• Degree=number of neighbours=∑j aij 

• Large degree nodes=”hubs” 

• Nodes with very large degree can be 
“peripheral”

i
ki=5



Path-based centrality measures

• Closeness centrality 

Quantifies the reachability of other nodes from i

gi= 1 / ∑j l(i,j)



Betweenness centrality

for each pair of nodes (l,m) in the graph, there are 
σlm shortest paths between l and m 
σi

lm shortest paths going through i 
bi is the sum of  σi

lm
 / σlm over all pairs (l,m)

i
j

bi is large 
bj is small

NB: similar quantity= load li=∑ σi
lm  

NB: generalization to edge betweenness centrality

path-based quantity



Betweenness centrality
path-based quantity => bc(i) depends on all the nodes 

that are connected to i by at least one path 

non-local quantity 

“hard” to compute 

“naive” algorithm: O(N3)  
Brandes algorithm: O(N*E)



Local structures; 
subgraphs; 

communities

45



Structure of neighborhoods

C(i) =
# of links between 1,2,…n neighbors

k(k-1)/2

1

2

3

k

Clustering: My friends will know each other with high probability! 
(typical example: social networks)

Clustering coefficient of a node

i



Subgraphs

A subgraph of G=(V,E) is a graph G’=(V’,E’)
such that
V’ ⊆ V and E’ ⊆ E
i.e., V’ and E’ are subsets of nodes and edges of G

Special case: subgraph induced by a set of nodes=
-this set of nodes
-and all links of G between these nodes

Particular subgraphs=connected components



Cliques

A clique is a set C of nodes of G=(V,E)  
such that 
for all i,j ∊ C, (i,j)∊ E

Examples:



Communities: (loose) definition

Group of nodes 
that are more tightly linked together

 than with the rest of the graph



Communities: examples



Communities: examples

Scientist collaboration network
(Santa Fe Institute)



Communities: examples

Protein-protein interaction network



Why are communities interesting?

Node classification, 
prediction of unknown characteristics/function

Discover groups in social networks,
bottom-up classification

Discover common interests
Recommendation systems

Understand role of communities in dynamical processes, 
e.g. spreading or opinion formation mechanisms



Group of nodes 
that are more tightly linked together

 than with the rest of the graph

• How to (systematically) detect such groups?
• How to partition a graph into communities?
• How to check if it makes sense?

Community detection



• Huge literature
• Tricky and much debated issue
• Many algorithms available, most often open source

http://www.cfinder.org/
http://www.oslom.org/
http://www.tp.umu.se/~rosvall/code.html

For a review
S. Fortunato, Phys. Rep. 486, 75-174, 2010 
(http://sites.google.com/site/santofortunato/) 

Community detection

http://www.oslom.org
http://www.tp.umu.se/~rosvall/code.html
http://sites.google.com/site/santofortunato/


Hierarchies



A way to measure hierarchies:  
K-core decomposition

graph G=(V,E)  
–k-core of graph G: maximal subgraph such that for all 
vertices in this subgraph have degree at least k 

–vertex i has shell index k iff it belongs to the k-core 
but not to the (k+1)-core 

–k-shell: ensemble of all nodes of shell index k



Example

shell index 1

shell index 2

shell index 3

1-core

2-core

3-core



http://lanet-vi.fi.uba.ar/

NB: role in spreading processes



Statistical characterization 
of networks
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Statistical characterization
Degree distribution

•List of degrees k1,k2,…,kN Not very useful!

•Histogram: 
        Nk= number of nodes with degree k
•Distribution: 
        P(k)=Nk/N=probability that a randomly chosen 
                            node has degree k
•Cumulative distribution: 
        P>(k)=probability that a randomly chosen 
                   node has degree at least k

k

P(k)

1 2 3 4

0.1
0.2
0.3
0.4
0.5
0.6



Statistical characterization
Degree distribution

P(k)=Nk/N=probability that a randomly chosen 
                            node has degree k

Average=< k > = ∑i ki/N = ∑k k P(k)=2|E|/N 

Fluctuations: < k2>  - < k > 2  
< k2 > = ∑i k2

i/N = ∑k k2 P(k) 
< kn > = ∑k kn P(k)

Sparse graphs: < k > << N



Topological heterogeneity
Statistical analysis of centrality measures:

P(k)=Nk/N=probability that a randomly chosen 
                            node has degree k

Two broad classes 
•homogeneous networks: light tails 
•heterogeneous networks: skewed, heavy tails



Topological heterogeneity
Statistical analysis of centrality measures:

Poisson  
vs. 
Power-law

log-scale

linear scale



Statistical characterization
Degree correlations

P(k): not enough to characterize a network

Large degree nodes tend to 
connect to large degree nodes 
Ex: social networks

Large degree nodes tend to 
connect to small degree nodes 
Ex: technological networks



Statistical characterization
Multipoint degree correlations

Measure of correlations: 
P(k’,k’’,…k(n)|k): conditional probability that a node of 
degree k is connected to nodes of degree k’, k’’,… 

Simplest case: 
P(k’|k): conditional probability that a node of degree k is 
connected to a node of degree k’

often inconvenient (statistical fluctuations)



Statistical characterization
Multipoint degree correlations

Practical measure of correlations:

average degree of nearest neighbors

i

k=3k=7

k=4
k=4

ki=4 
knn,i=(3+4+4+7)/4=4.5



Statistical characterization
average degree of nearest neighbors

Correlation spectrum:

putting together nodes which 
have the same degree

class of degree k



Statistical characterization
case of random uncorrelated networks

P(k’|k)  
• independent of k 
• proba that an edge points to a node of degree k’

proportional  
to k’ itself

Punc(k’|k)=k’P(k’)/< k >

number of edges from nodes of degree k’
number of edges from nodes of any degree



Empirics



Milgram, Psych Today 2, 60 (1967) 

Dodds et al., Science 301, 827 (2003)

“Six degrees of separation” 

SMALL-WORLD CHARACTER

Social networks: 
Milgram’s experiment
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60000 start nodes 

18 targets 

384 completed chains

Social networks as small-worlds: 
Milgram’s experiment, revisited

Dodds et al., Science 301, 827 (2003) 

email chains



Small-world properties
Average number of nodes  
within a chemical distance l

Scientific collaborations

Internet



The intuition behind the small-world effect

versus

Tree:  
number of reachable nodes 
grows very fast (exponentially) 
with the distance

(local) regular structure: slower 
growth of the number of 
reachable nodes (polynomial), 
because of path redundancy

Random networks: often locally tree-like



Small-world yet clustered



Clustering coefficient

1

2

3

n

Higher probability to be connected

Clustering: My friends will know each other with high probability 
(typical example: social networks) 
Redundancy of paths

Empirically: large clustering coefficients



Topological heterogeneity
Statistical analysis of centrality measures:

P(k)=Nk/N=probability that a randomly chosen 
                            node has degree k

Two broad classes 
•homogeneous networks: light tails 
•heterogeneous networks: skewed, heavy tails



Airplane route network



CAIDA AS  cross section map 



Topological heterogeneity
Statistical analysis of centrality measures

Broad degree 
distributions

(often: power-law tails 
P(k) ∝ k-γ  ,
typically 2< γ <3)

No particular 
characteristic scale 
Unbounded fluctuations

Internet



Topological heterogeneity
Statistical analysis of centrality measures:

Poisson  
vs. 
Power-law

log-scale

linear scale



Consequences
Power-law tails 
P(k) ∝ k-γ

Average=< k > = ∫k P(k)dk 
Fluctuations 
< k2 > =∫ k2 P(k) dk ∝ kc

3-γ

kc=cut-off due to finite-size 
N → ∞  => diverging degree fluctuations 
                     for γ < 3

Level of heterogeneity:



Empirical clustering and correlations

non-trivial 
structures 

No special  
scale



Other heterogeneity levels

Weights

Strengths



Main things to (immediately) measure  
in a network

• Degree distribution 

• Distances, average shortest path, diameter 

• Clustering coefficient 

• (Weights/strengths distributions)



Real-world  
networks characteristics

Most often: 

• Small diameter 
• Large local cohesiveness (clustering) 
• Heterogeneities (broad degree distribution) 
• Correlations 
• Hierarchies 
• Communities 
• …



Networks and complexity
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Complex networks
Complex is not just “complicated”

Cars, airplanes…=> complicated, not complex

Complex (no unique definition): 
•many interacting units 
•no centralized authority, self-organized 
•complicated at all scales 
•evolving structures 
•emerging properties (heavy-tails, hierarchies…) 

Examples: Internet, WWW, Social nets, etc…



Models



The role of models

“All models are wrong, but some are useful” 

(George E. P. Box)



The role of models

• Generative 

• Explanatory 

• Null models



Erdös-Renyi random graph 
model (1960)

N points, links with proba p: 
static random graphs

Average number of edges:  
< E > = pN(N-1)/2

Average degree:  
< k > = p(N-1)

p=< k >/N to have 
finite average degree 
as N grows



 Erdös-Renyi model (1960)
Proba to have a node of degree k= 
•connected to k vertices,  
•not connected to the other N-k-1

P(k)= Ck
N-1 pk (1-p)N-k-1

Large N, fixed pN=< k > : Poisson distribution 

Exponential decay at large k



 Erdös-Renyi model (1960)

Small clustering: < C > = p =< k > /N

Short distances l=log(N)/log(< k >) 
(number of neighbours at distance d: < k >d  )

Poisson degree distribution 
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Degree Report
 

Results:
Average Degree: 10.010 
 

96

ER model, 
N=200 
p=0.05



Clustering Coefficient Metric Report
 

Parameters:
Network Interpretation: undirected 
 

Results:
Average Clustering Coefficient: 0.052 
Total triangles: 182 
The Average Clustering Coefficient is the mean value of individual coefficients. 
 

 
 

Algorithm:
Matthieu Latapy, Main-memory Triangle Computations for Very Large (Sparse (Power-Law)) 
Graphs, in Theoretical Computer Science (TCS) 407 (1-3), pages 458-473, 2008 
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ER model, 
N=200 
p=0.05



Clustering Coefficient Metric Report
 

Parameters:
Network Interpretation: undirected 
 

Results:
Average Clustering Coefficient: 0.652 
Total triangles: 3688 
The Average Clustering Coefficient is the mean value of individual coefficients. 
 

 
 

Algorithm:
Matthieu Latapy, Main-memory Triangle Computations for Very Large (Sparse (Power-Law)) 
Graphs, in Theoretical Computer Science (TCS) 407 (1-3), pages 458-473, 2008 

Airlines, 
N=235 
<k>=11



Watts-Strogatz model

Watts & Strogatz,  

Nature 393, 440 (1998)

Motivation: 

-random graph: short distances but no clustering 

-regular structure: large clustering but large distances 

       => how to have both small distances and large clustering?



Watts-Strogatz model

Watts & Strogatz,  

Nature 393, 440 (1998)

1) N nodes arranged in a line/circle 

2) Each node is linked to its 2k neighbors on the circle, k 
clockwise, k anticlockwise 

2) Going through each node one after the other, each edge 
going clockwise is rewired towards a randomly chosen other 
node with probability p



Watts-Strogatz model

Watts & Strogatz,  
Nature 393, 440 (1998)

N = 1000
•Large clustering coeff.  
•Short typical path

N nodes forms a regular lattice. 
With probability p,                   
each edge is rewired randomly 

         =>Shortcuts

It takes a lot of randomness to ruin 
the clustering, but a very small 
amount to overcome locality 

BUT: still homogeneous degree distribution
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Degree Report
 

Results:
Average Degree: 4.000 
 

103



104

Airlines



Degree Report
 

Results:
Average Degree: 11.038 
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Topological heterogeneity
Statistical analysis of centrality measures

Broad degree 
distributions

(often: power-law tails 
P(k) ∝ k-γ  ,
typically 2< γ <3)

No particular 
characteristic scale 
Unbounded fluctuations

Internet



Generalized random graphs

Desired degree distribution: P(k) 
• Extract a sequence ki of degrees taken from 

P(k) 
• Assign them to the nodes i=1,…,N 
• Connect randomly the nodes together, 

according to their given degree 

• =Configuration Model



Statistical physics approach
Microscopic processes of the  

many component units 

Macroscopic statistical and dynamical  
properties of the system

Cooperative phenomena 
Complex topology

Natural outcome of  
the dynamical evolution

Find microscopic mechanisms



Generative mechanisms



Example of mechanism:  
preferential attachment

(1) The number of nodes (N) is NOT fixed. 
Networks continuously expand by the 
addition of new nodes

Examples:                                                       
WWW: addition of new documents                   
Citation: publication of new papers

(2) The attachment is NOT uniform.
A node is linked with higher probability to a node that 
already has a large number of links.

Examples :                                                                                       
WWW :  new documents link to well known sites                    
(CNN, YAHOO, NewYork Times, etc)                                                                                 
Citation : well cited papers are more likely to be cited again



(1) GROWTH : At every timestep we add a new 
node with m edges (which have to connect to the nodes 
already present in the system). 

(2) PREFERENTIAL ATTACHMENT :                              
The probability Π that a new node will be connected to 
node i depends on the connectivity ki of that node

A.-L.Barabási, R. Albert, Science 286, 509 (1999)

Example of mechanism:  
preferential attachment



112



Degree Report
 

Results:
Average Degree: 3.988 
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Example of mechanism:  
preferential attachment

• why linear?
• assumption: new node has full knowledge of nodes’ degrees

• old nodes have larger degrees (=> fitness)
• trivial k-core decomposition (=> add other edge creation mechanisms)

ISSUES:

Result: scale-free degree distribution with exponent 3



How to check if preferential attachment 
is empirically observed?

Tk=a priori probability for a new node to 
establish a link towards a node of degree k 

P(k,t-1)=degree distribution of the N(t-1) 
nodes forming the network at time t-1 

=> proba to observe the formation of a link to 
a node of degree k = Tk *N(t-1)*P(k,t-1)



How to measure the preferential 
attachment

Hence: 
Tk= fraction of links created between t-1 and t that 
reach nodes of degree k, divided by N(t-1)P(k,t-1) 
(i.e., number of nodes of degree k at time t-1) 

Linear Tk: sign of preferential attachment 

Ex of an online social network:

Where does it come from?



Another mechanism:  
copying model

a. Introduction of a new vertex 
b. Selection of a vertex
c. The new vertex copies m links 
of the selected one
d. Each new link is kept with proba α, rewired 
at random with proba 1-α

α

1−α

Growing network:



Probability for a vertex to receive a new link at time t: 

•Due to random rewiring: (1-α)/t 

•Because it is neighbour of the selected vertex: 
                      kin/(mt)

effective preferential attachment, without 
a priori knowledge of degrees!

Another mechanism:  
copying model



Copying model

(model for WWW and evolution of genetic networks)

Power-law tail of degree distribution:



• Many other proposed mechanisms in the 
literature,  

=> modeling other attributes: weights, clustering, 
assortativity, spatial effects… 

• Model validation: 
=> comparison with (large scale) datasets: 
-degree distribution 
-degree correlations 
-clustering properties 
-k-core structure 
...



Model validation: 
degree distribution, degree correlations, clustering 

properties, k-core structure, ... 

Level of detail: depends on context/goal of study 
-find a very detailed model 
-find a model with qualitative similarities 
-show the plausibility of a formation mechanism 
-generate artificial data 
-study the influence of a particular ingredient 
-...  



Null models



What are null models?

• ensemble of instances of randomly built systems  
• that preserve some properties of the studied systems 

Aim:  
• understand which properties of the studied system are simply random, and 
which ones denote an underlying mechanism or organizational principle  
• compare measures with the known values of a random case



Graph null models

• Fixing size (N, E): random (Erdös-Renyi) graph 

• Fixing degree sequence: reshuffling/rewiring methods

Original network Rewired network

i i

j n

mm

j
n

rewiring step

• preserves the degree of each node 
• destroys topological correlations
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An example:  
daily cumulated network of face-to-face interactions

Conference (HT09)Museum (SG)

“seems” small-world“seems” not to be 
 a small-world network



HT09: June 30th (rewired)

●

●
●

●

SG: July 14th (rewired)

●

●

●

●

●

●

Museum (SG), rewired Conference (HT09), rewired



(non) Small-worldness

Small-world Non small-world


