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Abstract

The treatment of massive data sets is a major challenge in computer science nowa-
days. In this PhD thesis, we consider two computational models that address prob-
lems that arise when processing massive data sets.

The first model is the Data Streaming Model. When processing massive data sets,
random access to the input data is very costly. Therefore, streaming algorithms
only have restricted access to the input data: They sequentially scan the input
data once or only a few times. In addition, streaming algorithms use a random
access memory of sublinear size in the length of the input. Sequential input access
and sublinear memory are drastic limitations when designing algorithms. The
major goal of this PhD thesis is to explore the limitations and the strengths of the
streaming model.

The second model is the Communication Model. When data is processed by mul-
tiple computational units at different locations, which are connected through a
slow interconnection network such as the Internet, then the message exchange of
the participating parties for synchronizing their calculations is often a bottleneck.
The amount of communication should hence be as little as possible. A particular
setting is the one-way two-party communication setting. Here, two parties col-
lectively compute a function of the input data that is split among the two parties,
and the whole message exchange reduces to a single message from one party to the
other one. This model has strong connections to streaming algorithms: A one-pass
streaming algorithm with space s serves as a one-way two-party communication
protocol with message size s. Furthermore, a lower bound on the message size of
a one-way two-party protocol is also a lower bound on the space requirements of
a one-pass streaming algorithm. Studying streaming algorithms from the commu-
nication point of view therefore provides valuable insight.

In this work, we study the following four problems in the context of streaming
algorithms and one-way two-party communication:

1. Matchings in the Streaming Model. We are given a data stream of edges
of a graph G = (V,E) with n = |V |, and the goal is to design a stream-
ing algorithm that computes a matching using a random access memory of
size O(n polylog n). The Greedy matching algorithm fits into this setting
and computes a matching of size at least 1/2 times the size of a maximum
matching. A long standing open question is whether it is possible to com-
pute a matching in one pass of size strictly larger than 1/2 times the size of



a maximum matching if no assumption about the order of the input stream
is made. We show that it is possible to obtain an approximation ratio strictly
larger than 1/2 in one pass if the input stream is in uniform random order.
Furthermore, we show that with two passes an approximation ratio strictly
larger than 1/2 can be obtained if no assumption on the order of the input
stream is made.

2. Semi-Matchings in Streaming and in Two-Party Communication. A semi-
matching in a bipartite graph G = (A,B,E) is a subset of edges that
matches all A vertices exactly once to B vertices, not necessarily in an in-
jective way. The goal is to minimize the maximal number of A vertices that
are matched to the same B vertex. The problem is equivalent to scheduling
a set of unit length jobs on identical machines with assignment conditions
expressed through the edges of a bipartite graph. For this problem, we pro-
vide one of the very few streaming algorithms for matching problems that
allows a trade off between space usage and approximation factor: for any
0 ≤ ε ≤ 1, with space Õ(n1+ε) our one-pass streaming algorithm computes
an O(n(1−ε)/2)-approximation. Furthermore, we provide upper and lower
bounds on the two-party communication complexity of this problem, as well
as new results on the structure of semi-matchings.

3. Validity of XML Documents in the Streaming Model. An XML document
(eXtended Markup Language) is a sequence of opening and closing tags. A
DTD (Document Type Definition) is a set of local validity constraints of an
XML document. We study streaming algorithms for checking whether an
XML document fulfills the validity constraints of a given DTD. Our main
result is a O(log n)-pass streaming algorithm with three auxiliary streams
and O(log2 n) space for this problem, where n is the length of the input
XML document. Furthermore, for checking validity of XML documents that
encode binary trees, we present a one-pass streaming algorithm with space
Õ(
√
n), and a two-pass algorithm with space O(log2 n) that makes one pass

from left to right, and one pass from right to left.

4. Budget-Error-Correcting under Earth-Mover-Distance. We study the fol-
lowing one-way two-party communication problem. Alice and Bob have
sets of n points on a d-dimensional grid [∆]d for an integer ∆. Alice sends
a small sketch of her points to Bob and Bob adjusts his point set towards Al-
ice’s point set so that the Earth-Mover-Distance of Bob’s points and Alice’s
points decreases. The Earth-Mover-Distance of two point sets of the same
cardinality is the weight of a minimum weight perfect matching between the
two point sets.
For any k > 0, we show that there is a randomized protocol with communica-
tion cost Õ(k ·d) such that Bob’s adjustments lead to anO(d)-approximation
compared to the k best possible adjustments that Bob could make. Further-
more, our upper bound is complemented by an almost matching lower bound.
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Chapter 1

Introduction

In 2010, the amount of information created or replicated was more than one zettabyte (one
billion terabytes) [GR11]. Nowadays, we are experiencing an immense data explosion. Exper-
iments in particle physics at Cern generate up to one petabyte (one thousand terabytes) of data
each second, and even though most of it is discarded immediately, up to 25 petabytes of data is
stored every day1. The German Climate Computing Centre (Deutsches Klimarechenzentrum,
DKRZ) has a database of 60 petabytes of climate data2. Google, Youtube, Facebook and many
other web companies have databases of petabyte size in which heterogeneous data such as text,
videos, music, pictures, and user statistics is stored3. The big data phenomenon is enabled,
amongst other things, by inexpensive storage devices [GR11].

Extracting useful information from this data is a major challenge nowadays, and a task
that makes high demands on modern computer science. The fact that data is no longer stored
locally, but may be scattered all over the Internet or might even be discarded soon after its
creation, causes many difficulties for algorithms that process it. In this PhD thesis we address
two models of computation that tackle these difficulties. We consider the data streaming model
and the communication model of computation. Data streaming is a way of coping with the data
access problem for algorithms that process massive data sets. In the communication model,
the amount of communication that is necessary when multiple parties process massive data in a
distributed manner is studied. Data access and communication are fundamental problems in the
area of massive data set algorithms and are bottlenecks in many applications. These problems
are illustrated in Figure 1.1.

Algorithms that process massive data sets must address the problem of how to access the
input data. Nowadays, standard computers are equipped with a RAM (Random Access Memory)
of up to 16 gigabytes. Data that is stored in this memory can be addressed by algorithms in
an arbitrary order with reasonable latencies. However, when processing data sets that exceed
by far the size of a computer’s RAM, random access to the input is an unrealistic assumption:
Massive data sets are by far too large to fit into a computer’s random access memory, and the
possibility of firstly transferring the entire data and then running an algorithm on the transfered

1http://www.v3.co.uk/v3-uk/news/2081263/cern-experiments-generating-petabyte
2http://www.treehugger.com/clean-technology/meet-the-worlds-most-powerful-weather-supercomputer.html
3http://www.comparebusinessproducts.com/fyi/10-largest-databases-in-the-world

1
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1. INTRODUCTION

Figure 1.1: Left: An Algorithm that processes massive data sets must deal with the problem of
accessing the input data. Right: If massive data sets are processed in a distributed manner, the
amount of communication should be as little as possible.

data with random access is hence excluded. Furthermore, if the data is stored on an external
disk or on a computer connected through a slow network, such as the Internet, then random
access to the input is costly and different data access alternatives must be considered. The
alternative that we consider in this thesis is the data streaming model. Streaming algorithms
receive the input data as a stream. While the data is arriving, the algorithm is already processing
it, and it uses a small random access memory, which is often only polylogarithmic in the size
of the input. In Section 1.1 we give a more detailed introduction to streaming algorithms.

Another problem arises when big data is collaboratively processed by different parties at
different locations. In this setting, the parties exchange messages in order to coordinate their
calculations. Note that if the input data was small, the parties could simply send their input to
one central processing unit, which could then process the entire data set locally. However, data
transmission is a bottleneck in many applications, since interconnection networks are usually
slow, and hence the message exchange should be as little as possible. Communication Com-
plexity is the area in theoretical computer science that focuses on the amount of communication
that is necessary to collectively compute functions on distributed input data. We provide a brief
introduction to communication complexity in Section 1.2.

1.1 Streaming Algorithms

One objective of this PhD thesis is to explore the strengths and the limitations of the streaming
model of computation. Streaming algorithms fall into the category of massive data set algo-
rithms. They address the problem that in many applications, the data that an algorithm is called
upon to process is too large to fit into the computer’s random access memory. A streaming
algorithm uses memory space of sublinear size in the length of its input.

Besides sublinear memory, another characteristic feature of the streaming model is the
restriction of the input access method to only sequential access. Whereas algorithms have
random access to input data in the RAM model, a streaming algorithm reads its input in passes
scanning the input from left to right. We illustrate this point in Figure 1.2.

The memory space restriction is necessary for a meaningful definition of the streaming
model: Random access memory of size linear in the input length would allow the copying of
the whole input into memory by reading the input in one pass, and this copy of the data could

2



1.1 Streaming Algorithms

Streaming Access Random Access

Figure 1.2: Random Access versus Streaming Access. Streaming Algorithms have only sequential
access to input data.

then be processed by any linear space algorithm, now with random access.
Streaming videos from the Internet is an example of a streaming algorithm. Video files

can be huge, however, at any moment during the visualization of the video, the video player
application only requires access to the small portion of the video file that encodes the images
and the sound data of that particular moment. The video is hence being downloaded and arrives
at the video player application as a data stream. The player visualizes the data as it arrives and
discards it immediately afterwards. This procedure allows the visualization of huge video files
with a small amount of random access memory.

The main goal in the design of streaming algorithms is to minimize the size of the random
access memory of the algorithm. We illustrate this with the following more concrete example:

Problem 1 (Counting the number of distinct elements). LetA = A[1], . . . , A[n] be a sequence
of n elements each taken from a universe U. How many distinct elements appear in A?

We denote by F0(A) the number of distinct elements inA. The notation F0 comes from the
fact that the number of distinct elements is the 0th frequency moment of a set of frequencies.The
frequency moments are defined as follows. For each u ∈ U denote by fA(u) the number of
occurrences of u inA. Then the ith frequency momentFi is defined asFi(A) :=

∑
u∈U fA(u)i.

To obtain a space efficient algorithm for counting the number of distinct elements in the
RAM model, an algorithm could simply keep track of a counter and check for each u ∈ U

whether u appears in A by sequentially scanning A. This strategy requires only O(log |U|)
space. It can also be implemented as a streaming algorithm that makes |U| passes over the
input. In the streaming setting, one usually aims for algorithms that perform only a constant
number of passes over the input, and the one-pass model is of particular interest: How much
memory does a streaming algorithm require if it performs a single pass over the input?

A one-pass streaming algorithm could store one bit for each u ∈ U and keep track if u
appears in the stream. This algorithm requiresO(|U|) space, and it turns out that this algorithm
is optimal among deterministic algorithms: In [AMS96] it is shown that any deterministic one-
pass streaming algorithm that outputs a number Y such that |Y −F0(A)| ≤ 0.1F0(A) requires
Ω(|U|) space.

This space lower bound highlights two important properties that are often encountered in
the streaming model. Firstly, for many problems, linear space lower bounds exist for determin-
istic streaming algorithms, and randomization is crucial for obtaining streaming algorithms
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with sublinear space. Secondly, the previous space lower bound uses the notion of approxi-
mation. In streaming, it is rarely possible to solve problems exactly with sublinear space, and,
as a consequence, approximation algorithms are designed. In the case of counting the number
of distinct elements, there is an optimal randomized one-pass streaming algorithm that uses
O(1/ε2 +log |U|) space and computes a (1±ε)-approximation, meaning that it outputs a value
Y such that |Y − F0(A)| ≤ εF0(A) for any ε > 0. This is a work of Kane et al. [KNW10b]
and concludes a long line of research on this problem that was initiated by Flajolet and Martin
in 1983 [FM83].

1.2 Communication Complexity

Communication Complexity is an area of computer science that has strong connections to
streaming algorithms. In the communication setting, the input data is split among multiple
parties, and the parties communicate with each other by exchanging messages in order to col-
lectively compute a function of the entire input. In communication complexity the goal is both
to design communication protocols that use as little communication as possible, and to prove
lower bounds on the amount of communication that is necessary for computing a function. The
determinstic/randomized k-party communication complexity of a function f is the minimal
amount of communication necessary for a deterministic/randomized protocol that is executed
by the k parties to compute f . In the following, we will refer to the parties that execute a
communication protocol as players.

As an example, consider the two-party communication problem of determining whether
two n-bit strings are equal. This problem is illustrated in Figure 1.3 and is defined as follows.

Problem 2 (Equality of two n-bit strings). Alice holds a binary string X ∈ {0, 1}n and Bob
holds a binary string Y ∈ {0, 1}n. Alice and Bob exchange messages in order to determine
whether X = Y . How much communication is necessary to achieve this task?

X ∈ {0, 1}n Y ∈ {0, 1}n

{
1, if X = Y

0, otherwise

Figure 1.3: Two-Party Communication Setting. Here, Alice and Bob both hold n-bit strings and
they want to determine whether their strings are equal or not. Alice and Bob communicate in order
to achieve this task. In this illustration, Bob outputs the result.

Consider the following deterministic protocol for the equality problem. Alice sends the bit
X[1] to Bob and upon reception, Bob verifies if it matches Y [1]. If there is a mismatch, Bob
outputs 0. In case of equality, Bob sends bit Y [2] to Alice and she compares it to X[2] and
outputs 0 in case of a mismatch. This procedure continues until a mismatch is found or until all
bits have been compared. Clearly, if X = Y , then this protocol has a communication cost of
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Ω(n). IfX 6= Y , the worst case communication cost of this protocol is still Ω(n) since it might
be thatX[i] = Y [i] for all i < n andX[n] 6= Y [n]. It is known that the deterministic two-party
communication complexity of the equality function is Ω(n) (see for instance [KN97]), and this
protocol is hence optimal.

Here randomization helps to substantially decrease the amount of communication. Given
an appropriate hash function h, Alice computes the hash value h(X) and sends it to Bob.
Bob then computes the hash value h(Y ) and checks whether h(X) = h(Y ). There are hash
functions h such that |h(X)| ∈ O(log n), the probability that h(X) = h(Y ) for X 6= Y
is at most 1/n, and if X = Y then h(X) = h(Y ). This implies a randomized two-party
communication protocol with communication cost O(log(n)). See [KN97] for details. This
example shows that there are functions for which there is an exponential gap between the
deterministic and the randomized communication complexity.

In this thesis, we are mainly interested in one-way communication. In this setup, the input
is split among k players, and the communication is one-way: Player one sends a message to
player two, who upon reception of the message sends a message to player three. This procedure
continues until player k receives a message from player k − 1, and player k outputs the result.
Consider for now the case k = 2 and denote the two players by Alice and Bob. Then Alice
computes a message from her part of the input and sends this message to Bob. Upon reception
of this message, Bob computes the output as a function of his part of the input and the message
of Alice. The randomized communication protocol for the equality function as discussed above
is a one-way two-party protocol.

There is an inherent link between one-way communication and one-pass streaming algo-
rithms: A one-pass streaming algorithm with space s for problem P serves also as a one-way
two-party communication protocol with message size O(s) for problem P if the input stream
A is split among the two players such that Alice gets a prefix and Bob gets the remaining
suffix. To see this, Alice runs the streaming algorithm on her input and sends the resulting
memory state to Bob. Then, Bob initializes his memory with Alice’s message and continues
the streaming algorithm on his input. This connection implies that a lower bound on the size
of the message in the one-way two-party communication setting is also a lower bound on the
memory requirements of a streaming algorithm. Approaching streaming algorithms from the
communication perspective therefore provides valuable insight.

We illustrate this link with the equality function discussed above. Suppose that a one-pass
streaming algorithm with space s can decide whether the first half of an input stream A of
length 2n equals the second half, that is ∀1 ≤ i ≤ n : A[i] = A[i + n]. Such a streaming
algorithm then gives rise to a one-way two-party communication protocol with communication
cost s for the equality function. As previously, denote Alice’s input by X and Bob’s input by
Y . Then Alice runs the streaming algorithm on X and sends the memory state after processing
X[n] to Bob. Bob then initializes his memory with the message he received from Alice and
continues the streaming algorithm on Y . See Figure 1.4 for an illustration.

As we already pointed out, the deterministic two-party communication complexity of the
equality function is Ω(n), and since one-way two-party communication is a special case of two-
party communication, the deterministic one-way two-party communication complexity of the
equality function is also Ω(n). A deterministic streaming algorithm for the equality problem
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X ∈ {0, 1}n Y ∈ {0, 1}n

Figure 1.4: Connection between Streaming Algorithms and Two-Party Communication. A one-
pass streaming algorithm with space s also serves as a one-way two-party communication protocol
with message size O(s) if the input stream A is split among the two players such that Alice gets
the first half and Bob gets the second half as input. Alice runs the streaming algorithm on her input
and sends the resulting memory state to Bob. Bob then initializes his memory with Alice’s message
and continues the streaming algorithm on his input.

hence also requires Ω(n) space. We repeat the previously discussed argumentation: If there
was a deterministic streaming algorithm with space o(n) for the equality problem, then this
algorithm would give rise to a deterministic one-way two-party communication protocol for
the equality function with message size o(n). However, this contradicts the Ω(n) lower bound
on the deterministic one-way two-party communication complexity of the equality function.

In this thesis, we study different problems in the streaming and the one-way two-party
communication setting. In the following section we briefly and informally introduce these
problems in order to provide the reader with an overview of the research areas that we consider
in this document. Then, in Chapter 2 we formally introduce the streaming setting and the
communication setting. This then allows us to fully discuss our contributions in detail. In
Chapter 3, we provide the contexts for each of the four problems in this thesis, and we give
an overview of our results. Then, in Chapters 4 to 7 all technical details of these works are
discussed.

1.3 Considered Problems

Maximum Matching in the Streaming Model [KMM12]. Given an unweighted graph
G = (V,E), a graph stream is a sequence of the edges of G. A matching in a graph is a vertex
disjoint subset of the edges M ⊆ E. How large a matching can be computed by a streaming
algorithm that receives a graph stream as its input with sublinear space?

Semi-Matchings in the Streaming Model and in Two-Party Communication [KR13].
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A semi-matching in a bipartite graph G = (A,B,E) is a subset of edges S ⊆ E such that all
A vertices are matched in S. Here, multiple A vertices may be matched to the same B vertex.
The goal is to find a semi-matching with a small maximal degree of the B vertices. Given a
graph stream of a bipartite graph as input, how well can this be done in the streaming setting
and how much memory is required? Given a constraint on the message size, how well can this
be done in the one-way two-party communication model?

Validating XML Documents in the Streaming Model [KM12]. A well-formed XML doc-
ument (eXtended Markup Language) is a well-parenthesized sequence of opening and closing
tags. Such documents describe rooted, unranked, vertex labeled trees. A DTD (Document Type
Definition) is a set of local validity constraints: For each label in the tree, the DTD specifies
a regular expression. Then a document is valid against a DTD, if for each node the sequence
of labels of its children fulfills the regular expression specified in the DTD for the label of the
node. Figure 1.5 illustrates this setup.

r → b∗c+

a → ε

b → a∗c∗

c → ε

Figure 1.5: This tree is valid against the DTD described on the right side of the figure: For each
node of the tree, the sequence of labels of its children fulfills the regular expression attached to the
label of the node.

Are there sublinear space streaming algorithms that, given an XML document and a DTD,
can check whether the XML document is valid against the DTD?

Budget Error-Correcting under Earth-Mover-Distance. [KYZ13] The Earth-Mover-
Distance between two point sets of cardinality n is defined as the weight of a minimum weight
perfect matching between the two point sets, where the weight of an edge between two points
is defined as the distance of the points. We study the following one-way two-party communi-
cation problem: Alice and Bob are each given a set of n points on a d-dimensional grid [∆]d.
Alice sends a message of size k (k ∈ o(n)) to Bob, and Bob uses this message to adjust his
point set towards Alice’s point set such that the Earth-Mover-Distance between the two sets
decreases. How well can such an adjustment be done?
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Chapter 2

Models of Computation

2.1 The Streaming Model

A data stream of length n is a sequence of items A = A[1] . . . A[n] each coming from a finite
universe U. The universe U depends on the application at hand; it may be numbers, letters,
edges of a graph, XML tags or any other finite set. In this thesis, we assume that accessing
a stream element A[i] can be done in time O(1). Furthermore, for ease of presentation, we
assume that the length of the input stream n is known in advance to our streaming algorithms.
This is not a real limitation: All of our algorithms can be adapted to work without the knowl-
edge of n in advance. We now formally define a streaming algorithm.

Definition 1 (Streaming Algorithm). A p(n)-pass streaming algorithm S with space s(n) and
update time t(n) is an algorithm such that, for every input stream A = A[1] . . . A[n] with
A[i] ∈ U for a universe U:

1. S performs at most p(n) passes on stream A,

2. S maintains a random access memory of size s(n),

3. S has running time O(t(n)) between two consecutive read operations from the stream.

Furthermore, preprocessing time (the time before the first read operation) and postprocessing
time (the time after the last read operation and the output of the result) is O(t(n)). We assume
that read operations on any stream require constant time.

2.1.1 A Brief History and Applications

Streaming algorithms find applications in settings where the input data is too large to fit into the
computer’s working memory. The most natural setting is the processing of real data streams.
Consider a network router that is supposed to compute statistics on the data packages that run
through the router such as the number of different IP addresses (distinct elements problem) or
the most addressed target IP addresses (heavy hitters problem). In settings of this kind, the
application imposes linear access to the input data and only one pass is possible.
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Another field of application is that of processing massive data sets that are stored on exter-
nal hard disks or on computers that are connected through a network or the Internet. This is a
typical situation for databases. In these settings, random access to the input data is very costly,
and accessing this data by a data stream is a good alternative that is pursued in practice. These
situations also justify the study of multi-pass streaming algorithms, since the data can be read
several times.

Streaming algorithms were already studied as early as in 1978. Munro and Paterson
[MP78] studied the relationship of the number of passes and the required memory space for
selecting the kth largest element of a stream. This work, as well as the previously mentioned
work by Flajolet and Martin [FM83] on approximate counting of streaming data, are consid-
ered to be some of the first works on streaming algorithms. A milestone in the area of streaming
algorithms is the paper “The space complexity of approximating the frequency moments” by
Alon, Matias, and Szegedy [AMS96] who received the Gödel prize in 2005 for this work. We
quote the award committee: “ This concise work laid the foundations of the analysis of data
streams using limited memory.”1. This paper has since been cited more than 1000 times.

Today, there is a huge literature on streaming algorithms. Concrete problems from areas
such as statistics, bioinformatics, text algorithms, computational geometry, graph problems,
linear algebra, databases, and many others have been studied in the streaming model. For an
overview about streaming algorithms, we refer the reader to [Mut05]. A list of open problems
in the data streaming area can be found on the website http://sublinear.info/.

2.1.2 Graph Streams

Definition 2 (Graph Stream). A graph stream is a sequence of the edges of a graph.

For the sake of a clear presentation, we again suppose that the number of vertices and edges
of a graph are known in advance to our streaming algorithms that process graph streams.

Graph streams were firstly studied by Henzinger et al. [HRR99] and form a very active
research area today. Many graph problems, such as independent set [HHLS10], matching
problems [McG05, GKK12, KMM12], counting triangles [JG05, BFL+06] and arbitrary sub-
graphs [KMSS12], connectivity of nodes in directed graphs [GO13], sparsification [AGM12],
and many others have since been studied in the streaming model.

Feigenbaum et al. showed in [FKM+05] that testing many basic properties such as connec-
tivity and bipartiteness requires Ω(n) space, where n is the number of vertices of a graph. This
justifies the study of the so-called semi-streaming model, which was introduced by Muthukr-
ishnan [Mut05]. In the semi-streaming model, a streaming algorithm is allowed to use space
of size O(n polylog n). Throughout this document, we will write Õ(n) for O(n polylog n).

The difficulty of graph problems in the streaming model depends heavily on the arrival
order of the incoming edges. At least four edge arrival orders have been studied in the literature.

1. Adversarial order. An algorithm does not make any assumption on the order of the
incoming edges. Most works in the literature consider this model.

1This quote is taken from: http://www.sigact.org/Prizes/Godel/2005.html
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2. Vertex arrival order. Consider a bipartite graph G = (A,B,E). Edges incident to the
same A vertex arrive subsequently [GKK12, Kap13]. In [BYKS02] and [BFL+06], a
graph stream in this order is called an incidence stream and this notion is also used for
general graphs.

3. Random arrival order. The edges arrive in uniform random order [DLOM02, GMV06,
GM09, KMM12]. Studying this model is motivated by the fact that some algorithms
behave very well in practice, but they fail on a few rather artificial arrival orders. The
adversarial order is considered to be too pessimistic and too far from reality. The random
arrival order is a way of conducting an average-case analysis. Note that a random-order
arrival analysis still considers a worst-case input graph.

4. Best order. Edges arrive in the desired order of an algorithm. This model was studied in
the context of stream checking [DSLN09]. 1 We are listing this setting for completeness,
and will not further consider it.

2.1.3 Bidirectional Streaming Algorithms

For some problems, allowing a streaming algorithm to perform a pass in reverse direction
saves a lot of space. Magniez et al. show in [MMN10] that checking whether a sequence of
parentheses of length n is well-parenthesized can be checked by a streaming algorithm in one
pass with space Õ(

√
n). Furthermore, it is shown in [CCKM10] and independently in [JN10]

that a p-pass streaming algorithm requires Õ(
√
n/p) space. Magniez et al. also present in

[MMN10] a bidirectional two-pass algorithm that performs one pass from left to right, and one
pass from right to left, and this algorithm uses memory space of O(log2 n).

We observe a similar phenomenon when checking validity of XML documents that encode
binary trees [KM12]. For details see Section 6.3. This phenomenon was also observed by
François and Magniez [FM13] when checking priority queues with timestamps.

Definition 3 (Bidirectional Streaming Algorithm). A streaming algorithm is called bidirec-
tional if it makes at least one pass from left to right and one pass from right to left.

2.1.4 Streaming with Auxiliary Streams

Streaming with auxiliary streams is also known as streaming with external memory, and has
been studied for instance in [GS05, GHS06, BJR07, BH12, KM12]. In this model, besides the
input stream, the streaming algorithm has access to auxiliary streams onto which the algorithm
can write, and from which the algorithm can read. This equips the streaming algorithm with a
huge amount of external memory. Note, however, that the access method to external memory
is sequential. Furthermore, we assume that the length of an auxiliary stream is O(n), where n

1 A computationally unbounded prover computes a graph property on a massive input graph and has to convince
a space bounded verifier that this property holds. To this end, the prover sends a graph stream of the input graph
in an order that makes the verification easier for the verifier. For instance, checking whether a graph has a perfect
matching can be done inO(logn) space in this model [DSLN09] while it requires Ω(n2) space in adversarial order
[GO13].
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denotes the length of the input stream. We define a streaming algorithm with auxiliary streams
as follows:

Definition 4 (Streaming Algorithm with auxiliary Streams). A p(n)-pass streaming algorithm
S with k(n) auxiliary streams, space s(n), and update time t(n) is an algorithm such that, for
every input stream A = A[1] . . . A[n] with A[i] ∈ U for a universe U:

1. S has read/write access to k(n) auxiliary streams, the input stream is read-only,

2. S performs at most p(n) passes in total on the input stream π and the k auxiliary streams,

3. S maintains a random access memory of size s(n),

4. S has running time t(n) between two consecutive read or write operations.

Furthermore, preprocessing time (the time before the first read operation) and postprocessing
time (the time after the last read operation and the output of the result) is O(t(n)). We assume
that read and write operations on any stream require constant time.

Auxiliary streams allow a streaming algorithm to sort the input data. Merge sort can be
implemented as a streaming algorithm with three auxiliary streams andO(log n) passes [GS05]
(here n is the input length). For an illustration of the streaming model with auxiliary streams
we provide this implementation of merge sort as an example in Algorithm 1. For the sake of
simplicity, Algorithm 1 assumes that the input length is 2l for some l > 0.

Algorithm 1 Merge Sort as a Streaming Algorithm with Auxiliary Streams

Require: unsorted data of length 2l on auxiliary stream 1
1: for i = 0 . . . l − 1 do
2: copy data in blocks of length 2i from stream 1 alternately onto stream 2 and stream 3
3: for j = 1 . . . 2l−i−1 do
4: merge(2i)
5: end for
6: end for

merge(b) reads simultaneously the next b elements from stream 2 and stream 3, and merges
them onto stream 1. The for loop in Line 3 of Algorithm 1 requires one read pass on stream 2,
one read pass on stream 3, and one write pass on stream 1. See Figure 2.1 for an illustration.

line 2 (copy) line 3 (merge)
str 1:
str 2:
str 3:

B1 B2 B3 B4 . . . B2l−i

B1

B2

B3

B4

. . .

. . .
Bl−i−1

Bl−i

B12 B34 . . .B2l−i−12l−i

B1

B2

B3

B4

. . .

. . .
Bl−i−1

Bl−i

Figure 2.1: Left: Illustration of the copy operation in Line 2 of Algorithm 1. Blocks from stream
1 are copied alternately onto stream 2 and stream 3. Right: Illustration of the merge operations
executed within the for loop of Line 3 of Algorithm 1. The Bi are sorted blocks. All blocks Bi and
Bi+1 are merged into a sorted block Bi(i+1).

Streaming with auxiliary streams is an interesting model for problems that do not allow
sublinear space streaming algorithms without auxiliary streams. The auxiliary streams are
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implemented in external memory to which the model only assumes linear access. Since in
practice linear access is less costly than random access, good solutions may be obtained.

2.2 Communication Complexity

Communication Complexity focuses on how much communication is necessary if multiple par-
ties aim to collectively compute a function that depends on the data of all parties. The parties
are allowed to exchange messages, and the communication cost of a communication protocol
is then the amount of bits that are communicated in total. Besides the development of efficient
protocols, the main goal is to prove lower bounds on the amount of communication that is
necessary to fulfill a task.

The study of communication complexity was initiated by Andrew Yao in 1979 [Yao79].
Many different communication settings have since been studied in the literature (deterministic,
randomized, non-deterministic, one-way, blackboard, number-on-forehead, . . . ) and provid-
ing an overview exceeds by far the scope of this thesis. We refer the reader to the book of
Kushilevitz and Nissan [KN97] for an introduction to Communication Complexity.

Communication Complexity is used to obtain results in many related research areas. As
already discussed in Section 1.2, space lower bounds for streaming algorithms may be proven
by communication lower bounds. Furthermore, communication complexity has already been
successfully applied to prove results in decision tree complexity, data structures, boolean cir-
cuit and many others [KN97]. Besides the use of communication complexity as a tool for
proving results in related fields, the study of the communication complexity of functions itself
constitutes an important research area. We have already mentioned that communication is the
dominant bottleneck in many applications. Consequently, communication protocols must be
designed that do not exchange more data then absolutely necessary.

In this thesis, we focus on the one-way two-party communication setting. In this setting,
we have two players, Alice and Bob, and the input is split amongst them. Alice sends a single
message to Bob, and Bob then computes and outputs the result of the protocol.

x y

Figure 2.2: One-way Two-Party Communication. The input x, y is split among Alice and Bob
such that Alice has x and Bob has y. Alice computes a message M(x) of her input and sends it
to Bob. Upon reception of the message, Bob computes the output of the protocol as a function of
Alice’s message and his input y.

Consider the Augmented Indexing problem.

Problem 3 (Augmented Indexing). LetX = X[1], . . . , X[n] whereX ∈ Un for some universe
U. Let I ∈ [n]. Alice is given X , Bob is given I and X[I + 1], . . . , X[n]. Alice sends message
MAI to Bob and upon reception Bob outputs X[I].
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This problem is a hard problem in the one-way communication setting. Many versions of
this problem have been studied in the literature [CCKM10, JN10], and we provide a proof in
Lemma 50 that shows that any possibly randomized protocol with error probability less than
1/3 for this problem requires a message of size Ω(n log |U|). Note that in the usual two-party
communication setting where Alice and Bob can freely exchange messages, O(log n+log |U|)
bits are sufficient: Bob simply sends I to Alice and Alice sends X[I] back to Bob.

A particularity of the one-way two-party communication setting is that Alice does not ob-
tain any information about Bob’s input during the run of the protocol. Therefore, Alice can not
adapt her message to Bob’s needs. Instead, Alice has to send a sketch of her data from which
Bob can recover the necessary information. We are faced with this situation multiple times in
this thesis.
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Chapter 3

Contributions

In this section, we discuss the contributions of this PhD thesis. We provide the concrete con-
texts of the problems at hand, and we detail related works. Our contributions are based on the
following articles:

• [KMM12]: Christian Konrad, Frédéric Magniez and Claire Mathieu. Maximum match-
ing in semi-streaming with few passes. In Proceedings of the 24th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, 2012.

• [KR13]: Christian Konrad and Adi Rosén. Approximating Semi-Matchings in Streaming
and in Two-Party Communication. In Proceedings of 40th International Colloquium on
Automata, Languages and Programming, 2013.

• [KM12]: Christian Konrad and Frédéric Magniez. Validating XML Documents in the
Streaming Model with External Memory. In Proceedings of 15th International Confer-
ence on Database Theory, 2012.

• [KYZ13]: Christian Konrad, Wei Yu and Qin Zhang. Budget Error-Correcting under
Earth-Mover-Distance. Technical Report.

3.1 Matching in the Streaming Model

Our first contribution concerns the computation of matchings in the streaming model. Given a
graph G = (V,E), a matching is a vertex disjoint subset of edges M ⊆ E. Then a maximum
matching is a matching of maximal size, and we write M∗ to denote an arbitrary but fixed
maximum matching. For 0 < c < 1, we say that an algorithm computes a c-approximation to
the maximum matching problem if it outputs a matching M ′ such that

|M ′| ≥ c|M∗|.
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3.1.1 History of the Matching Problem in the Streaming Model

Computing matchings in the streaming model was firstly addressed by Feigenbaum et al. in
2004 [FKM+04]. In this work, the authors assume that the edge stream is in adversarial or-
der. They present anO( log(1/ε)

ε )-pass (2/3−ε)-approximation semi-streaming (meaning Õ(n)
space) algorithm for maximum bipartite matching for any 0 < ε < 1/3. This algorithm uses
the fact that a maximal matching can be computed in one-pass with O(n log n) space by the
following simple Greedy algorithm: start with an empty matching M and put an incoming
edge e into M if M ∪ {e} is still a matching. It is well-known that a maximal matching is
of size at least 1/2 times the size of a maximum matching. Hence, the Greedy algorithm is a
1/2-approximation algorithm to the maximum matching problem. Furthermore, they present
a 1/6-approximation algorithm for weighted maximum matching. In a weighted graph, the
weight of a matching is the sum of the weights of the edges in the matching. A c-approximation
algorithm to the weighted matching problem (0 < c < 1) outputs a matching of weight at least
c times the weight of a matching of maximal weight.

Since then, a multitude of results on matchings in the streaming model have appeared.
Most of these results are multi-pass algorithms for both, the unweighted and the weighted
setting. We are mainly interested in the one-pass setting and the case of unweighted graphs.
Before discussing related works to this setting, we provide an overview about the currently
best algorithms in the one-pass, weighted graphs setting as well as in multi-pass settings. The
following results are in the semi-streaming setting, meaning that algorithms are allowed to use
O(n polylog n) space, and the edge stream is in adversarial order:

• One-pass algorithms for weighted graphs: In the one-pass setting, the already men-
tioned 1/6-approximation for computing a weighted matching in general graphs of
[FKM+04] was improved by McGregor [McG05] to a factor of 1/5.82. Subsequently,
Zelke [Zel12] obtained a 1/5.58-approximation. The currently best semi-streaming al-
gorithm for weighted matching in one-pass is due to Epstein et al. [ELMS11] and has an
approximation factor of 1/4.91.

• Multi-pass algorithms for unweighted graphs: In the unweighted case, Ahn and
Guha show that a 1 − ε approximation for bipartite graph can be obtained using
O(ε−2 log log ε−1) passes [AG11]. For general unweighted graphs, McGregor gives in
[McG05] a 1/(1 + ε) approximation that makes O((1/ε)1/ε) passes.

• Multi-pass algorithms for weighted graphs: In the weighted setting, Ahn and Guha
describe a 1 − ε approximation streaming algorithm for weighted bipartite graphs with
O(ε−2 log ε−1) passes in [AG11]. For general weighted graphs, the currently best al-
gorithm is also due to Ahn and Guha and computes a (1 − ε)-approximation using
O(ε−4 log n) passes. To the authors best knowledge, there is no streaming algorithm
for weighted matching in general graphs that computes a 1 − ε approximation and the
number of passes depends only on ε.

One-pass algorithms for unweighted graphs. The already mentioned Greedy matching
algorithm that computes a 1/2 approximation to the maximum matching problem was used in

16



3.2 Semi-Matchings in Streaming and in Two-Party Communication

2004 in the work of Feigenbaum et al. [FKM+04] and is still the best semi-streaming algorithm
for computing unweighted matchings in one-pass if the input stream is in adversarial order.
The well-known Karp-Vazirani-Vazirani (KVV) online algorithm [KVV90] can be seen as a
semi-streaming algorithm if the input stream is in vertex arrival order. The KVV algorithm is
randomized and computes a 1−1/e ≈ 0.63 approximation to the maximum matching problem.
A deterministic 1 − 1/e approximation algorithm for input that is in vertex arrival order was
given by Goel et al. in 2012 [GKK12].

It is a major open question whether it is possible to beat the approximation guarantee of
1/2 of the Greedy algorithm for streams in adversarial order. On the negative side, Goel et
al. [GKK12] showed that for any ε > 0, a streaming algorithm that computes a 2/3 + ε
approximation requires n1+Ω(1/(log logn)) space which proves that there is no semi-streaming
algorithm with such an approximation ratio. Recently, Kapralov showed that semi-streaming
algorithms for streams in vertex arrival can not obtain an approximation guarantee better than
1 − 1/e [Kap13]. This result renders the KVV algorithm and the deterministic counterpart
of [GKK12] tight. Since the vertex arrival order is a special case of the adversarial order, the
lower bound of 1− 1/e also holds for algorithms for streams in adversarial order.

3.1.2 Our Contribution

In a joint work with Frédéric Magniez and Claire Mathieu [KMM12], we show that there is a
one-pass semi-streaming algorithm with expected approximation ratio strictly larger than 1/2
if the input stream is in uniform random order. In the random arrival order setting, we measure
the quality of an algorithm by taking the expectation over all orderings of the graph edges. In
the following, we will omit the term ’expected’ since this is the only meaningful definition of
the approximation ratio in the random arrival setting. We obtain a 1/2 + 0.005 approximation
algorithm for bipartite graphs (Theorem 1). We extend this result to non-bipartite graphs and
we obtain a 1/2 + 0.003 approximation algorithm (Theorem 2).

Furthermore, in the adversarial order model, we show that it is possible to improve on
Greedy if an algorithm is allowed to perform two passes. We design a simple randomized
algorithm for bipartite graphs (Theorem 4), and two deterministic algorithms for bipartite
(Theorem 5) and non-bipartite (Theorem 6) graphs.

The starting point for our algorithms is a simple 3-pass semi-streaming algorithm for bi-
partite graphs on adversarial order that has an approximation ratio strictly better than 1/2. Our
one-pass algorithm on random order and our two-pass algorithms simulate this algorithm with
fewer passes.

Details of our contribution can be found in Chapter 4.

3.2 Semi-Matchings in Streaming and in Two-Party Communica-
tion

A semi-matching S ⊆ E in a bipartite graph G = (A,B,E) can be seen as an extension of a
matching in that it is required that allA vertices are matched toB vertices. This is generally not
possible in an injective way, and therefore we now allow the matching of multipleA vertices to
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the same B vertex. Typical objectives here are to minimize the maximal number of A vertices
that are matched to the same B vertex, or to optimize with respect to even stronger balancing
constraints. The term ’semi-matching’ was coined by [HLLT03] and also used in [FLN10,
GKS11, CHSW12], however, the problem had already previously been intensely studied in the
scheduling literature [ECS73, Hor73, ANR95, Abr03, LL04]. We stick to this term since it
nicely reflects the structural property of entirely matching one bipartition of the graph.

The semi-matching problem captures the problem of assigning a set of unit-length jobs to
a set of identical machines with respect to assignment conditions expressed through edges be-
tween the two sets. The objective of minimizing the maximal number of jobs that a machine
receives then corresponds to minimizing the makespan of the scheduling problem. Optimizing
the cost function

∑
b∈B degS(b)(degS(b) + 1)/2, where degS(b) denotes the number of jobs

that a machine b receives in the semi-matching S, corresponds to minimizing the total comple-
tion time of the jobs (optimizing with respect to this cost function automatically minimizes the
maximal degree as well).

3.2.1 Optimality of a Semi-Matching and the Notion of Approximation

It is well known that matchings are of maximal size if they do not admit augmenting paths
[Ber57]. Augmenting paths for matchings correspond to degree-minimizing paths for semi-
matchings. They first appeared in [HLLT03] under the name of cost-reducing-paths, and they
were used for the computation of a semi-matching that minimizes a certain cost function. We
use the term ’degree-minimizing-path’ since it is more appropriate in our setting. A degree-
minimizing path starts at a B node of high degree, then alternates between edges of the semi-
matching and edges outside the semi-matching, and ends at another B node of smaller degree.
Flipping the semi-matching and non-semi-matching edges of the path then generates a new
semi-matching such that the large degree of the start node of the path is decreased by 1, and the
small degree of the end node of the path is increased by 1. We define an optimal semi-matching
as one that does not admit any degree-minimizing paths. It was shown in [HLLT03] that such
a semi-matching is also optimal with respect to a large set of cost functions, including the
minimization of the maximal degree as well as the minimization of the total completion time.

Since an optimal semi-matching minimizes many convex cost functions, there is not only
one meaningful definition of what an approximation to the semi-matching problem should be.
We will consider a notion that is already used in [ANR95]. We say that an algorithm is a
c-approximation algorithm to the semi-matching problem if for any input graph, it outputs a
semi-matching S such that deg maxS ≤ c deg maxS∗, where S∗ is an optimal semi-matching.
In [CHSW12], the semi-matching problem is studied in the distributed setting, and the cost
function

∑
b∈B

(
degS(b)+1

2

)
is used. These notions are not comparable.

3.2.2 Related Results on the Semi-Matching Problem

The semi-matching problem was firstly studied by Horn [Hor73] and independently by Bruno
et al. [BCS74], and both designed anO(|V |3) algorithm. At present, the best existing algorithm
for computing an optimal semi-matching runs in time O(

√
|V ||E| log |V |) [FLN10, GKS11]
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where V = A ∪ B. Furthermore, in [GKS11] a randomized algorithm with time complex-
ity O(|V |ω log1+o(1) |V |) is given, where ω is the exponent of the best known matrix mul-
tiplication algorithm. Since ω ≤ 2.38, this algorithm improves on the O(

√
|V ||E| log |V |)

time algorithm for dense graphs. The semi-matching problem has not yet been studied in the
streaming setting and the communication setting prior to our work. In the online setting, a
dlog(n) + 1e-approximation online algorithm is given in [ANR95], where the maximal degree
is approximated. In this model, an A vertex comes in together with its incident edges, and the
A vertex has to be matched immediately and irrevocably. Their algorithm can also be seen as a
one-pass streaming algorithm if the input stream is in vertex arrival order. Recently, the semi-
matching problem was studied in the distributed setting. They show that a 2-approximation
to the semi-matching problem can be computed in O(∆5) time, where ∆ is the maximal de-
gree in the graph. They consider the notion of approximation with respect to the cost function∑

b∈B
(

degS(b)+1
2

)
. It can be shown that their algorithm is a dlog(n+ 1)e-approximation if the

cost function deg maxS for a semi-matching S is considered.

3.2.3 Our Contribution

In a joint work with Adi Rosén [KR13], we initiate the study of the semi-matching problem in
the streaming and the communication settings. We present a deterministic one-pass streaming
algorithm that for any 0 ≤ ε ≤ 1 uses space Õ(n1+ε) and computes an O(n(1−ε)/2) approxi-
mation to the semi-matching problem (Theorem 7). Furthermore, we show that with O(log n)
passes we can compute an O(log n) approximation with space Õ(n) (Theorem 8).

In the one-way two-party communication setting, we show that for any ε > 0, deterministic
communication protocols that compute an O(n

1
(1+ε)c+1 ) approximation to the semi-matching

problem require a message of size at least cn bits (Theorem 11). We present two determin-
istic protocols communicating n and 2n edges that compute an O(

√
n) approximation and an

O(n1/3) approximation, respectively (Theorem 9).
While it was known that an optimal semi-matching necessarily contains a maximum match-

ing [HLLT03], we show that there is a hierarchical decomposition of an optimal semi-matching
into maximum matchings. Similarly, we show that semi-matchings that do not admit length-
two degree-minimizing paths can be decomposed into maximal matchings. The latter result
allows us to prove that the maximal degree of a semi-matching that does not admit a length-
two degree-minimizing path is at most dlog(n + 1)e times the maximal degree of an optimal
semi-matching (Theorem 12).

3.3 Validity of XML Documents

An XML document is a linear encoding of a finite unranked labeled tree using tags. In the usual
XML notation an opening tag of a label x of the tree is denoted by 〈x〉 and a closing tag of
x is denoted by 〈/x〉. We will use the more concise notation x for an opening tag and x for
a closing tag. The XML encoding of a tree is obtained by a depth-first left-to-right traversal:
When a node x is seen in a down-step in the traversal then an opening tag x is outputted, and
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if a node x is seen in an up-step in the traversal then the closing tag x is outputted. For a tree t
we denote the corresponding XML document by XML(t).

An important property of an XML document is well-formedness. An XML document is
well-formed if it is well-parenthesized meaning that an opening tag is correctly closed by its
corresponding closing tag. In other words, an XML sequence X is well-formed if there is a
tree t such that X = XML(t). Well-formedness is illustrated in Figure 3.1.

Well-formed document:

Ill-formed document:

Figure 3.1: Well-formedness of an XML document. A well-formed XML document is well-
parenthesized.

XML documents are an important encoding scheme for information. The well-known
HTML language (HyperText Markup Language) is an XML language describing the struc-
ture and the content of Web pages. Many applications allow to export and import data in XML
format. For such applications, it is necessary to restrict the layout of the XML documents that
the application is processing. An XML schema is a set of constraints that a particular XML
document has to fulfill. Nowadays, there are many XML schema languages that allow to ex-
press such constraints. The most well-known are DTD (Document Type Definition), EDTD
(Extended DTD), XML Schema1 and RELAX NG (REgular LAnguage for XML Next Gener-
ation).

In this document, we are mostly interested in DTDs. DTDs are sets of local validity con-
straints: For each label in the tree, the DTD specifies a regular expression. Then an XML
document is valid against a DTD, if for each node, the sequence of labels of its children fulfills
the regular expression specified in the DTD for the label of the node. We illustrated this setup
already in Figure 1.5 in Section 1.3. Note that only well-formed XML documents correctly
encode trees. For this reason, a requirement for an XML document to be valid is that the XML
document is well-formed.

In the following, we study the DTD-validity problem in the streaming model. Given a
DTD, does a data stream encode an XML document that is valid against the DTD? We will
report now on related works to this problem, and we discuss then our results.

3.3.1 Related Work

Prior works on the DTD-validity problem in the streaming model essentially try to character-
ize those DTDs for which validity can be checked by a finite-state automaton [SS07]. Under
the assumption that DTDs are of constant size, this implies a one-pass deterministic stream-
ing algorithm with constant memory. Concerning arbitrary DTDs, two approaches have been

1Note the capital S here.
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considered in [SV02]. The first one leads to an algorithm with memory space which is linear
in the height of the XML document. The second one consists of constructing a refined DTD
of at most quadratic size, which defines a similar family of tree documents as the original one,
and against which validation can be done with constant space. Nonetheless, for an existing
document and DTD, the latter requires that both, documents and DTD, are converted before
validation.

One of the obstacles that prior works had to cope with was to verify well-formedness of
XML documents, meaning that every opening tag matches its same-level closing tag. Due to
the work [MMN10], such a verification can be performed now with a constant-pass randomized
streaming algorithm with sublinear memory space and no auxiliary streams. In one pass the
memory space is O(

√
N logN), and collapses to O(log2N) with an additional pass in reverse

direction.

3.3.2 Our Contribution

The starting point of this work is the fact that checking DTD-validity is hard without auxiliary
streams. There are DTDs that admit ternary XML documents, and any p-pass bidirectional
randomized streaming algorithm which validates those documents against those DTDs requires
Ω(N/p) space. This lower bound comes from encoding a well-known communication com-
plexity problem, Set-Disjointness, as an XML validity problem. This lower bound should be
well-known, however we are not aware of a complete proof in the literature. In [GKS07], a
similar approach using ternary trees with a reduction from Set-Disjointness is used for proving
lower bounds for queries. For the sake of completeness we provide a proof in Section 6.2.1
(Theorem 13).

On the other hand, it is possible to validate XML documents in one pass and space O(d),
where d is the depth of the XML document (Theorem 18). This algorithm is straightforward
and should as well be known. Furthermore, we mention that the previously discussed lower
bound of Ω(N/p) can be modified to obtain a lower bound of Ω(d/p). Therefore, space O(d)
is best possible for one-pass algorithms. For completeness we discuss this algorithm in Sec-
tion 6.4.1.

For the case of XML documents encoding binary trees, we present in Section 6.3 three
deterministic streaming algorithms for checking validity with sublinear space. As a conse-
quence, the presence of nodes of degree at least 3 is indeed a necessary condition for the linear
space lower bound for general documents. We first present two one-pass algorithms with space
O(
√
N logN) (Theorem 15 and Theorem 16). The first algorithm, Algorithm 14, processes

the input XML document in blocks and is easy to analyze, however, it is not optimal in terms
of processing time per letter. The second algorithm, Algorithm 15, uses a stack and has con-
stant processing time per letter. We conjecture that there is a Ω(N1/2) lower bound for one-
pass algorithms. With a second pass in reverse direction the memory collapses to O(log2N)
(Theorem 17). These three algorithms make use of the simple but fundamental fact that in one
pass over an XML document each node is seen twice by means of its opening and closing tag.
Hence, it is not necessary to remember all opening tags in the stream since there is a second
chance to get the same information from their closing tags. Our algorithms exploit this obser-
vation. We summarize our streaming algorithms for validating documents that encode binary
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trees in Figure 3.2.

Passes Space Time Remark
1 O(

√
N logN) Ω(

√
N logN) Block Algorithm (Theorem 15), simple analysis

1 O(
√
N logN) O(1) Stack Algorithm (Theorem 16)

2 O(log2N) O(logN) Bidirectional Algorithm (Theorem 17)

Figure 3.2: Overview about our streaming algorithms for checking DTD-validity of XML docu-
ments that encode binary trees. Time refers to the worst-case processing time between two consec-
utive read operations from the stream. We did not fully analyze the processing time of the block
algorithm, however, since it processes the input in blocks of size Θ(

√
N logN), the processing

time is Ω(
√
N logN).

Then, in Section 6.4 we present our main result. Corollary 2 states that the validation of
any XML document against any DTD can be checked in the streaming model with external
memory with poly-logarithmic space, a constant number of auxiliary streams, and O(logN)
passes over these streams. Validity of a node depends on its children, hence it is crucial to have
easy access to the sequence of children of any node. We establish this by computing the FCNS
encoding, which is an encoding of the XML document as a 2-ranked tree. In this encoding,
the sequence of closing tags of the children of a node are consecutive. The computation of
this encoding is the hard part of the validation process, and the resource requirements of our
validation algorithm stem from this operation (Theorem 19). Since the FCNS encoding can be
seen as a reordering of the tags of the original document, our strategy is to regard this problem
as a sorting problem with a particular comparison function. Merge sort can be implemented
as a streaming algorithm with auxiliary streams. We use a version that is customized with an
adapted merge function. The same idea can be used for FCNS decoding with similar complex-
ity (Theorem 23). Then, based on the FCNS encoding, verification can be completed either in
one pass andO(

√
N logN) space (Theorem 21), or in two bidirectional passes andO(log2N)

space (Theorem 20). Figure 3.3 illustrates how our streaming algorithm of Corollary 2 for the
validation of general XML documents is obtained.

Theorem 19 Theorem 20

3 aux. streams 2 passes
O(logN) passes (bidirectional)

Figure 3.3: Schema of our Streaming Algorithm of Corollary 2 for checking DTD-validity of arbi-
trary XML documents. First, the First-Child-Next-Sibling encoding of the input XML document is
computed with 3 auxiliary streams and O(logN) space. Then, validity of the document is checked
with 2 bidirectional passes and O(log2N) space.

Concerning the computation of the FCNS encoding and the FCNS decoding, we show
linear space lower bounds for algorithms that perform one pass over the input and one pass over
the output. For decoding, we present an algorithm that usesO(

√
N logN) space (Theorem 22)

and performs one pass over the input, but two passes over the output. Furthermore, we show
that with 3 auxiliary streams and O(logN) passes, both encoding and decoding can be done
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with O(logN) space. For encoding, we conjecture that if no access to auxiliary streams is
granted the memory space remains Ω(N) after any constant number of passes. This would
show that decoding is easier than encoding.

LB/UB Passes Space Remark
FCNS encoding:
Lower Bound 1 pass on input, 1 pass on output Ω(N) (Fact 6)
Upper Bound O(logN) passes on 3 auxiliary streams O(logN) (Corollary 1)

FCNS decoding:
Lower Bound 1 pass on input, 1 pass on output Ω(N) (Theorem 24)
Upper Bound 1 pass on input, 2 passes on output O(

√
N logN) (Theorem 22)

Upper Bound O(logN) passes on 3 auxiliary streams O(logN) (Theorem 23)

Figure 3.4: Overview about our results on computing the FCNS encoding and the FCNS decoding.
For encoding, an XML document is on the input stream and the goal is to output the FCNS encoding
of this document on an output stream. For decoding, the FCNS encoding of an XML document is
on the input stream and the goal is to output the original document on an output stream.

3.4 Budget Error-Correcting under Earth-Mover-Distance

Consider the following one-way communication setting. Alice holds an object x and Bob holds
an object y. Alice want to send Bob a message M of size o(|x|) such that if y is close to x then
Bob can learn x and if y is far apart from x then Bob can report that x and y are far apart. The
document exchange problem [CPSV00, IMS05, Jow12] fits into this setting. In this problem
Alice has a string x, Bob has a string y, and Alice wants to send a short message to Bob so that
either Bob can learn x or he can output that the Edit Distance between x and y is at least k.
The Edit Distance between two strings is the minimal number of character insertions, deletions
or substitutions that are required to convert x into y.

Suppose now that Bob wants to adjust his object towards Alice’s object in case their inputs
x and y are far apart. We call this setting the object synchronization setting. Efficient protocols
for this setting exist if for instance the Hamming Distance or the Edit Distance is used as a
similarity measure of the objects. In the following, we are going to study this setting under the
Earth-Mover-Distance (EMD).

3.4.1 Earth-Mover-Distance

Definition 5 (Earth-Mover-Distance). Let ∆ > 0 denote the side length of a grid. Let x =
{x1, . . . , xn}, y = {y1, . . . , yn} ⊆ [∆]d be sets of n points on the d-dimensional grid [∆]d.
Then the Earth-Mover-Distance (EMD) between x and y is defined as the minimum weight
perfect matching in the weighted complete bipartite graph with bipartitions x and y where the
weight of an edge between xi and yj is defined as ‖xi − yj‖2. In other words:

EMD(x, y) = minπ:[n]→[n]

∑
1≤i≤n

∥∥xi − yπ(i)

∥∥
2
,
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where π is a permutation.

Figure 3.5: Illustration of the Earth-Mover-Distance. Here we see a set R of red points and a
set B of blue points. The Earth-Mover-Distance EMD(R,B) is the weight of a minimum weight
perfect matching between R and B. This matching is illustrated by the arrows and the value of
EMD(R,B) corresponds to the sum of the lengths of these arrows.

EMD is a popular distance function for images in computer vision (see, e.g., [PBRT99,
RTG00, HRT02, GD04, CB07]). EMD as a distance measure is more sensitive to noise than
for example the Hamming Distance or the Edit Distance. If little noise is introduced into
an image (for instance during data transmission), then this does not necessarily mean that the
EMD between the original image and the noisy image is small. Noise in an image may lead to a
slight shift or rotation of it. Often, this does not affect the usefulness of the image, however, the
EMD is high between the original image and the one after the shift/rotation. For this reason,
a document exchange setting for EMD where Bob only reports that x and y are far apart is
not useful in practice since a small visual difference may lead already to a high EMD. This
motivates the study of the object synchronization setting under Earth-Mover-Distance.

3.4.2 Measuring the Quality of an Adjustment

To measure the quality of Bob’s adjustment, we use an idea from the compressive-sensing
and sparse-recovery literature (see [GI10] for a survey). In sparse recovery, Alice has an n-
dimensional vector x. She sends Bob a linear sketch Ax where A is an m × n (m � n)
matrix, and then Bob reconstructs a vector x∗ such that

‖x− x∗‖p ≤ C mink-sparse x̃ ‖x− x̃‖q ,

where p, q are norm parameters, C > 0 is the approximation factor, and we say a vector x
is k-sparse if it has at most k non-zero coordinates. The goal is to minimize m, that is, the
number of rows of the sketch matrix A since this number corresponds to a message size if the
problem is seen as a one-way communication problem. Inspired by this setting, we define the
EMD k-Budget Error-Correcting Problem.

Definition 6 (The EMD k-Budget Error-Correcting Problem). Let ∆ be an integer. Alice holds
a set of n points x = {x1, . . . , xn} ⊆ [∆]d on the d-dimensional grid [∆]d, and Bob holds
another set of n points y = {y1, . . . , yn} ⊆ [∆]d. Alice sends a message M to Bob, and Bob
then relocates his points to y∗ = {y∗1, . . . , y∗n} ⊆ [∆]d such that

EMD(x, y∗) ≤ C minỹ∈Nk(y) EMD(x, ỹ),
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where Nk(y) denotes all point sets of cardinality n that can be obtained by relocating k points
in y, and C is a fixed approximation factor. The goal is to minimize the message size |M |.

A sparse-recovery scheme could potentially be used for our error-correcting setting: Alice
computes Ax and sends the result to Bob. Bob then computes Ay and (Ax−Ay) = A(x− y).
Then, Bob tries to recover the heaviest coordinates of (x − y) from A(x − y). Indyk and
Price [IP11] studied the sparse recovery setting with p = q = EMD, however, their algorithm
only works for vectors with positive coordinates, and hence their scheme can not be used to
recover the heavy coordinates of x− y.

3.4.3 Our Contribution

In a joint work with Qin Zhang and Wei Yu [KYZ13], we show the following results for EMD
k-Budget Error-Correcting.

• We give an O(d)-approximation protocol with Õ(k log ∆ log(n∆d)) bits1 of communi-
cation (Theorem 25). The algorithm is randomized and has success probability 2/3.

• We complement our upper bound with a lower bound of Ω(k log ∆ log(∆d/k)/log d)
bits of communication (Theorem 26). The lower bound holds for randomized algorithms
that compute an O(d)-approximation.

Note that for typical settings where d = O(1), n = ∆O(1), the upper bound almost matches
the lower bound.

1We use Õ(f) to denote a function of the form O(f log f).
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Chapter 4

Computing Matchings in the
Streaming Model

In this section, we present our results on the computation of matchings in the semi-streaming
model. We start our presentation with notations and definitions in Section 4.1. Then, we
present in Section 4.2 a 3-pass algorithm for bipartite graphs on adversarial order that serves
as a starting point for all our algorithms. This 3-pass algorithm computes a maximal matching
in one-pass and searches for 3-augmenting paths in the second and the third pass. Then, in
Section 4.3 we show how this 3-pass algorithm can be simulated in one pass if the input is
in random order. This algorithm requires a new lemma about the convergence of the Greedy
matching algorithm that we also discuss in this section. We obtain a deterministic one-pass
algorithm on random order for bipartite graphs, and we also show that this idea generalizes
to non-bipartite graphs. Furthermore, we show that in adversarial order, the 3-pass algorithm
can be simulated with 2 passes. We present in Section 4.4 a randomized 2-pass algorithm for
bipartite graphs. Finally, we present a deterministic 2-pass algorithm for bipartite and non-
bipartite graphs in Section 4.5.

4.1 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. If G is bipartite with bipartitions
A and B then we write G = (A,B,E) and we denote V = A∪B. Let n = |V | and m = |E|.
For an edge e ∈ E with end points u, v ∈ V , we denote e by uv. For a subset of edges S ⊆ E
and a vertex v ∈ V , we write degS(v) for the degree of v in S, meaning the number of edges
in S that have v as one of its endpoints.

We define now matchings, maximum matchings and maximal matchings.

Definition 7 (Matching). A matching in a graph G = (V,E) is a subset of edges M ⊆ E such
that ∀v ∈ V : degM (v) ≤ 1. A maximum matching M∗ is a matching such that for any other
matching M ′ : |M∗| ≥ |M ′|. A maximal matching M is a matching that is inclusion-wise
maximal, a.e. ∀e ∈ E \M : M ∪ {e} is not a matching.
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The MAXIMUM BIPARTITE MATCHING problem consists of computing a maximum
matching in a bipartite graph and we abbreviate it by MBM.

The MAXIMUM MATCHING problem consists of computing a maximum matching in a
general graph and we abbreviate it by MM.

For a subset of edges F ⊆ E, we denote by opt(F ) a maximum matching in the graph
G restricted to edges F . We may write opt(G) for opt(E), and M∗ for opt(G). For a set
of vertices S and a set of edges F , let S(F ) be the subset of vertices of S covered by F .
Furthermore, we use the abbreviation S(F ) := S \ S(F ). For S ⊆ V , we write opt(S)
for opt(G|S), that is a maximum matching in the subgraph of G induced by vertices S. In
case of bipartite graphs, for SA ⊆ A and SB ⊆ B we write opt(SA, SB) for opt(G|SA∪SB ).
Moreover, for two sets S1, S2 we denote by S1⊕S2 the symmetric difference (S1 \S2)∪ (S2 \
S1) of the two sets.

A standard technique to increase the size of matchings is to search for augmenting paths.
We define augmenting paths as follows.

Definition 8 (Augmenting Path). Let p ≥ 3 be an odd integer. Then a length p augmenting
path with respect to a matching M in a graph G = (V,E) is a path P = (v1, . . . , vp+1) such
that v1, vp+1 /∈ V (M) and for i ≤ 1/2(p− 1) : v2iv2i+1 ∈M , and v2i−1v2i /∈M .

Figure 4.1: Left: A graph with a matching (in bold) of size 2. The solid vertices are matched
vertices, the white vertices are free vertices. Middle: a length-5 augmenting path. Right: After
augmentation, the size of the matching increased by 1 and all vertices are matched.

An augmenting path of length p (p ≥ 3, p odd) with respect to a matching M in a graph
G = (V,E) is a path that starts and ends at nodes that are not matched in M . We call such
nodes free nodes. All internal nodes of the path are matched in M , and we call these node
matched nodes. The path alternates between edges outside M and edges of M . Removing
from M the edges of the augmenting path that are also in M and inserting into M the edges
outside M increases the size of M by 1. This is illustrated in Figure 4.1.

The input graph G is given as a graph stream, i.e. as a sequence of edges arriving one by
one in some order. Let Π(G) be the set of all edge sequences of G. An input stream for our
streaming algorithms is then an edge sequence π ∈ Π(G). We write π[i] for the i-th edge of π,
and π[i, j] for the subsequence π[i]π[i+ 1] . . . π[j]. In this notation, a round bracket excludes
the smallest or respectively largest element: π(i, j] = π[i + 1, j], and π[i, j) = π[i, j − 1]. If
i, j are real, π[i, j] := π[bic, bjc], and π[i] := π[bic]. Given a subset S ⊆ V , π|S is the largest
subsequence of π such that all edges in π|S are among vertices in S.

We say that an algorithm A computes a c-approximation to the maximum matching prob-
lem if A outputs a matching M such that |M | ≥ c · |opt(G)|. We consider two potential
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sources of randomness: from the algorithm and from the arrival order. Nevertheless, we will
always consider worst case against the graph. For each situation, we relax the notion of c-
approximation so that the expected approximation ratio is c, that is E |M | ≥ c · |opt(G)| where
the expectation can be taken either over the internal random coins of the algorithm, or over all
possible arrival orders.

4.2 Three-pass Semi-Streaming Algorithm for Bipartite Graphs
on Adversarial Order

Let us firstly discuss the greedy matching algorithm. Formally, the greedy matching algorithm
Greedy on graph stream π is defined as follows: Starting with an empty matching M , upon
arrival of an edge π[i], Greedy inserts π[i] into M if π[i] does not intersect any edges in
M , see Algorithm 2. Denote by Greedy(π) the matching M after the stream π has been
fully processed. By maximality, |Greedy(π)| ≥ 1

2 |opt(G)|. Greedy can be seen as a semi-
streaming algorithm for MBM (and even also for MM) with approximation ratio 1

2 and update
time O(1).

Algorithm 2 The Greedy Matching Algorithm
1: M ← ∅
2: while edge stream not empty do
3: e = v1v2 ← next edge in stream
4: if {v1, v2} ∩ V (M) = ∅ then M ←M ∪ {e} end if
5: end while
6: return M

To improve on Greedy with three passes, a simple strategy is to, firstly, compute a maximal
matchingMG in one pass, and then use the second and the third pass to search for 3-augmenting
paths to augment MG.

Suppose that MG is close to a 1/2-approximation.Then almost all edges of MG are 3-
augmentable. We say that an edge e ∈ MG is 3-augmentable if the removal of e from M
allows the insertion of two edges f, g ∈M∗ \M into M . More formally, the following lemma
holds.

Lemma 1. Let ε ≥ 0. Let M be a maximal matching of G st. |M | ≤ (1
2 + ε)|M∗|. Then M

contains at least (1
2 − 3ε)|M∗| 3-augmentable edges.

Proof. The proof is folklore. Let ki denote the number of paths of length i in M ⊕M∗. Since
M∗ is maximum, it has no augmenting path, so all odd length paths are augmenting paths of
M . Since M is maximal, there are no augmenting paths of length 1, so k1 = 0. Every even
length path and every cycle has an equal number of edges from M and from M∗. A path of
length 2i+ 1 has i edges from M and i+ 1 edges from M∗.

|M∗| − |M | =
∑
i≥1

k2i+1 ≤ k3 +
∑
i≥2

1

2
ik2i+1 =

1

2
k3 +

1

2

∑
i≥1

ik2i+1 ≤
1

2
k3 +

1

2
|M |.
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4. COMPUTING MATCHINGS IN THE STREAMING MODEL

Thus, using our assumption on |M |, k3 ≥ 2|M∗| − 3|M | ≥ 2|M∗| − (3
2 + 3ε)|M∗|, implying

the Lemma.

Figure 4.2: Illustration of Lemma 1. If |M | ≤ (1/2 + ε)|M∗|, then at least ( 1
2 − 3ε)|M∗| edges

of M are 3-augmentable.

We search for 3-augmenting paths as follows. Firstly, we compute a maximal matching
ML via the Greedy algorithm between the A vertices that are matched in MG and the free B
vertices. Under the assumption that MG is close to a 1/2 approximation, most of the edges
of MG are 3-augmentable. Hence, there exists a large matching, and since ML is a maximal
matching, ML will be at least of size 1/2 times the number of 3-augmentable edges. Edges
from ML will serve as the start of length 3-augmenting paths. Then in the third pass, we
compute another maximal matching MR in order to complete 3-augmenting paths with the
edges of MG and ML. This algorithm is stated in Algorithm 3, and illustrated in Figure 4.3.
This idea was already used in [FKM+04]. The authors present there an O((log 1

ε )/ε)-pass
semi-streaming algorithm that computes a 2/3 − ε approximation to the maximum bipartite
matching problem. An analysis for Algorithm 3 can be derived from their work.

Algorithm 3 Three-pass Bipartite Matching Algorithm
Require: The input stream π is an edge stream of a bipartite graph G = (A,B,E)

1: MG,ML,MR ← ∅
2: 1st pass: MG ← Greedy(π)
3: GL ← complete graph between A(MG) and B \B(MG)
4: 2nd pass: ML ← Greedy(π ∩GL)
5: GR ← complete graph between {b ∈ B(MG) : A(MG(b)) ∈ A(ML)} and A \A(MG)
6: 3rd pass: MR ← Greedy(π ∩GR)
7: return maximum matching in MG ∪ML ∪MR
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4.3 One-pass Matching Algorithm on Random Order

Figure 4.3: Illustration of Algorithm 3. The graph contains a perfect matching of size 13. In the
first pass, MG is computed and has size 7. This is close to a 1/2 approximation and by Lemma 1,
M has many (here 5) 3-augmentable edges. There exists hence a matching of size at least 5 between
A(MG) and the free B vertices. Since ML is maximal, it is of size at least 5/2 (here 4). Then,
a maximal matching is computed between the solid vertices, which are the B vertices of edges of
MG that can be potentially be completed to a 3-augmenting path, and the free A vertices. In this
example, two length 3 augmenting paths were found.

4.3 One-pass Matching Algorithm on Random Order

We discuss now, how the 3-pass algorithm from the previous section, Section 4.2, can be simu-
lated with a single pass if the input is in random order. We firstly present in Subsection 4.3.1 a
Lemma about the convergence of the Greedy matching algorithm if the input is in random or-
der. This lemma is the main ingredient for our one-pass algorithms. Then, in Subsection 4.3.2
we discuss our one-pass algorithm on random order for bipartite graphs, and we extend it to
general graphs in Subsection 4.3.3.

4.3.1 A Lemma on the Convergence of the Greedy Algorithm

The Greedy matching algorithm (Algorithm 2) plays a central role in the design of our one-pass
matching algorithm for streams that are in uniform random order. It is very easy to see that
the Greedy algorithm is not better than a 1/2-approximation when the stream is in adversarial
order: Consider a line of length 3 and suppose that the edge in the middle arrives first. When
the input stream is in uniform random order, Dyer and Frieze proved in [DF91] for general
graphs that Greedy is not better than a 1/2-approximation. Their hard instance can be adapted
to bipartite graphs as shown in Figure 4.4.

The hard instance is a graph on 4n vertices. Each vertex of a complete bipartite graphKn,n

on 2n vertices is duplicated and an edge connecting the vertex with its duplicate is inserted
(this is the set E′ in Figure 4.4). Then E′ is also a perfect matching in this graph. The graph
is constructed such that all edges of the Kn,n are bad edges for the matching: Taking such an
edge into the matching blocks two edges of E′. Since the Kn,n has Θ(n2) edges and the set E′

consists only of n edges, Greedy picks almost only edges from the Kn,n in the random arrival
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E′ Kn
2
,n
2

E′

Figure 4.4: Hard instance for the Greedy matching algorithm in the random arrival order model.
Each vertex of a complete bipartite graphKn,n on 2n vertices is duplicated and an edge connecting
the vertex with its duplicate is inserted (the set E′). This graph has a perfect matching consisting
of the edges E′. Since the Kn,n has Θ(n2) edges while the set E′ consists only of 2n edges, in
the random arrival order Greedy picks almost only edges from the Kn,n. Each of these edges,
however, blocks two optimal edges from E′.

order. For a precise analysis, see the work of Dyer and Frieze [DF91].
This example illustrates that, if on random order Greedy produces a matching of size close

to 1/2 times the size of a maximum matching M∗, then the graph contains many bad edges
blocking two edges of M∗. Note that since the edges of M∗ arrive in uniform random order,
in average an α fraction of these edges arrives in the first α fraction of the stream, and as we
already pointed out, most of these edges are not taken into the Greedy matching. This implies
that if Greedy produces a matching close to a 1/2 approximation on random order, then Greedy
must take many bad edges early on.

We make this intuition rigorous in Lemma 2. Lemma 2 allows us to conclude that if Greedy
on the entire graph is no better than a 1/2+ ε approximation, then after seeing a mere one third
of the edges of the graph, Greedy is already a 1/2 − ε approximation, so it is already close to
maximal.

Lemma 2. LetG = (V,E) be a graph withm = |E|. Then, if Eπ |Greedy(π)| ≤ (1
2 + ε)|M∗|

for some 0 < ε < 1/2, then for any 0 < α ≤ 1,

E
π
|Greedy(π[1, αm])| ≥ |M∗|(1

2
− (

1

α
− 2)ε).

Proof. Let M0 = Greedy(π[1, αm]). Rather than directly analyzing the number of edges
|M0|, we analyze the number of vertices matched byM0, which is equivalent since |V (M0)| =
2(|M0|).

Fix an edge e = ab of M∗. Either e ∈ M0, or at least one of a, b is matched by M0, or
neither a nor b are matched. Summing over all e ∈M∗ gives

|V (M0)| ≥ 2|M∗ ∩M0|+ |M∗ \M0| −
∑

e=ab∈M∗
χ[a and b /∈ V (M0)],
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where χ[X] = 1 if the event X happens, otherwise χ[X] = 0. We show in Lemma 3 that

Pr[a and b /∈ V (M0)] ≤ (
1

α
− 1) Pr[e ∈M0]. (4.1)

Taking expectations and using Inequality 4.1,

E
π

(|V (M0)|) ≥ 2E
π
|M∗ ∩M0|+ E

π
|M∗ \M0| − (

1

α
− 1)E

π
|M∗ ∩M0|

= |M∗| − (
1

α
− 2)E

π
|M∗ ∩M0|.

We will show in Lemma 4 that for a maximum matching M∗ and any maximal matching MG,
we have |MG ∩M∗| ≤ 2(|MG| − 1/2|M∗|). Using this, and since M0 is just a subset of the
edges of MG, we obtain by linearity of expectation

E
π
|M∗ ∩M0| ≤ E

π
|M∗ ∩MG| ≤ 2(E

π
|MG| −

1

2
|M∗|) ≤ 2ε|M∗|.

Combining gives the Lemma.

We now prove Lemma 3 that was used in the proof of Lemma 2.

Lemma 3. Let G = (V,E) be a graph with m = |E|. Furthermore, let Eπ |Greedy(π)| ≤
(1

2 + ε)|M∗| for some 0 < ε < 1/2. Let M0 = Greedy(π[1, αm]) for some 0 < α ≤ 1/2.
Then:

∀e = ab ∈ E : Pr[a and b /∈ V (M0)] ≤ (
1

α
− 1) Pr[e ∈M0].

Proof. Observe: Pr[a and b /∈ V (M0)] + Pr[e ∈M0] = Pr[a and b /∈ V (M0 \ {e})], because
the two events on the left hand side are disjoint and their union is the event on the right hand
side.

Consider the following probabilistic argument. Take the execution for a particular ordering
π. Assume that a and b /∈ V (M0 \ {e}) and let t be the arrival time of e. If we modify the
ordering by changing the arrival time of e to some time t′ ≤ t, then we still have a and b /∈
V (M0 \{e}). More formally, we define a map f from the uniform distribution on all orderings
to the uniform distribution on all orderings such that e ∈ π[1, αm]: if e ∈ π[1, αm] then
f(π) = π and otherwise f(π) is the permutation obtained from π by removing e and re-
inserting it at a position picked uniformly at random in [1, αm]. Thus,

Pr[a and b /∈ V (M0 \ {e})] ≤ Pr[a and b /∈ V (M0 \ {e})|e ∈ π[1, αm]].

Now, the right-hand side equals Pr[e ∈ M0|e ∈ π[1, αm]], which simplifies into Pr[e ∈
M0]/Pr[e ∈ π[1, αm]] since e can only be in M0 if it is one of the first αm arrivals. Then we
conclude the Lemma by the random order assumption Pr[e ∈ π[1, αm]] = α.

Lemma 4 shows that an optimal matching and a maximal matching that is far from this
optimal matching in size do not have many edges in common.
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4. COMPUTING MATCHINGS IN THE STREAMING MODEL

Lemma 4. Let M be a maximal matching of a graph G. Then

|M ∩M∗| ≤ 2(|M | − 1

2
|M∗|).

Proof. This is a piece of elementary combinatorics. Since M is a maximal matching, for every
edge e of M∗ \ M , at least one of the two endpoints of e is matched in M \ M∗, and so
|M \M∗| ≥ (1/2)|M∗ \M |. We have |M∗ \M | = |M∗| − |M∗ ∩M |. Combining gives

|M ∩M∗| = |M | − |M \M∗| ≤ |M | − 1

2
|M∗ \M | = |M | − 1

2
(|M∗| − |M∗ ∩M |)

which implies the Lemma.

4.3.2 Bipartite Graphs

Algorithm. We simulate the 3-pass algorithm, Algorithm 3, in one pass as follows. We split
the input graph stream π ∈ Π(G) into three phases π[1, αm], π(αm, βm], and π(βm,m] and
in each phase, we build a matching. M0 is built during the first phase and corresponds to
matchingMG of our 3-pass algorithm. M1 is built in the second phase andM2 in the third, and
they correspond to ML and MR of our 3-pass algorithm, respectively. Assume that Greedy
performs badly on the input graph G. Lemma 1 tells us that almost all of the edges of M0 are
3-augmentable. To find 3-augmenting paths, in the next part of the stream we run Greedy to
compute a matching M1 between B(M0) and A(M0). The edges in M1 serve as one of the
edges of 3-augmenting paths (from the B-side of M0). In Lemma 5, we show that we find
a constant fraction of those. In the last part of the stream, again by the help of Greedy, we
compute a matching M2 that completes the 3-augmenting paths. Lemma 8 shows that by this
strategy we find many 3-augmenting paths. Then, either a simple Greedy matching performs
well on G, or else we can find many 3-augmenting paths and use them to improve M0: see the
main theorem, Theorem 1 whose proof is deferred to the end of this section. An illustration is
provided in Figure 4.5.

Algorithm 4 One-pass Bipartite Matching on Random Order

1: α← 0.4312, β ← 0.7595
2: MG ← Greedy(π)
3: M0 ← Greedy(π[1, αm]), matching obtained by Greedy on the first bαmc edges
4: F1 ← complete bipartite graph between B(M0) and A(M0)
5: M1 ← Greedy(F1 ∩ π(αm, βm]), matching obtained by Greedy on edges bαmc + 1

through βm that intersect F1

6: A′ ← {a ∈ A | ∃b ∈ B(M1) : ab ∈M0}
7: F2 ← complete bipartite graph between A′ and B(M0)
8: M2 ← Greedy(F2∩π(βm,m]), matching obtained by Greedy on edges bβmc+1 through
m that intersect F2

9: M ← matching obtained from M0 augmented by M1 ∪M2

10: return larger of the two matchings MG and M
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3-aug. edges of M0

other edges of M0

M0 M1M2

B A B A

...

...

vertex ∈ A′

edge ∈M1 or M2

edge ∈M∗

Figure 4.5: Illustration of Algorithm 4. Note that every edge of M2 completes a 3-augmenting
path consisting of one edge of M1 (on the right hand side of the picture) followed by one edge of
M0 (center) followed by one edge of M2 (on the left hand side of the picture).

Observe that our algorithm only uses memory space O(n log n). Indeed, the subsets F1

and F2 can be compactly represented by two n-bit arrays, and checking if an edge of π belongs
to one of them can be done within time O(1) from that compact representation.

Analysis. We use the notations of Algorithm 4. Consider α and β as variables with 0 ≤
α ≤ 1

2 < β < 1.

Lemma 5. Assume that Eπ |MG| ≤ (1
2 + ε)|M∗|. Then the expected size of a maximum

matching between the vertices of A left unmatched by M0 and the vertices of B matched by
M0 can be bounded below as follows:

E
π
|opt(A(M0), B(M0))| ≥ |M∗|(1

2
− (

1

α
+ 2)ε).

Proof. The size of a maximum matching between A(M0) and B(M0) is at least the number
of augmenting paths of length 3 in M0 ⊕M∗. By Lemma 1, in expectation, the number of
augmenting paths of length 3 inMG⊕M∗ is at least (1

2−3ε)|M∗|.All of those are augmenting
paths of length 3 in M0 ⊕M∗, except for at most |MG| − |M0|. Hence, in expectation, M0

contains (1
2 − 3ε)|M∗|− (Eπ |MG|−Eπ |M0|) 3-augmentable edges. Lemma 2 applied to M0

concludes the proof.

Lemma 6. Eπ |M1| ≥ 1
2(β − α)(Eπ |opt(A(M0), B(M0))| − 1

1−α).

Proof. Since Greedy computes a maximal matching which is at least half the size of a maxi-
mum matching, Eπ |M1| ≥ 1

2 Eπ |opt(A(M0), B(M0)) ∩ π(αm, βm]|.
By independence between M0 and the ordering within (αm,m], we see that even if we

condition on M0, we still have that π(αm, βm] is a random uniform subset of π(αm,m].
Thus:

E
π
|opt(A(M0), B(M0)) ∩ π(αm, βm]| = β−α

1−α E
π
|opt(A(M0), B(M0)) ∩ π(αm,m]|.
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We use a probabilistic argument similar to but slightly more complicated than the proof of
Lemma 3. We define a map f from the uniform distribution on all orderings to the uniform
distribution on all orderings such that e ∈ π(αm,m]: if e ∈ π(αm,m] then f(π) = π
and otherwise f(π) is the permutation obtained from π by removing e and re-inserting it at
a position picked uniformly at random in (αm,m]; in the latter case, if this causes an edge
f = a′b′, previously arriving at time bαmc + 1, to now arrive at time bαmc and to be added
to M0, we define M ′0 = M0 \ {f}; in all other cases we define M ′0 = M0. Thus, if in π we
have e ∈ opt(A(M0), B(M0)), then in f(π) we have e ∈ opt(A(M ′0), B(M ′0)). Since the
distribution of f(π) is uniform conditioned on e ∈ π(αm,m]:

Pr[e ∈ opt(A(M ′0), B(M ′0)) and e ∈ π(αm,m]]

Pr[e ∈ π(αm,m]]
≥ Pr[e ∈ opt(A(M0), B(M0))],

Using Pr[e ∈ π(αm,m]] = 1− α and summing over e:
Eπ |opt(A(M ′0), B(M ′0)) ∩ π(αm,m]| ≥ (1− α)Eπ |opt(A(M0), B(M0))|.

Since M ′0 and M0 differ by at most one edge, |opt(A(M0), B(M0))| ≥
|opt(A(M ′0), B(M ′0))| − 1, and the Lemma follows.

Lemma 7. Assume that Eπ |MG| ≤ (1
2 + ε)|M∗|. Then:

E
π
|opt(A′, B(M0)| ≥ E

π
|M1| − 4ε|M∗|.

Proof. |opt(A′, B(M0)| is at least |M1| minus the number of edges of M0 that are not 3-
augmentable. Since M0 is a subset of MG, the latter term is bounded by the number of edges
of MG that are not 3-augmentable, which by Lemma 1 is in expectation at most (1

2 + ε)|M∗|−
(1

2 − 3ε)|M∗| = 4ε|M∗|.

Lemma 8. E
π
|M2| ≥

1

2
((1− β)E

π
|opt(A′, B(M0))| − 1).

Proof. Since Greedy computes a maximal matching which is at least half the size of a maxi-
mum matching,

E
π
|M2| ≥

1

2
E
π
|opt(A′, B(M0)) ∩ π(βm,m]|.

Formally, we define a map f from the uniform distribution on all orderings to the uniform
distribution on all orderings such that e ∈ π(βm,m]: if e ∈ π(βm,m] then f(π) = π
and otherwise f(π) is the permutation obtained from π by removing e and re-inserting it at
a position picked uniformly at random in (βm,m]; in the latter case, if this causes an edge
e′ = a′b′, previously arriving at time bβmc + 1, to now arrive at time bβmc and to be added
to M1, we define A′′ = A′ \ {M0(b′)}; in all other cases we define A′′ = A′. Thus, if in π we
have e ∈ opt(A′, B(M0)), then in f(π) we have e ∈ opt(A′′, B(M0)). Since the distribution
of f(π) is uniform conditioned on e ∈ π(βm,m]:

Pr[e ∈ opt(A′′, B(M0)) and e ∈ π(βm,m]]

Pr[e ∈ π(βm,m]]
≥ Pr[e ∈ opt(A′, B(M0))],

Using Pr[e ∈ π(βm,m]] = 1− β and summing over e:

E
π
|opt(A′′, B(M0)) ∩ π(βm,m]| ≥ (1− β)E

π
|opt(A′, B(M0))|.
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Since A′ and A′′ differ by at most one vertex,
|opt(A′′, B(M0))| ≥ |opt(A′, B(M0))| − 1, and the Lemma follows.

We now present the proof of the main theorem, Theorem 1.

Theorem 1. Algorithm 4 is a deterministic one-pass semi-streaming algorithm for MBM with
expected approximation ratio 1

2 + 0.005 against (uniform) random order for any graph, and
can be implemented with O(1) processing time per letter.

Proof. Assume that Eπ |MG| ≤ (1
2 + ε)|M∗|. By construction, every e ∈ M2 completes

a 3−augmenting path, hence |M | ≥ |M0| + |M2|. In Lemma 2 we show that Eπ |M0| ≥
|M∗|(1

2 − ( 1
α − 2)ε). By Lemmas 8 and 7, |M2| can be related to |M1|:

E
π
|M2| ≥

1

2
(1− β)E

π
|opt(A′, B(M0))| − 1

2
≥ 1

2
(1− β)(E

π
|M1| − 4ε|M∗|)− 1

2
.

By Lemmas 6 and 5, |M1| can be related to |M∗|:

E
π
|M1| ≥ 1

2(β − α)E
π
|opt(A(M0), B(M0)| −O(1)

≥ 1
2(β − α)(|M∗|(1

2
− (

1

α
+ 2)ε))−O(1).

Combining,
E
π
|M | ≥ |M∗|(1

2 − ( 1
α − 2)ε+ 1

2(1− β)(1
2(β − α)(1

2 − ( 1
α + 2)ε)− 4ε))−O(1).

The expected value of the output of the Algorithm is at least minε max{(1
2 + ε)|M∗|,Eπ |M |}.

We set the right hand side of the above Equation equal to (1
2 + ε)|M∗|. By a numerical search

we optimize parameters α, β. Setting α = 0.4312 and β = 0.7595, we obtain ε ≈ 0.005 which
proves the Theorem.

4.3.3 Extension to General Graphs

In this section, we show how the one-pass algorithm of Section 4.3.2 can be adapted to general
graphs G = (V,E).

Algorithm. Algorithm 5 follows the same line as Algorithm 4 for the bipartite case. While
in the bipartite case, edges from M1 extend M0 on only one bipartition, and those edges do
not interfere with edges from M2, this structure is no longer given in the general setting. Here,
M1 is a Greedy matching between the matched vertices in M0 and all free vertices. This may
already produce some 3-augmenting paths, however, it may also happen that by taking a bad
edge into M1, this rules out any possibility of finishing the 3-augmenting paths containing
these edges. We call the edge of M0 blocked if it can not be completed to a 3-augmenting path,
see Definition 9.

We show in Lemma 11 that the probability that an edge of M0 will become blocked is
at most 1/2. This guarantees that we can finalize many 3-augmenting paths by the Greedy
matching M2.

Aug is a set of length 3 paths. |Aug| denotes the number of length 3 paths in Aug. For
some vertex a ∈ V (resp. some edge e ∈ E), we write a ∈ Aug (resp. e ∈ Aug) if a (resp. e)
is part of some length 3 path.

Analysis. We bound the size of a maximum matching between V (M0) and V (M0).
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a b c d∈M0

Figure 4.6: If edge bd is taken into M1 and edge ac /∈ E, this may block the 3-augmenting path
ab, bc, cd. In that case we call bc blocked.

Algorithm 5 One-pass Matching on Random Order for General Graphs
1: α← 0.413, β ← 0.708
2: MG ← Greedy(π)
3: M0 ← Greedy(π[1, αm]), matching obtained by Greedy on the first bαmc edges
4: F1 ← complete bipartite graph between V (M0) and V (M0)
5: M1 ← Greedy(F1 ∩ π(αm, βm]), matching obtained by Greedy on edges bαmc+ 1 through βm

that intersect F1

6: Aug ← length 3 paths in M0 ⊕M1

7: V1 ← {u ∈ V \ V (Aug) | ∃v ∈ V (M1) : uv ∈M0}
8: V2 ← V (M0) \ V (Aug)
9: F2 ← maximal bipartite graph between V1 and V2 such that @m0 ∈ M0 \ Aug,m1 ∈ M1 \
Aug, f2 ∈ F2 st. they form a triangle

10: M2 ← Greedy(F2∩π(βm,m]), matching obtained by Greedy on edges bβmc+1 through m that
intersect F2

11: M ← matching obtained from M0 augmented by M1 ∪M2

12: return larger of the two matchings MG and M

Lemma 9. Assume that Eπ |MG| ≤ (1
2 + ε)|M∗|. Then:

E |opt(V (M0), V (M0))| ≥ |M∗|(1− 2(
1

α
+ 2)ε).

Proof. The size of a maximum matching between V (M0) and V (M0) is at least twice the
number of augmenting paths of length 3 in M0 ⊕ M∗. By Lemma 1, in expectation, the
number of augmenting paths of length 3 in MG ⊕M∗ is at least (1

2 − 3ε)|M∗|. All of those
are augmenting paths of length 3 in M0 ⊕M∗, except for at most |MG| − |M0|. Hence, in
expectation, M0 contains (1

2 − 3ε)|M∗| − (E |MG| − E |M0|) edges that are 3-augmentable.
Lemma 2 applied to M0 concludes the proof.

Lemma 10. Assume that Eπ |MG| ≤ (1
2 + ε)|M∗|. Then:

E |M1| ≥
1

2
(β − α)(E |opt(V (M0), V (M0))| − 1

1− α
).

Proof. The proof is identical to the proof of Lemma 6.

Definition 9 (Blocked edge). Let e = uv ∈ M0 such that e is 3-augmentable by edges o1 =
uu′, o2 = vv′ ∈M∗. We call e blocked, if:

1. either uv′ ∈ E or u′v ∈ E (not both of them), and
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2. if uv′ ∈ E then uv′ ∈M1, otherwise u′v ∈M1.

Lemma 11.
Pr[e blocked | e ∈M0] ≤ 1

2
.

Proof. W.l.o.g. let uv′ ∈ E and u′v /∈ E.

Pr[e blocked | e ∈M0] = Pr[e /∈ Aug and uv′ ∈M1 | e ∈M0]

≤ Pr[uv′ ∈M1 | e ∈M0 \Aug].

Since Pr[uv′ ∈M1 | e ∈M0 \Aug] = Pr[vv′ ∈M1 | e ∈M0 \Aug], and since the events
(uv′ ∈ M1 | e ∈ M0 \ Aug) and (vv′ ∈ M1 | e ∈ M0 \ Aug) exclude each other, the result
follows.

Lemma 12.
E |opt(F2)| ≥ max{1

2
(E |M1| − 4|Aug| − 4ε|M∗|), 0}.

Proof. The size of a maximum matching in F2 is at least the number of length 2 paths in
M0 ⊕M1 that can be completed to a 3-augmenting path. Denote by k2 the number of length
two paths in M0⊕M1. Then, |M1| = 2|Aug|+ k2. A length 3 path may block at most 2 other
length 2 paths from being completed.

By Lemma 1, the number of edges of |MG| that are not 3-augmentable is in expectation at
most (1

2 + ε)|M∗| − (1
2 − 3ε)|M∗| = 4ε|M∗|. Since M0 is a subset of MG, it follows that at

most 4ε|M∗| edges fromM0 are not 3-augmentable. Hence, the number ofM0 edges for which
a length two path was found and which is 3-augmentable is at least (k2−2|Aug|−4ε|M∗|). In
expectation, by Lemma 11, at most half of these edges are blocked. The Lemma follows.

Lemma 13.
E |M2| ≥

1

2
((1− β)E |opt(F2)| − 1) .

Proof. This proof is identical to the proof of Lemma 8.

We now present the proof of the main theorem, Theorem 2.

Theorem 2. Algorithm 5 is a deterministic one-pass semi-streaming algorithm for MAXIMUM

MATCHING with approximation ratio 1
2 +0.00363 in expectation over (uniform) random order

for any graph, and can be implemented with O(1) processing time per letter.

Proof. The expected matching size is

E |M | ≥ E |M0|+ |Aug|+
1

2
E |M2|, (4.2)
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since, by construction, at least half of the edges of M2 can be used to complete a 3-
augmenting path. Firstly, we bound |M2| by Lemma 13 and Lemma 12 and we obtain

E |M2| ≥ max{0, (1− β)(
1

4
E |M1| − |Aug| − ε|M∗|)−O(1)}. (4.3)

By Lemma 10 and Lemma 9, we bound the size of M1 and we obtain

E |M1| ≥
1

2
|M∗|(β − α)(1− 2(

1

α
+ 2)ε)−O(1). (4.4)

Using Inequality 4.4 in Inequality 4.3, we obtain

E |M2| ≥ max{0, (1−β)(
1

8
|M∗|

(
(β − α)(1− 2(

1

α
+ 2)ε)− ε

)
− |Aug|)−O(1)}. (4.5)

Furthermore, in Lemma 2 we show that Eπ |M0| ≥ |M∗|(1
2 − ( 1

α − 2)ε). We use this and In-
equality 4.5 in Inequality 4.2 and we obtain an Inequality for E |M | that depends on α, β, |Aug|
and ε. It is easy to see that this Inequality is minimized if |Aug| = 0.

The expected value of the output of the Algorithm is at least minε max{(1
2 +

ε)|M∗|,Eπ |M |}. By a numerical search we optimize parameters α, β. Setting α = 0.413, β =
0.708, we obtain ε ≈ 0.00363. which proves the Theorem.
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4.4 Randomized Two-pass Algorithm on any Order

We present now a randomized two-pass semi-streaming algorithm for maximum matching for
bipartite graphs with approximation ratio strictly greater than 1

2 . This algorithm simulates the
three passes of the 3-pass algorithm of Section 4.2 in two passes. We require a new property
of the Greedy algorithm that may be of independent interest. In Subsection 4.4.1, we discuss
this new property. Then, we present in Subsection 4.4.2 our two-pass randomized algorithm
for bipartite graphs.

4.4.1 Matching Many Vertices of a Random Vertex Subset

Consider a bipartite graph G = (A,B,E). For a fixed parameter 0 < p ≤ 1, Algorithm 6
generates an independent random sample of vertices A′ ⊆ A such that Pr[a ∈ A′] = p, for all
a ∈ A, and runs then the Greedy algorithm on the subgraph G|A′×B .

Algorithm 6 Matching a Random Subset of Vertices (Bipartite Graphs)

1: Take independent random sample A′ ⊆ A st. Pr[a ∈ A′] = p, for all a ∈ A
2: Let F be the complete bipartite graph between A′ and B
3: return M ′ = Greedy(F ∩ π)

We prove in Theorem 3 that the greedy algorithm restricted to the edges with an endpoint in
A′ will output a matching of expected approximation ratio p/(1 + p), compared to a maximum
matching opt(G) over the full graph G. Since, in expectation, the size of A′ is p|A|, one can
roughly say that a fraction of 1/(1 + p) of vertices in |A′| has been matched.

The proof of Theorem 3 will use Wald’s equation for super-martingales, see [MU05],
Wald’s Equation, p.300, section 12.3.1

Lemma 14 (Wald’s equation). Consider a process described by a sequence of random states
(Si)i≥0 and let D be a random stopping time for the process, such that ED < ∞. Let
(Φ(Si))i≥0 be a sequence of random variables for which there exist c, µ such that

1. Φ(S0) = 0;

2. Φ(Si+1)− Φ(Si) < c for all i < D; and

3. E[Φ(Si+1)− Φ(Si) |Si] ≤ µ for all i < D.

Then:
EΦ(SD) ≤ µED.

Theorem 3. Let 0 < p ≤ 1, let G = (A,B,E) be a bipartite graph. Let A′ be an independent
random sample A′ ⊂ A such that Pr[a ∈ A′] = p, for all a ∈ A. Let F be the complete
bipartite graph between A′ and B Then for any input stream π ∈ Π(G):

1The theorem cited in the book is actually weaker than the one we need, but our
statement follows from the proof of that Theorem. Another source is available online at
http://greedyalgs.info/blog/stopping-times-walds/

41



4. COMPUTING MATCHINGS IN THE STREAMING MODEL

E
A′
|Greedy(F ∩ π)| ≥ p

1 + p
|opt(G)|.

Proof. Let M ′ = Greedy(F ∩ π). For i ≤ |M ′|, denote by M ′i the first i edges of M ′, in the
order in which they were added to M ′ during the execution of Greedy.

Let M∗ be a fixed maximum matching in G and let MF denote the edges of M∗ that are
in F . Let A′′ = A(MF ) denote the vertices of A′ matched by MF . Consider a vertex a ∈ A′′
and its match b in matching MF . We say that a is live with respect to M ′i if both a and b
are unmatched in M ′i . A vertex that is not live is dead. Furthermore, we say that an edge of
M ′i+1 \M ′i kills a vertex a if a is live with respect to M ′i and dead with respect to M ′i+1.

We use Lemma 14. Here, by “time“, we mean the number of edges in M ′, so between
time i− 1 and time i, during the execution of Greedy, several edges arrive and all are rejected
except the last one which is added to M ′. We use a potential function φ(i) which we define as
the number of dead vertices wrt. M ′i . We define the stopping time D as the first time when the
event φ(i) = |A′′| holds.

We only need to check that the three assumptions of the Stopping Lemma hold. First, ini-
tially all nodes of A′′ are live, so φ(0) = 0. Second, the potential function φ is non-decreasing
and uniformly bounded: since adding an edge to M ′ can kill at most two vertices of A′′, we
always have ∆φ(i) := φ(i+ 1)−φ(i) ≤ 2. Third, let Si denote the state of the process at time
i, namely the information about the entire sequence of edge arrivals up to that time, hence, in
particular, the set of i edges currently in M ′. Observe that, here, G and M∗ are fixed. Then D
is indeed a stopping time, since the event D ≥ i+ 1 can be inferred from the knowledge of Si.

We now claim that:
E(∆φ(i) | Si) ≤ 1 + p. (4.6)

Indeed, since ∆φ(i) only takes on values 0, 1 or 2, we can write that E(∆φ(i)|Si) ≤ 1 +
Pr[∆φ(i) = 2|Si]. To bound the latter probability, let e = ab denote the edge of M ′i+1 \M ′i
and let t be such that e = π[t]. In order for e to change φ by 2, it must be that b is matched in
M∗ to a node a′ that is also in A′′. Furthermore, it is required that a′ was unmatched before
edge e arrived. Since a′ was unmatched up to arrival t, no edge a′b′ had been seen among the
first t edges of stream π, such that b′ was free at arrival time (of a′b′). Thus

Pr[∆φ(i) = 2|Si] ≤
Pr[a′ ∈ A′ and @a′b′ ∈ π[1, t] st. b′ was free when a′b′ arrived|Si].

Now, given that no edge f = a′b′ arrived before t such that b′ was free when a′b′ arrived, the
outcome of the random coin determining whether a′ ∈ A′ was never looked at, and could have
been postponed until t. Thus

Pr[a′ ∈ A′ | (@a′b′ ∈ π[1, t] such that b′ was free when a′b′ arrived, Si)] =

Pr[a′ ∈ A′] = p,

implying Inequality 4.6. Applying Walds’ Stopping Lemma, we obtain Eφ(D) ≤ (1 +
p)ED. Finally, observe that Eφ(D) = E |A′′| = p · |opt(G)| and that D ≤ |Greedy(F ∩ π)|,
and the Theorem follows.

42



4.4 Randomized Two-pass Algorithm on any Order

4.4.2 A Randomized Two-pass Algorithm for Bipartite Graphs

Based on Theorem 3, we design our randomized two-pass algorithm for bipartite graphs G =
(A,B,E). Assume that Greedy(π) returns a matching that is close to a 1

2 -approximation. In
order to apply Theorem 3, we pick an independent random sample A′ ⊆ A such that Pr[a ∈
A′] = p for all a. In a first pass, our algorithm computes a Greedy matching M0 of G, and a
Greedy matching M ′ between vertices of A′ and B. M ′ then contains some edges that form
parts of 3-augmenting paths for M0: see Figure 4.7 and Figure 4.8 for an illustration. Let
M1 ⊂ M ′ be the set of those edges. It remains to complete these length 2 paths M0 ∪M1 in
a second pass by a further Greedy matching M2. In the prove of Theorem 4, we show that if
Greedy(π) is close to a 1

2 -approximation, then we find many 3-augmenting paths.

Algorithm 7 Two-pass Randomized Bipartite Matching Algorithm

1: Let p←
√

2− 1.
2: Take an independent random sample A′ ⊆ A st. Pr[a ∈ A′] = p, for all a ∈ A
3: Let F1 be the set of edges with one endpoint in A′.
4: First pass: M0 ← Greedy(π) and M ′ ← Greedy(F1 ∩ π)
5: M1 ← {e ∈M ′ | e goes between B(M0) and A(M0)}
6: A2 ← {a ∈ A(M0) : ∃b, c : ab ∈M0 and bc ∈M1}.
7: Let F2 ← {da : d ∈ B(M0) and a ∈ A(M0) and ∃b, c : ab ∈M0 and bc ∈M1}.
8: Second pass: M2 ← Greedy(F2 ∩ π)
9: Augment M0 by edges in M1 and M2 and store it in M

10: return the resulting matching M

3-augmentable edges

other edges

M0 M1 ⊆M ′
B A B A

...

...

vertex ∈ A′

edge ∈M ′ \M1

edge ∈M1

edge ∈M∗

Figure 4.7: Illustration of the first pass of Algorithm 7. By Theorem 3, nearly all vertices of A′

are matched in M ′, in particular those that are not matched in M0.

Theorem 4. Algorithm 7 is a randomized two-pass semi-streaming algorithm for MBM with
expected approximation ratio 1

2 + 0.019 in expectation over its internal random coin flips for
any graph and any arrival order, and can be implemented with O(1) processing time per letter.
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M0 M1 ⊆M ′
B A B A

...

...

**

* Here, the edges of M ′ \M1

are not drawn.

Edges forming a large
matching of F2

Vertices in A2

Figure 4.8: Analysis of the second pass of Algorithm 7. Here, we see that M0 ⊕M1 has two
paths of length 2, and that both of those paths can be extended into 3-augmenting paths using M∗:
this illustrates |opt(F2)| ≥ 2. Matching M2, being a 1/2 approximation, will find at least one
3-augmenting path.

Proof. By construction, each edge in M2 is part of a 3-augmenting path, hence the output has
size: |M | = |M0|+ |M2|.

Define ε to be such that |M0| = (1
2 + ε)|opt(G)|. Since M2 is a maximal matching of F2,

we have |M2| ≥ 1
2 |opt(F2)|. Let M∗ be a maximum matching of G. Then |opt(F2)| is greater

than or equal to the number of edges ab of M0 such that there exists an edge bc of M1 and an
edge da of M∗ that altogether form a 3-augmenting path of M0:

|opt(F2)| ≥ |{ab ∈M0 | ∃c : bc ∈M1 and ∃d : da ∈M∗}|
≥ |{ab ∈M0 | ∃c : bc ∈M1}| − |{ab ∈M0 | ab not 3-augmentable}|.

Lemma 1 gives |{ab ∈ M0 | ab is not 3-augmentable with M∗}| ≤ 4ε|opt(G)|. It remains
to bound |{ab ∈ M0 | ∃c : bc ∈ M1}| from below. By definition of M ′ and of M1 ⊆ M ′, and
by maximality of M0,

|{ab ∈M0 | ∃c : bc ∈M1}| = |M ′| − |{ab ∈M ′ | a ∈ A(M0)}|
≥ |M ′| − |A(M0) ∩A′|.

Taking expectations, by Theorem 3 and by independence of M0 from A′:

E
A′
|M ′| − E

A′
|A(M0) ∩A′| ≥ p

1 + p
|opt(G)| − p(1

2
+ ε)|opt(G)|.

Combining:

E
A′
|M | ≥ (

1

2
+ ε)|opt(G)|+ 1

2

(
|opt(G)|p( 1

1 + p
− 1

2
− ε)− 4ε|opt(G)|.

)
For ε small, the right hand side is maximized for p =

√
2 − 1. Then ε ≈ 0.019 minimizes

max{|M |, |M0|} which proves the theorem.
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4.5 Deterministic Two-pass Algorithm on any Order

We discuss now deterministic two-pass streaming algorithms for MBM and MM for input
streams in adversarial order. We start our presentation with an algorithm for bipartite graphs in
Section 4.5.1. Then, we show how this idea can be extended to general graphs in Section 4.5.2.

4.5.1 Bipartite Graphs

Algorithm. The deterministic two-pass algorithm, Algorithm 9, follows the same line as its
randomized version, Algorithm 7. In a first pass, we compute a Greedy matchingM0 and some
additional edges S that we compute by Algorithm 8. If M0 is close to a 1

2 -approximation then
S contains edges that serve as parts of 3-augmenting paths. These are completed via a Greedy
matching in the second pass.

The way we compute the edge set S is now different. In Algorithm 7, S was a matching
M ′ between B and a random subset A′ of A. Now, S is not a matching but a relaxation of
matchings as follows. Given an integer λ ≥ 2, an incomplete λ-bounded semi-matching S of
a bipartite graph G = (A,B,E) is a subset S ⊆ E such that degS(a) ≤ 1 and degS(b) ≤ λ,
for all a ∈ A and b ∈ B. This notion is closely related to semi-matchings. A semi-matching
matches all A vertices to B vertices without limitations on the degree of a B vertex. However,
since we require that the B vertices have constant degree, we loosen the condition that all A
vertices need to be matched.

In Lemma 15, we show that Algorithm 8, a straightforward greedy algorithm, computes an
incomplete λ-bounded semi-matching that covers at least λ

λ+1 |M
∗| vertices of A.

Algorithm 8 Incomplete λ-bounded Semi-matching iSEMI(λ)
S ← ∅
while ∃ edge ab in stream

if degS(a) = 0 and degS(b) ≤ λ− 1 then S ← S ∪ {ab}
return S

Now, assume that the greedy matching algorithm computes a M0 close to a 1
2 -

approximation. Then, for λ ≥ 2 there are many A vertices that are not matched in M0 but are
matched in S. Edges incident to those in S are candidates for the construction of 3-augmenting
paths. This argument can be made rigorous, leading to Algorithm 9 where λ is set to 3, see
Theorem 5.

We show two figures illustrating the first pass (Figure 4.9) and the second pass (Figure 4.10)
of Algorithm 9.

Analysis. We firstly present a lemma, Lemma 15, that analyses Algorithm 8. This lemma
is then used in the proof of the main theorem, Theorem 5.

Lemma 15. Let S = iSEMI(λ) be the output of Algorithm 8 for some λ ≥ 2. Then S is an
incomplete λ-bounded semi-matching such that |A(S)| ≥ λ

λ+1 |M
∗|.

Proof. By construction, S is an incomplete degree λ bounded semi-matching. We bound
A(M∗) \ A(S) from below. Let a ∈ A(M∗) \ A(S) and let b be its mate in M∗. The
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Algorithm 9 Two-pass Deterministic Bipartite Matching Algorithm

First pass: M0 ← Greedy(π) and S ← iSEMI(3)
S1 ← {e ∈ S | e = ab such that a ∈ A(M0) and b ∈ B(M0)}
A2 ← {a ∈ A(M0) | ∃bc : ab ∈M0 and bc ∈ S1}
F ← {e | e = ab such that a ∈ A2 and b ∈ B(M0)}
Second pass: M2 ← Greedy(π ∩ F )
Augment M0 by edges in S1 and M2 and store it in M
return M

3-augmentable edges

other edges

M0 S1 ⊆ S
B A B A

...

...

edge ∈ S \ S1

edge ∈ S1

edge ∈M∗

Figure 4.9: Illustration of the first pass of Algorithm 9. In this example we set λ = 2 and we
compute an incomplete degree 2 limited semi-matching S. By Lemma 15, we match at least
2
3 |M

∗| A vertices. Since |M | ≈ 1
2 |M

∗|, some A vertices that are not matched in M0 are matched
in S. The edges incident to those define S1.

algorithm did not add the optimal edge ab upon its arrival. This implies that b was already
matched to λ other vertices. Hence, |A(M∗) \ A(S)| ≤ 1

λ |A(S)|. Then the result follows by
combining this inequality with |M∗| − |A(S)| ≤ |A(M∗) \A(S)|.

Theorem 5. Algorithm 9 is a deterministic two-pass semi-streaming algorithm for MBM with
approximation ratio 1

2 + 0.019 for any graph and any arrival order and can be implemented
with O(1) processing time per edge.

Proof. The computed matching M is of size |M0|+ |M2| since, by construction, for each edge
in M2 there is at least one distinct edge in S1 that allows the construction of a 3-augmenting
path. Each 3-augmenting path increases the matching M0 by 1. See also Figure 4.10. Since
|M2| is a maximal matching of the graph induced by the edges F , we obtain

|M | ≥ |M0|+
1

2
|opt(F )|.

Let ε be such that |M0| = (1
2 + ε)|M∗|. By Lemma 1, at most 4ε|M∗| edges of M0 are not
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M0 S1 ⊆ S
B A B A

...

...

*
*

*

*
Here, the edges of S \ S1 are
not drawn.

Edges forming a maxi-
mum matching of F

Vertices in A2

Figure 4.10: Analysis of the second pass of Algorithm 9. In this example, we set λ = 2. Here,
we see that M0 ⊕ S1 has five paths of length 2. These paths are not disjoint, but since the maximal
degree in S is 2, M0⊕S1 has at least 1

2 · 5 disjoint paths, and hence |A2| = 3 ≥ 1
2 · 5. A maximum

matching in F is of size 3, and in the second pass, Greedy will find at least half of them leading to
at least two 3-augmenting paths.

3-augmentable, hence
opt(F ) ≥ |A2| − 4ε|M∗|.

A2 are those vertices matched also by M0 such that there exists an edge in S1 matching the
mate of the A2 vertex. Since the maximal degree in S1 is λ, we can bound |A2| by

|A2| ≥
1

λ
|S1|.

Note that |S1| = |A(S)\A(M0)| since the degree of anA vertex matched by S in S is one, and
S can be partitioned into SM0 , SM0

such that edges in SM0 couple an A vertex also matched in
M0, and edges in SM0

couple an A vertex that is not matched in M0. Now, |S1| = |SM0
| since

an edge of S is taken into S1 if it is in SM0
.

Lemma 15 allows us to bound the size of the set A(S) \A(M0) via

|A(S) \A(M0)| ≥ |A(S)| − |A(M0)| ≥ (
λ

λ+ 1
− 1

2
− ε)|M∗|.

Using the prior Inequalities, we obtain

|M | ≥ (
1

2
− ε+

1

2λ+ 2
− 1

4λ
− ε

2λ
)|M∗|.

Since we have also |M | ≥ |M0| = (1
2 + ε)|M∗|, we set

ε0 = arg min
ε

max{(1

2
− ε+

1

2λ+ 2
− 1

4λ
− ε

2λ
)|M∗|, (1

2
+ ε)|M∗|}

=
λ− 1

8λ2 + 10λ+ 2
,
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which is maximized for λ = 3 leading to an approximation factor of 1
2 + 1

52 ≈
1
2 + 0.019.

Concerning the processing time per edge, note that once an edge is added in the second
pass, a corresponding 3-augmenting path can be determined in time O(1).

4.5.2 Extension to General Graphs

Algorithm. The deterministic two-pass algorithm for general graphs follows the same line as
the deterministic two-pass algorithm for bipartite graphs. In the first pass, Greedy matching M
together with some additional edges F are computed. F forms an incomplete b-bounded forest.

Definition 10 (incomplete b-bounded forest). Given an integer b, an incomplete b-bounded
forest F is a cycle free subset of the edges of a graph G = (V,E) with maximal degree b.

If F ⊕M contains 3-augmenting paths, we augment M by a maximal set of disjoint 3-
augmenting paths and store the result in M ′. Those edges of F that were not used in the
previous augmentation and that form length-2 paths with edges of M ′ are stored in MR. In a
second pass, length-2 paths of M ′ ∪MR are completed to 3-augmenting paths by computing a
matching ML. A maximal set of disjoint 3-augmenting paths of M ′ ∪ML ∪MR is then used
to augment M ′.

Algorithm 10 b-bounded Forest: FOREST(b)

Require: b
1: S ← ∅
2: while stream not empty do
3: uv ← next edge in stream
4: if (degS(u) = 0 and degS(v) ≤ b− 1) or (degS(u) ≤ b− 1 and degS(v) = 0) then
5: S ← S ∪ {uv}
6: end if
7: end while
8: return S

Algorithm 10 is a greedy algorithm that constructs a forest F such that the maximal degree
of a node in F is b, for some b ≥ 1. For a large enough b, all but a small fraction of the vertices
of the graph are also in the vertex set of F .

The situation of the algorithm after the first pass is illustrated in Figure 4.11. Note that
MR is an incomplete b-bounded semi-matching in the induced bipartite graph with vertex sets
V \ V (M ′) and V (M ′).

Analysis. The analysis refers to the variables that are used in the algorithm. Furthermore,
let M∗ denote a maximum matching in the input graph and let ε be such that |M | = (1/2 +

ε)|M∗|. Let α = |M ′|
|M | − 1, or in other words, the set of disjoint 3-augmenting paths found in

Line 3 is of size α|M |.
The analysis of the algorithm requires a lemma concerning the structure of forests.
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Algorithm 11 Two-pass Deterministic Matching Algorithm for General Graphs

Require: b
1: Aug ← ∅
2: first pass: M ← Greedy() and F ← FOREST(b)
3: M ′ ←M augmented by a maximal set of 3-augmenting paths in M ⊕ F
4: MR ← maximal subset of F such that ∀uv ∈MR : u ∈ V (M ′) and degMR

(v) = 1
5: V ′ ← {v ∈ V (M ′) : v′ = M ′(v) and ∃v′u ∈MR : u /∈ V (M ′)}
6: while stream not empty do {second pass}
7: vw ← next edge in stream
8: if v ∈ V ′ and w /∈ V (M ′) and vw completes a 3-augmenting path with edges uv ∈

M ′, tu ∈MR then
9: Aug ← Aug ∪ {vw, tu}, remove all edges from MR incident to u

10: end if
11: end while
12: M ′′ ←M ′ augmented with Aug
13: return M ′′

Lemma 16. Let T be a forest with at least k nodes of degree at least d. Then:

|T | ≥ (d− 1)k.

Proof. Consider the directed Graph D that is obtained from T by directing the edges from the
roots of the trees of T towards the leaves. Let v1, . . . , vk denote the nodes that have degree at
least d. Then for all i 6= j : ΓD(vi) ∩ ΓD(vj) = ∅. Furthermore, for each i : |ΓD(vi)| ≥
(d− 1). The result follows.

Lemma 17. LetM∗ denote a maximum matching inG = (V,E). Consider the state of F after
the first pass. Then:

|F | ≥ (b− 1)|V (M∗) \ V (F )|. (4.7)

Proof. By induction it is easy to see that F is a forest with maximal degree b. We argue that F
has at least |V (M∗)\V (F )| nodes of degree b. The result then follows by applying Lemma 16.
Let u ∈ V (M∗)\V (F ) and denote by v the mate of u inM∗. Since uv is not taken, the degree
of v was already b upon arrival of uv. Hence, for each node u ∈ V (M∗) \ V (F ) the partner
M∗(u) has degree b in F .

Lemma 18. Let |M | = (1
2 + ε)|M∗|. Consider the state of F after the first pass. Then

|V (F ) \ V (M)| ≥ (1− 2ε− 2

b
)|M∗|.

Proof. By Lemma 17, |F | ≥ (b− 1)|V (M∗) \ V (F )|. Then

|V (F ) \ V (M)| ≥ |V (F )| − |V (M)| ≥ (b− 1)|V (M∗) \ V (F )| − 2|M |
= (b− 1)|V (M∗) \ V (F )| − (1 + 2ε)|M∗|. (4.8)
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Figure 4.11: Analysis of Algorithm 11.

Furthermore,we also have |V (F )| ≥ 2|M∗| − |V (M∗) \ V (F )|, and hence

|V (F ) \ V (M)| ≥ |V (F )| − |V (M)| ≥ 2|M∗| − |V (M∗) \ V (F )| − 2|M |
= 2|M∗| − |V (M∗) \ V (F )| − (1 + 2ε)|M∗|
= (1− 2ε)|M∗| − |V (M∗) \ V (F )|. (4.9)

Then |V (M∗)\V (F )| = 2|M∗|
b minimizes max{4.8, 4.9} and we obtain |V (F )\V (M)| ≥

2|M∗|
b .

Lemma 19. Consider the state of the variables of the algorithm before the second pass. Let
M ′a ⊆ M ′ such that ∀m ∈ M ′a there is an edge mR ∈ MR and an edge mL ∈ E such that
mR,m,mL forms a 3-augmenting path. Then:

|M ′a| ≥
1

b

(
|V (MR) \ V (M ′)| − |M ′|

)
− 4(ε+

1

2
α+ αε)|M∗|.

Proof. The set M ′a is precisely the subset of edges uv of M ′ that fulfill the following two
conditions.

1. uv is 3-augmentable, and

2. uv has an edge of MR incident that is not a blocking edge.

We say that an edge mR = u′v ∈ MR is a blocking edge, if uv is the incident edge of M ′,
uu′, vv′ are the edges incident to uv in M ′ ⊕M∗, and the edge u′v is not in the graph G. See
Figure 4.12 for an illustration. Note that there are at most |M ′| blocking edges in the graph.

We consider the vertices that are matched in MR but are free in M ′. Each vertex v ∈
V (MR)\V (M ′) is connected by an edge ofMR to an edges ofM ′. We remove from V (MR)\
V (M ′) these vertices that have a blocking edge incident. There are at most |M ′| blocking
edges. Since the maximal degree in MR is b, there are at least 1/b(|V (MR) \ V (M ′)| − |M ′|)
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edges in M ′ that fulfill condition (2). By Lemma 1, there are at most 4(ε + 1
2α + αε)|M∗|

edges in M ′ that are not 3-augmentable, and the result follows.

Figure 4.12: Illustration of a blocking edge. In the first setting, the edge u′v is a blocking edge,
since the edge uv′ is not in the graph. The edge u′v blocks edge uu′ from augmenting uv. In the
second setting, neither u′v nor uv′ are blocking edges. u′v blocks the edge vv′, however, the edge
u′v is an alternative for the node v for being augmented. This alternative is not present in the first
figure.

Theorem 6. Algorithm 11 with b = 8 is a deterministic 2-pass semi-streaming algorithm for
MAXIMUM MATCHING with approximation ratio 1/2 + 1/140 ≈ 1/2 + 0.007142 for any
graph and any arrival order.

Proof. By construction, the computed matching M ′′ is of size |M ′| + |Aug|. Since |M ′| =
(1 + α)|M | and |M | = (1

2 + ε)|M∗|, we obtain

|M ′′| = (1 + α)(
1

2
+ ε)|M∗|+ |Aug|. (4.10)

It remains to lower bound |Aug|.
In Lemma 19, we show that there is a subset M ′a ⊆M ′ such that

|M ′a| ≥
1

b

(
|V (MR) \ V (M ′)| − |M ′|

)
− 4(ε+

1

2
α+ αε)|M∗|,

and for each edge of M ′a there is a 3-augmenting path with an edge from MR and another edge
from the stream. Any 3-augmenting path that is added in Line 9 of Algorithm 11 to Aug may
block at most 2 further edges of M ′a from being augmented, see Figure 4.13. We will find
hence at least 1

3 |M
′
a| 3-augmenting paths, and we obtain

|Aug| ≥ 1/3|M ′a| ≥
1

3

(
1

b

(
|V (MR) \ V (M ′)| − |M ′|

)
− 4(ε+

1

2
α+ αε)|M∗|

)
. (4.11)

Note that by construction, |V (MR) \V (M ′)| = |V (F ) \V (M ′)|. We bound now |V (F ) \
V (M ′)|. By Lemma 18, |V (F ) \ V (M)| ≥ (1− 2ε− 2

b )|M
∗|. Note that M ′ is the matching
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that is obtained by augmenting M with edges from F . Each augmented edge of M has two
edges incident from F that are used for the augmentation. Hence,

|V (F ) \ V (M ′)| ≥ (1− 2ε− 2

b
)|M∗| − 2α|M |. (4.12)

Using Inequality 4.12 and Inequality 4.11 in Inequality 4.10, we obtain

|M ′′| ≥
(

1

2
+

1

6b
− 1

3
(αε+ ε+

α

2
)− 1

b
(αε+ ε+

α

2
+

2

3b
)

)
|M∗|. (4.13)

Note that we also have

|M ′′| ≥ |M ′| ≥ |M∗|(1

2
+ ε+

α

2
+ αε). (4.14)

We determine ε0 as a function of α and b that minimizes the maximum of the right sides
of Inequality 4.13 and Inequality 4.14. For any α and ε0, M ′′ is maximized by setting b = 8.
This leads to an approximation factor 1/2 + 1/140 ≈ 1/2 + 0.007142.

Figure 4.13: m1,m2,m3 have each an edge of MR incident and can be augmented with this edge
and an incident edge from M∗. If m2 is augmented with its incident edge from MR and o2, then
this may prevent m1 and m3 from being augmented.
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Chapter 5

Semi-Matchings in Streaming and in
Two-Party Communication

We present now our results concerning the computation of semi-matchings in streaming algo-
rithms and in the one-way two-party communication setting. In Section 5.1, we give notations
and definitions the are required for the presentation of our results. Then, in Section 5.2 we
present our streaming algorithms for the semi-matching problem. We present then upper and
lower bounds for the semi-matching problem in the one-way two-party communication setting
in Section 5.3. Finally, in Section 5.4 we give a new structure theorem for semi-matchings.

5.1 Preliminaries

Let G = (A,B,E) be a bipartite graph and let n = |A|. We assume that the graph does not
have isolatedA-vertices in order to guarantee that the graph has a semi-matching. Furthermore,
we assume that |B| = poly(n). Let e ∈ E be an edge connecting nodes a ∈ A and b ∈ B.
Then, we write A(e) to denote the vertex a, B(e) to denote the vertex b, and ab to denote e.
Furthermore, for a subset E′ ⊆ E, we define A(E′) =

⋃
e∈E′ A(e) (respectively B(E′)). For

subsets A′ ⊆ A and B′ ⊆ B we write E′|A′×B′ to denote the subset of edges of E′ whose
endpoints are all in A′ ∪ B′. We denote by E′(a) the set of edges of E′ ⊆ E that have an
endpoint in vertex a, and E′(A′) the set of edges that have endpoints in vertices of A′, where
A′ ⊆ A (similarly we define E′(B′) for B′ ⊆ B).

For a node v ∈ A ∪B, the neighborhood of v is the set of nodes that are adjacent to v and
we denote it by Γ(v). For a subset E′ ⊆ E, we write ΓE′(v) to denote the neighborhood of v
in the graph induced by E′. Note that by this definition Γ(v) = ΓE(v). For a subset E′ ⊆ E,
we denote by degE′(v) the degree in E′ of a node v ∈ V , which is the number of edges of E′

with an endpoint in v. We define deg maxE′ := maxv∈A∪B degE′(v).

Definition 11 (Semi-matching). A semi-matching in a bipartite graph G = (A,B,E) is a
subset S ⊆ E such that ∀a ∈ A : degS(a) = 1.

An important notion for the computation of semi-matchings are degree-minimizing-paths.
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Definition 12 (Degree-minimizing-path). A degree-minimizing path P with respect to a semi-
matching S is a path P = (b1, a1, . . . , bk−1, ak−1, bk) of length 2k (k ≥ 1) such that for all
i ≤ k : (ai, bi) ∈ S, for all i ≤ k − 1 : (ai, bi+1) /∈ S, and degS(b1) > degS(b2) ≥
degS(b3) ≥ · · · ≥ deg(bk−1) > deg(bk).

We define optimality of a semi-matching by means of degree-minimizing-paths.

Definition 13 (Optimal Semi-matching). An optimal semi-matching S∗ ⊆ E is a semi-
matching that does not admit any degree-minimizing-paths.

The SEMI-MATCHING problem consists of computing an optimal semi-matching in a bi-
partite graph and we abbreviate it by SM.

For subsets A′ ⊆ A,B′ ⊆ B,E′ ⊆ E, we denote by semi(A′, B′, E′) an optimal semi-
matching in the graphG′ = (A′, B′, E′), and we denote by semi2(A′, B′, E′) a semi-matching
that does not admit degree-minimizing paths of length 2 in G′.

semi-matching S deg.-min. path P S ⊕ P

Figure 5.1: Illustration of a semi-matching S. P is a degree-minimizing path of length 4 starting
at node b1 and ending at node b3. Initially, the degree of b1 in S is 3 and the degree of b3 in S is 1.
Removing the edges P ∪ S from S and inserting the edges P \ S into S decreases the degree of b1
by 1 and increases the degree of b3 by 1. Here, S ⊕ P is an optimal semi-matching.

Our algorithms for semi-matchings require the notion of incomplete d-bounded semi-
matchings. These are semi-matchings that do not match all A-vertices and have a bounded
maximal degree.

Definition 14 (Incomplete d-bounded Semi-Matching). Let d be an integer. Then an incom-
plete d-bounded semi-matching of G is a subset S ⊆ E such that ∀a ∈ A : degS(a) ≤ 1 and
∀b ∈ B : degS(b) ≤ d.

For subsetsA′ ⊆ A,B′ ⊆ B,E′ ⊆ E, we write isemid(A
′, B′, E′) to denote an incomplete

d-bounded semi-matching of maximal size in the graph G′ = (A′, B′, E′).
We say that an algorithm (or communication protocol) is a c-approximation algorithm

(resp. communication protocol) to SM if it outputs a semi-matching S such that deg maxS ≤
c · deg maxS∗, where S∗ denotes an optimal semi-matching. We note that this measure was
previously used for approximating semi-matching, e.g, in [ANR95].
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5.2 Streaming Algorithms

In this section, we describe an algorithm, ASEMI(G, s, d, p) (Algorithm 12), that computes an
incomplete 2dp-bounded semi-matching in the graph G using space Õ(s), and makes at most
p ≥ 1 passes over the input stream. If appropriate parameters are chosen, then the output is not
only an incomplete semi-matching, but also a semi-matching. We run multiple copies of this
algorithm with different parameters in parallel in order to obtain a one-pass algorithm for the
semi-matching problem (Theorem 7). Using other parameters, we also obtain a log(n)-pass
algorithm, as stated in Theorem 8.

Algorithm 12 Skeleton for Approximating Semi-Matchings: ASEMI(G, s, d, p)

Require: G = (A,B,E) is a bipartite graph
S ← ∅
repeat at most p times or until |A(S)| = |A|
S ← S ∪ INCOMPLETE(G|(A\A(S))×B, s, d) {requires one pass}

end repeat
return S

Algorithm 13 Computing Incomplete Semi-Matchings: INCOMPLETE(G, s, d)

Require: G = (A,B,E) is a bipartite graph
k ← s/|A|, S1 ← ∅, E′ ← ∅
while ∃ an edge ab in stream do

if ab /∈ A×B then continue
if degS1

(a) = 0 and degS1
(b) < d then S1 ← S1 ∪ {ab}

if degE′(a) < k then E′ ← E′ ∪ {ab}
end while
S2 ← isemid(E

′|(A\A(S1))×B)
S ← S1 ∪ S2

return S

ASEMI(G, s, d, p) starts with an empty incomplete semi-matching S and adds edges to S
by invoking INCOMPLETE(G, s, d) (Algorithm 13) on the subgraph of the as yet unmatched
A vertices in S and all B vertices. Each invocation of INCOMPLETE(G, s, d) makes one pass
over the input stream and returns a 2d-bounded incomplete semi-matching while using space
Õ(s). Since we make at most p passes, the resulting incomplete semi-matching has a maximal
degree of at most 2dp.

INCOMPLETE(G, s, d) collects edges greedily from graph G and puts them into an incom-
plete d-bounded semi-matching S1 and a set E′. An edge e from the input stream is put into
S1 if S1 ∪ {e} is still an incomplete d-bounded semi-matching. An edge e = ab is added
to E′ if the degree of a in E′ ∪ {e} is less or equal to a parameter k which is chosen to be
s/|A| in order to ensure that the algorithm does not exceed space Õ(s). The algorithm returns
an incomplete 2d-bounded semi-matching that consists of S1 and S2, where S2 is an optimal

55



5. SEMI-MATCHINGS IN STREAMING AND IN TWO-PARTY COMMUNICATION

incomplete d-bounded semi-matching between the A vertices that are not matched in S1 and
all B vertices, using only edges in E′.

We lower-bound the size of S2 in Lemma 20. We prove that for any bipartite graph G =
(A,B,E) and any k > 0, if we store for each a ∈ A any max{k, degG(a)} incident edges to
a, then we can compute an incomplete d-bounded semi-matching of size at least min{kd, |A|}
using only those edges, where d is an upper-bound on the maximal degree of an optimal semi-
matching between A and B in G.

Lemma 20 is then used in the proof of Lemma 21, where we show a lower bound on the
size of the output S1 ∪ S2 of INCOMPLETE(G, s, d).

Lemma 20. Let G = (A,B,E) be a bipartite graph, let d ≥ deg max semi(A,B,E) and let
k > 0. Furthermore, let E′ ⊆ E be a subset of edges such that for all a ∈ A : degE′(a) =
min{k,degE(a)}. Then there is an incomplete d-bounded semi-matching S ⊆ E′ such that
|S| ≥ min{kd, |A|}.

Proof. Let d∗ = deg max semi(A,B,E). We explicitly construct an incomplete semi-
matching S. LetA0 ⊆ A such that for all a ∈ A0 : degE′(a) = degE(a), and letA1 = A\A0.
Let S0 = semi(A0, B,E). Clearly, deg maxS0 ≤ d∗. We construct now S as follows.

Start with S = S0, and then add greedily edges in any order from E′|A1×B to S such that
S remains an incomplete semi-matching with maximal degree d. Stop as soon as there is no
further edge that can be added to S.

We prove that S contains at least min{kd, |A|} edges. To see this, either all nodes of A
are matched in S, or there is at least one node a ∈ A1 that is not matched in S (note that all
nodes in A0 are matched in S). Since degE′(a) = k, all nodes b ∈ ΓE′(a) have degree d since
otherwise awould have been added to S. This implies that there are at least k ·d nodes matched
in S which proves the lemma.

Lemma 21. Let G = (A,B,E) be a bipartite graph, let d ≥ deg max semi(A,B,E) and
let s ≥ |A|. Then INCOMPLETE(G, s, d) (Algorithm 13) uses Õ(s) space and outputs an
incomplete 2d-bounded semi-matching S such that |S| ≥ min{|A| d

d+d∗ + ds
|A| , |A|}.

Proof. The proof refers to the variables of Algorithm 13 and the values they take at the end
of the algorithm. Furthermore, let S∗ = semi(A,B,E), d∗ = deg maxS∗, and let A′ =
A \A(S1).

Firstly, we lower-bound |S1|. Let a ∈ A′ and b = S∗(a). Then degS1
(b) = d since

otherwise a would have been matched in S1. Hence, we obtain |A(S1)| ≥ d|B(S∗(A′))| ≥
d|A′|/d∗, where the second inequality holds since the maximal degree in S∗ is d∗. Furthermore,
since A′ = A \ A(S1) and |S1| = |A(S1)|, we obtain |S1| ≥ |A| d

d+d∗ . We apply Lemma 20
on the graph induced by the edge set E′|A′×B . We obtain that |S2| ≥ min{ds/|A|, |A′|} and
consequently |S| = |S1|+ |S2| ≥ min{|A| d

d+d∗ + ds
|A| , |A|}.

Concerning space, the dominating factor is the storage space for the at most k + 1 edges
per A vertex, and hence space is bounded by Õ(k|A|) = Õ(s).

In the proof of Theorem 7, for 0 ≤ ε ≤ 1 we show that ASEMI(G, n1+ε, n(1−ε)/2d′, 1)
returns a semi-matching if d′ is at least the maximal degree of an optimal semi-matching. Using
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a standard technique, we run log(n) + 1 copies of ASEMI for all d′ = 2i with 0 ≤ i ≤ log(n)
and we return the best semi-matching, obtaining a 1-pass algorithm. We use the same idea in
Theorem 8, where we obtain a 4 log(n) approximation algorithm that makes log(n) passes and
uses space Õ(n).

Theorem 7. Let G = (A,B,E) be a bipartite graph with n = |A|. For any 0 ≤ ε ≤ 1 there is
a one-pass streaming algorithm using Õ(n1+ε) space that computes a 4n(1−ε)/2 approximation
to SM.

Proof. We run log(n) + 1 copies of Algorithm 12 in parallel as follows. For 0 ≤ i ≤ dlog(n)e
let Si = ASEMI(G,n1+ε, n(1−ε)/22i, 1) and choose among the Si a semi-matching Sk such
that |Sk| = n and for any other Sl with |Sl| = n : deg maxSk ≤ deg maxSl.

We show now that there is a Sj which is a semi-matching that fulfills the desired approxima-
tion guarantee. Let S∗ = semi(A,B,E) and d∗ = deg max(S∗). Then define j to be such that
d∗ ≤ 2j < 2d∗ and let d = n(1−ε)/22j . Sj is the output of a call to INCOMPLETE(G,n1+ε, d).
By Lemma 21, Sj is of size at least min{n d

d+d∗ + dnε, |A|} which equals |A| for our choice
of d. This proves that all a ∈ A are matched in Sj . By Lemma 21, deg maxSj ≤ 2d which is
less or equal to 4n(1−ε)/2d∗. Hence, Sj is a 4n(1−ε)/2 approximation.

The space requirement is log n times the space requirement for the computation of a single
Si which is dominated by the space requirements of Algorithm 13. By Lemma 21, this is
Õ(n1+ε), and hence the algorithm requires Õ(n1+ε log n) = Õ(n1+ε) space.

Theorem 8. Let G = (A,B,E) be a bipartite graph with n = |A|. There is a log(n)-pass
streaming algorithm using space Õ(n) that computes a 4 log(n) approximation to SM.

Proof. As in the proof of Theorem 7, we run log(n)+1 copies of Algorithm 12 in parallel. For
0 ≤ i ≤ dlog(n)e let Si = ASEMI(G,n, 2i, log(n)) and choose among the Si a semi-matching
Sk such that |Sk| = n and for any other Sl with |Sl| = n : deg maxSk ≤ deg maxSl.

We show now that there is a Sj which is a semi-matching that fulfills the desired approxi-
mation guarantee. Let S∗ = semi(A,B,E) and d∗ = deg max(S∗). Then define j to be such
that d∗ ≤ 2j < 2d∗ and let d = 2j . Sj is the output of a call to ASEMI(G,n, d, log(n)). In each
iteration, the algorithm calls INCOMPLETE(G′, n, d), where G′ is the subgraph of G of the not
yet matched A vertices and the B vertices. By Lemma 21, at least a d

d+d∗ ≥ 1/2 fraction of
the unmatched A vertices is matched since d ≥ d∗, and the maximal degree of the incomplete
semi-matching returned by INCOMPLETE(G′, n, d) is at most 2d. Hence, after log(n) itera-
tions, all A vertices are matched. Since d < 2d∗ and the algorithm performs at most log(n)
iterations, the algorithm returns a 4 log(n) approximation.

Each copy of Algorithm 12 uses space Õ(n) and since we run O(log n) the required space
is Õ(n).

5.3 One-Way Two-Party Communication

We now consider deterministic one-way two-party protocols which are given a bipartite graph
G = (A,B,E) as input, such thatE1 ⊆ E is given to Alice andE2 ⊆ E is given to Bob. Alice
sends a single message to Bob, and Bob outputs a valid semi-matching S for G. A central idea
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for our upper and lower bounds is what we call a c-semi-matching skeleton (or c-skeleton).
Given a bipartite graph G = (A,B,E), we define a c-semi-matching skeleton to be a subset
of edges S ⊆ E such that ∀A′ ⊆ A : deg max semi(A′, B, S) ≤ c · deg max semi(A′, B,E).
We show how to construct an O(

√
n)-skeleton of size n, and an O(n1/3)-skeleton of size 2n.

We show that if Alice sends a c-skeleton of her subgraph G = (A,B,E1) to Bob, then Bob
can output a c + 1-approximation to the semi-matching problem. Using our skeletons, we
thus obtain one-way two-party communication protocols for the semi-matching problem with
approximation factors O(

√
n) and O(n1/3), respectively (Theorem 9). Then we show that for

any ε > 0, an O(n
1

(1+ε)c+1 )-skeleton requires at least cn edges. This renders our O(
√
n)-

skeleton and our O(n1/3)-skeleton tight up to a constant.

5.3.1 Upper Bounds

Firstly, we discuss the construction of two skeletons. In Lemma 24, we show that an optimal
semi-matching is an O(

√
n)-skeleton, and in Lemma 27, we show how to obtain a O(n1/3)-

skeleton. In these constructions, we use the following key observation: Given a bipartite graph
G = (A,B,E), let A′ ⊆ A be such that A′ has minimal expansion, meaning that A′ =

arg minA′′⊆A
|Γ(A′′)|
|A′′| . The maximal degree in a semi-matching is then clearly at least d |A

′|
|Γ(A′)|e

since all vertices of A′ have to be matched to its neighborhood. However, it is also true that
the maximal degree of a semi-matching equals d |A

′|
|Γ(A′)|e. This is a known fact that was used

for instance in [GKK12] without proof, and also in [KR99]. For completeness, we are going to
prove this fact in Lemma 23. This proof requires the following technical lemma, Lemma 22.

Lemma 22. Let G = (A,B,E) be a bipartite graph and let A′ ⊆ A such that |Γ(A′)| ≤ |A′|.
Then:

∀A′′ ⊆ A′ : |Γ(A′′)|
|A′′|

≥ |Γ(A′)|
|A′|

⇒ deg max semi(A′, B,E) ≤ d |A
′|

|Γ(A′)|
e.

Proof. The proof is by contradiction. Let d = d |A
′|

|Γ(A′)|e, S = semi(A′, B,E) and suppose that

deg maxS ≥ d + 1. We construct now a set Ã ⊂ A′ such that |Γ(Ã)|
|Ã| < |Γ(A′)|

|A′| contradicting
the premise of the lemma.

To this end, we define two sequences (Ai)i with Ai ⊆ A′ and (Bi)i with Bi ⊆ Γ(A′). Let
b ∈ Γ(A′) be a node with degS(b) ≥ d+ 1 and let B1 = {b}. We define

Ai = ΓS(Bi),

Bi+1 = Γ(Ai) \ ∪j≤iBj . (5.1)

This setting is illustrated in Figure 5.2. Note that all Ai and all Bi are disjoint. Let k be such
that |Ak| > 0 and |Ak+1| = 0. Then we set Ã =

⋃k
i=1Ai.

By construction of the sequence (Bi)i, it is clear that for any b′ ∈ ∪Bi : degS(b′) ≥
degS(b) − 1, since otherwise there is a degree-minimizing path from b to b′ contradicting the
definition of S. Then, by Equation 5.1, we obtain for all i that |Ai| ≥ |Bi|(degS(b)− 1) which
implies that |Ai| ≥ d|Bi| since degS(b) ≥ d+ 1. Remind that |A1| ≥ d+ 1. We compute
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|Γ(Ã)|
|Ã|

=
|B1|+

∑
2≤i≤k |Bi|

|A1|+
∑

2≤i≤k |Ai|
≤

1 +
∑

2≤i≤k |Bi|
(d+ 1) +

∑
2≤i≤k |Bi|d

<
1

d
≤ |Γ(A′)|
|A′|

,

and we obtain a contradiction to the premise of the lemma.

Figure 5.2: Illustration of the proof of Lemma 22. All nodes b′ ∈
⋃

i≥2Bi have degS(b′) ≥
degS(b) − 1 since otherwise there is a degree-minimizing path. To keep the figure simple, only
those edges ofE\S are drawn that connect theAi toBi+1. Note that in general there are also edges
outside S from Ai to

⋃
j<iBj . However, there are no edges in the graph from Ai to

⋃
j≥i+2Bj .

Lemma 23. Let G = (A,B,E) with |A| = n, and let d = deg max semi(A,B,E). Let A′ be
a subset of A with minimal expansion α, that is

A′ = arg min
A′′⊆A

|Γ(A′′)|
|A′′|

,

and let α = |Γ(A′)|
|A′| . Then:

d = dα−1e.

Proof. We show that d ≥ dα−1e and d ≤ dα−1e separately.

1. d ≥ dα−1e: The set A′ has to be matched entirely to vertices in its neighborhood.
Therefore, there is a node b ∈ Γ(A′) with degree at least d |A

′|
|Γ(A′)|e = dα−1e.

2. d ≤ dα−1e: We construct a semi-matching explicitly with maximal degree d. Since an
optimal semi-matching has at most this degree, the claim follows.

Consider a decomposition of A into sets A1, A2, . . . as follows. A1 ⊆ A is a set with
minimal expansion, and for i > 1,Ai ⊆ A\(

⋃
j<iAj) is the set with minimal expansion

in G|(A\⋃j<i Aj)×(B\Γ(
⋃
j<i Aj))

.
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We construct a semi-matching S̃ = S1 ∪ S2 . . . as follows. Firstly, match A1 to Γ(A1)

in S1. By Lemma 22, the maximal degree in S1 is at most d |A1|
|Γ(A1)|e = dα−1e.

For a general Si, we match Ai to vertices in Γ(Ai) \ Γ(
⋃
j<iAj). By Lemma 22, the

maximal degree in Si is at most d |Ai|
|Γ(Ai)\Γ(

⋃
j<i Aj)|

e.

This decomposition is illustrated in Figure 5.3.

Furthermore, it holds

|Ai|
Γ(Ai) \ Γ(

⋃
j<iAj)|

≤ |Ai+1|
Γ(Ai+1) \ Γ(

⋃
j<i+1Aj)|

,

since if this was not true, then the set Ai ∪ Ai+1 would have smaller expansion in the
graphG|(A\⋃j<i Aj)×(B\Γ(

⋃
j<i Aj))

thanAi. This implies that deg max S̃ = deg maxS1

which in turn is dα−1e.

Figure 5.3: Illustration of the graph decomposition used in the proof of Lemma 23. Here, Bi is
the set Γ(Ai) \ Γ(

⋃
j<iAj). The neighborhood of Ai in G is a subset of

⋃
j≤iBi. In S, however,

Ai is matched entirely to vertices in Bi.

We prove now that an optimal semi-matching is a O(
√
n)-skeleton.

Lemma 24. Let G = (A,B,E) with n = |A|, and let S = semi(A,B,E). Then:

∀A′ ⊆ A : deg max semi(A′, B, S) <
√
n (deg max semi(A′, B,E))1/2 + 1.

Proof. Let A′ ⊆ A be an arbitrary subset. Let A′′ = arg minA′′′⊆A′
|ΓS(A′′′)|
|A′′′| , and let k =

|ΓS(A′′)|. Let d = deg max semi(A′, B, S). Then by Lemma 23, d = d |A
′′|
k e. Furthermore,

since A′′ is the set of minimal expansion in S, for all b ∈ ΓS(A′′) : degS(b) = d, and hence
|A′′| = kd.

Let d∗ = deg max semi(A′′, B,E). Then d∗ ≤ deg max semi(A′, B,E), since A′′ ⊆ A′.
It holds that ∀x ∈ ΓE(A′′) \ ΓS(A′′) : degS(x) ≥ d − 1 since otherwise there was a degree-
minimizing path of length 2 in S. Figure 5.4 illustrates this setting. The sum of the degrees
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of the vertices in ΓE(A′′) is upper-bounded by the number of A nodes. We obtain hence
(|ΓE(A′′)| − k)(d − 1) + kd ≤ n, and this implies that |ΓE(A′′)| ≤ n−k

d−1 . Clearly, d∗ ≥
|A′′|/|ΓE(A′′)|, and using the prior upper bound on |ΓE(A′′)| and the equality |A′′| = kd, we
obtain d∗ ≥ kd(d−1)

n−k which implies that d <
√
n
√
d∗ + 1 for any k ≥ 1.

A′′ ΓS(A′′)

A \A′′ ΓE(A′′) \ ΓS(A′′)

Figure 5.4: Illustration of the proof of Lemma 24. All nodes b ∈ ΓS(A′′) have degS(b) = d, and
all nodes b′ ∈ ΓE(A′′) \ ΓS(A′′) have degS(b) ≥ d− 1.

In order to obtain an O(n1/3)-skeleton, for each a ∈ A we add one edge to the O(
√
n)-

skeleton. Let S = semi(A,B,E) be the O(
√
n)-skeleton, let B′ = B(S) be the B nodes that

are matched in the skeleton, and for all b ∈ B′ let Ab = ΓS(b) be the set of A nodes that are
matched to b in S. Intuitively, in order to obtain a better skeleton, we have to increase the size
of the neighborhood in the skeleton of all subsets of A, and in particular of the subsets Ab for
b ∈ B′. We achieve this by adding additional optimal semi-matchings Sb = semi(Ab, B,E)
for all subsets Ab with b ∈ B′ to S, see Lemma 27. We firstly prove a technical lemma,
Lemma 25, that points out an important property of the interplay between the matchings S and
the matchings Sb for b ∈ B′. Then, we state in Lemma 26 an inequality that is an immediate
consequence of Hölder’s inequality. Lemma 26 is then used in the proof of Lemma 27, which
proves that our construction is an O(n1/3)-skeleton.

Lemma 25. Let G = (A,B,E), A′ ⊆ A, A′′ ⊆ A′, and let S = semi(A′, B,E). Fur-
thermore, let ΓS(A′) = {b1, . . . , bk}, and ∀bi ∈ ΓS(A′) : let A′i = ΓS(bi) ∩ A′, and
A′′i = ΓS(bi) ∩A′′. Then:

deg max semi(A′′, B,E)−1
∑

i:bi∈ΓS(A′′)

|A′′i |(|A′i| − 1) ≤ |A′|.
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Proof. Let S′′ = semi(A′′, B,E), and denote d = deg maxS′′. Clearly,∑
b′′∈B(S′′)

degS(b′′) ≤ |A′|. (5.2)

Consider any b′′ ∈ B(S′′). We bound degS(b′′) from above as follows

degS(b′′) ≥ max{|A′i| − 1 : ∃a ∈ A′′i with b′′ ∈ ΓE(a)}. (5.3)

Let j be such that |A′j | − 1 poses the maximum of the set in the right hand side of In-
equality 5.3. Note that if Inequality 5.3 was not true, then there would be a length two degree
minimizing path in S connecting b′′ and bj . The setup up visualized in Figure 5.5. We bound
now the right hand side of Inequality 5.3 as follows

(|A′j | − 1) = max{|A′i| − 1 : ∃a ∈ A′′i with b′′ ∈ ΓE(a)}

≥
∑

a∈ΓS′′ (b
′′)

1

degS′′(b
′′)

(|A′B(S(a))| − 1). (5.4)

We used here that |A′B(S(a))| ≤ |A
′
j | for any a ∈ ΓS′′(b

′′), and |a ∈ ΓS′′(b
′′)| = degS′′(b

′′).
Since d = deg maxS′′, and using Inequalities 5.3 and 5.4 we obtain

degS(b′′) ≥
∑

a∈ΓS′′ (b
′′)

1

d
(|A′B(S(a))| − 1). (5.5)

We combine Inequalities 5.2 and 5.5, and the result follows

|A′| ≥
∑

b′′∈B(S′′)

degS(b′′) ≥
∑

b′′∈B(S′′)

∑
a∈ΓS′′ (b

′′)

1

d
(|A′B(S(a))| − 1)

=
1

d

∑
A′′i

|A′′i ||A′i − 1|.

In the proof of Lemma 27, we also need the following inequality.

Lemma 26. Let x1, . . . , xk ≥ 0, and let p > 0 be an integer. Then:

(
∑k

i=1 xi)
p

kp−1
≤

k∑
i=1

xpi .

Proof. This is an immediate consequence of Hölder’s inequality:

k∑
i=1

xi ≤ (
k∑
i=1

xpi )
1/pk

p−1
p .
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Figure 5.5: Illustration of the proof of Lemma 25. The degree of b′′ in S is at least |A′j | − 1.
Otherwise there would be a length two degree-minimizing path between b′′ and bj .

Lemma 27. Let G = (A,B,E) be a bipartite graph with n = |A|. Let S = semi(A,B,E),
and for all b ∈ B(S) : Sb = semi(ΓS(b), B,E). Then:

∀A′ ⊆ A : deg max semi(A′, B, S ∪
⋃

b∈B(S)

Sb) ≤ d2n1/3 deg max semi(A′, B,E)e.

Proof. Let A′ ⊆ A. Let S̃ = S ∪
⋃
b∈B(S) Sb. Let A′′ = arg minA′′′⊆A′

|ΓS̃(A′′′)|
|A′′′| and let k =

|ΓS̃(A′′)|. From Lemma 23 it follows that deg max semi(A′, B, S̃) = d |A
′′|
k e. Furthermore, let

d = deg max semi(A′′, B,E). For a node b ∈ ΓS̃(A′′), let A′′b = {a ∈ A : S̃(a) = b}. For
two nodes bi, bj ∈ ΓS̃(A′′), let A′′bi,bj = {a ∈ A′′ : S(a) = bi, Sbi(a) = bj}.

We consider the cases k ≥ n1/3 and k < n1/3 separately.

1. k ≥ n1/3. Consider the semi-matching S. From Lemma 25 we obtain the condition

1/d

k∑
i=1

|A′′i |(Ai − 1) ≤ n,

and since A′′i ≤ Ai we obtain from the prior Inequality that

1/d

k∑
i=1

(|A′′i | − 1)2 < n.

Using
∑k

i=1 |A′′i | = |A′′| and Lemma 26, we obtain

1

d

1

k
(|A′′| − k)2 < n, ⇒

|A′′| <
√
ndk + k. (5.6)
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Then, since deg max semi(A′′, B, S̃) = d |A
′′|
k e, we obtain from Inequality 5.6

deg max semi(A′′, B, S̃) ≤ d
√
nd√
k
e+ 1.

Since k ≥ n1/3, we conclude that

deg max semi(A′′, B, S̃) ≤ n1/3
√
d+ 2.

2. k < n1/3. We consider here the two subcases |A′′| < 2dk2 and |A′′| ≥ 2dk2.

(a) |A′′| < 2dk2. Then since deg max semi(A′′, B, S̃) = d |A
′′|
k e, we conclude that

deg max semi(A′′, B, S̃) ≤ d2dke < d2dn1/3e.

(b) |A′′| ≥ 2dk2. Let b ∈ B(S) and consider the semi-matching Sb matching A′′b to B.
From Lemma 25 and the fact that A′′b,bi ⊆ A

′
b,bi

we obtain

1

d

k∑
i=1

|A′′b,bi |(|A
′′
b,bi
| − 1) ≤ |Ab|,(

1

d

k∑
i=1

|A′′b,bi |
2

)
− 1

d
|A′′b | ≤ |Ab|.

By Lemma 26, we obtain

1

dk
|A′′b |2 −

1

d
|A′′b | ≤ |Ab|. (5.7)

Consider now the semi-matching S. From Lemma 25 we obtain the condition

1

d

k∑
i=1

|A′′i |(|Ai| − 1) ≤ n. (5.8)

Using Inequality 5.7 in Inequality 5.8 and simplifying, we obtain

1

d

k∑
i=1

|A′′i |
(

(
1

dk
|A′′i |2 −

1

d
|A′′i |)− 1

)
≤ n,

1

d2k

k∑
i=1

|A′′i |3 −
k∑
i=1

1

d2
|A′′i |2 −

k∑
i=1

1

d
|A′′i | ≤ n,

1

d2k3
|A′′|3 − 1

d2k
|A′′|2︸ ︷︷ ︸
I

− 1

d
|A′′|︸ ︷︷ ︸
II

≤ n. (5.9)
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Since |A′′| ≥ 2dk2, we can upper bound the terms I and II from Inequality 5.9 as
follows

1

2d3k3
|A′′|3 ≥ I, and (5.10)

1

4d3k4
|A′′|3 ≥ II. (5.11)

Using bounds 5.10 and 5.11 in Inequality 5.9 and simplifying, we obtain

1

4d2k3
|A′′|3 < n,⇒

|A′′| < 22/3n1/3d2/3k. (5.12)

Since deg max semi(A′′, B, S̃) = d |A
′′|
k e, and using Inequality 5.12, we conclude

that
deg max semi(A′′, B, S̃) ≤ d22/3n1/3d2/3e.

Combining the bounds from cases 1, 2a and 2b, the result follows.

We mention that straightforwardly extending this idea does not lead to better skeletons.
There are graphs for which adding further semi-matchings Sb1b2 = semi(Ab1b2 , B,E) to our
O(n1/3)-skeleton, where Ab1b2 is the set of A vertices whose neighborhood in our O(n1/3)-
skeleton is the set {b1, b2}, does not help to improve the quality of the skeleton. Before stating
our main theorem, Theorem 9, we show in Lemma 28 that if Alice sends a c-matching skeleton,
then Bob can compute a c+ 1 approximation. Then, we state our main theorem.

Lemma 28. Let G = (A,B,E) be a bipartite graph and let E1, E2 be a partition of the edge
set E. Furthermore, let E′1 ⊆ E1 such that for any A′ ⊆ A(E1):

deg max semi(A(E1), B,E′1) ≤ c deg max semi(A(E1), B,E′1).

Then:
deg max semi(A,B,E′1 ∪ E2) ≤ (c+ 1) deg max semi(A,B,E).

Proof. We construct a semi-matching S between A and B with edges from E′1 ∪ E2

explicitly and we show that deg maxS ≤ (c + 1) deg max semi(A,B,E). Since
deg max semi(A,B,E′1 ∪ E2) ≤ deg maxS, the result then follows.

Let S2 = semi(A,B,E) ∩ E2, and let S1 = semi(A \ A(S2), B,E1). Then S = S1 ∪
S2. Clearly, deg maxS2 ≤ deg max semi(A,B,E). Furthermore, by the premise of the
lemma we obtain deg maxS1 ≤ cdeg max semi(A,B,E). Since deg maxS ≤ deg maxS1+
deg maxS2 and deg maxS1+deg maxS2 ≤ (c+1) deg max(A,B,E) the result follows.

Theorem 9. Let G = (A,B,E) with n = |A| and m = |B|. Then there are one-way two
party deterministic communication protocols for the semi-matching problem, one with

1. message size cn logm and approximation factor n1/2 + 2, and another one with
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2. message size 2cn logm and approximation factor 2n1/3 + 2.

Proof. Alice computes the skeletons as in Lemma 24 or in Lemma 27 and sends them to Bob.
Bob computes an optimal semi-matching considering his edges and the edges received from
Alice. By Lemma 28 the results follow.

5.3.2 Lower Bounds

5.3.2.1 Lower Bounds for Semi-matching-skeletons

We present now a lower bound that shows that the skeletons of the previous subsection are
essentially optimal. For an integer c, we consider the complete bipartite graph Kn,m where m
is a carefully chosen value depending on c and n. We show in Lemma 29 that for any subset
of edges E′ of Kn,m such that for all a ∈ A : degE′(a) ≤ c, there is a subset A′ ⊆ A with
|A′| ≤ m such that an optimal semi-matching that matchesA′ using edges inE′ has a maximal
degree of Ω(n

1
c+1 ). Note that since |A′| ≤ m, there is a matching in Kn,m that matches all A′

vertices. This implies that such an E′ is only an Ω(n
1
c+1 )-skeleton.

Lemma 29. Let G = (A,B,E) be the complete bipartite graph with |A| = n and |B| =

(c!)
1
c+1n

1
c+1 for an integer c. Let E′ ⊆ E be an arbitrary subset such that ∀a ∈ A :

degE′(a) ≤ c. Then there exists an A′ ⊆ A with |A′| ≤ |B| and

deg max semi(A′, B,E′) ≥ (c!)
1
c+1

c
n

1
c+1 > e−1.3n

1
c+1 . (5.13)

Proof. Let E′ ⊆ E be as in the statement of the lemma. Let E′′ be an arbitrary su-
perset of E′ such that ∀a ∈ A : degE′′(a) = c. Since deg max semi(A′, B,E′′) ≤
deg max semi(A′, B,E′) it is enough to show the lemma for E′′. Denote by A{i1,...,ic} the
subset of A such that ∀a ∈ A{i1,...,ic} : ΓE′′(a) = {bi1 , . . . , bic}. Then

|A| =
∑

Ai:i={i1,...,ic} and
{bi1 ,...,bic} is a c-subset of B

|Ai|, (5.14)

since ∀a ∈ A : degE′′(a) = c. Suppose for the sake of a contradiction that Inequality 5.13
is not true. Then for all Ai on the right side of Inequality 5.14 we have |Ai| < (c!)

1
c+1n

1
c+1 .

There are at most
(|B|
c

)
such sets. This implies that:

|A| ≤
(
|B|
c

)
· (c!)

1
c+1n

1
c+1 <

|B|c

c!
(c!)

1
c+1n

1
c+1 <

(c!)
c
c+1n

c
c+1

c!
(c!)

1
c+1n

1
c+1 = n.

This is a contradiction to the fact that |A| ≥ n and proves the first inequality in Inequality 5.13.
To proof the second, we apply Stirling’s formula, and we obtain

(c!)
1
c+1

c
>

(
√

2πcc+1/2e−c)
1
c+1

c
= e

1/2 ln(2π)−1/2 ln(c)−c
c+1 .
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It can be shown that for any c > 0, 1/2 ln(2π)−1/2 ln(c)−c
c+1 > −1.3 which proves the result.

We extend Lemma 29 now to edge sets of bounded cardinality without restriction on the
maximal degree of an A node, and we state then our lower-bound result in Theorem 10.

Lemma 30. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ = (1 + ε)c. Let

G = (A,B,E) be the complete bipartite graph with |A| = n and |B| = (c′!)
1

c′+1 ( ε
1+ε ·n)

1
c′+1 .

Let E′ ⊆ E be an arbitrary subset of size at most c · n. Then there exists an A′ ⊆ A with
|A′| ≤ |B| and

deg max semi(A′, B,E′) > e−1.3(
ε

1 + ε
n)

1
c′+1 . (5.15)

Proof. Split A into A> and A≤ such that for all a ∈ A> : degS′(a) > c′, and for all a ∈ A≤ :
degS′(a) ≤ c′. Then |A>|c′+|A≤| ≤ cnwhich implies that |A≤| ≥ ε

1+εn. LetG′ = G|A≤×B .
Then by Lemma 29 applied on G′ there is a subset A′ ⊆ A≤ with |A′| ≤ |B| such that

deg max semi(A′, B,E′|A≤×B) > e−1.3|A≤|
1

c′+1 ,

and since deg max semi(A′, B,E′|A≤×B) = deg max semi(A′, B,E′), the result follows.

Theorem 10. Let c > 0 be an integer. Then for all ε > 0, an O(n
1

(1+ε)c+1 )-semi-matching
skeleton requires at least cn edges.

5.3.2.2 One-way Two-party Communication Lower Bound

To prove a lower bound on the deterministic communication complexity we define a family of
bipartite graphs. For given integers n and m, let G1 = {G1(x)|x ∈ {0, 1}n×m} be defined
as follows. Let B0 = {b01, . . . , b0m}, B1 = {b11, . . . , b1m} and A = {a1, . . . , an}. Given
x ∈ {0, 1}n×m, let Ex = {(ai, b

xi,j
j ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} (i.e, the entries of the

matrix x determine if there is an edge (ai, b
0
j ) or an edge (ai, b

1
j ) for all i, j). Then, we define

G1(x) = (A,B0 ∪B1, Ex). From Lemma 30 we immediately obtain the following lemma.

Lemma 31. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ = (1 + ε)c. Let n be

a sufficiently large integer, and let m = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . Let G = (A,B0 ∪B1, E) be a

graph G ∈ G1, and let E′ ⊆ E be such that |E′| ≤ cn. Then there exists a set of nodes A′ ⊆ A
with |A′| ≤ m and deg max semi(A′, B0 ∪B1, E

′) > 1/2e−1.3( ε
1+εn)

1
c′+1 .

We further define a second family of bipartite graphs G2 on the sets of nodes A and C,
|A| = |C| = n. For a set A′ ⊆ A we define the graph G2(A′) to be an arbitrary matching from
all the nodes of A′ to nodes of C. The family of graphs G2 is defined as G2 = {G2(A′)|A′ ⊆
A}.

Our lower bound will be proved using a family of graphs G. Slightly abusing notation,
the family of graphs G is defined as G = G1 × G2. That is, the graphs in G are all graphs
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G = (A,B0 ∪B1 ∪C,E1 ∪E2) built from a graph G1 = (A,B0 ∪B1, E1) ∈ G1 and a graph
G2 = (A,C,E1) ∈ G2 where the set of nodes A is the same for G1 and G2. We now prove our
lower bound.

Theorem 11. Let c > 0 be an integer and let ε > 0 be an arbitrarily small constant. Let P
be a β-approximation one-way two-party protocol for semi matching that has communication
complexity at most α. If β ≤ γ = 1/2 1

e1.3
( ε
ε+1n)

1
(1+ε)c+1 , then α > cn, where n is the number

of nodes to be matched.

Proof. Take n sufficiently large. Let c′ = (1 + ε)c and let m = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . We

consider as possible inputs the graphs in G (for n and m). Given an input graph, Alice will
get as input all edges between A and B0 ∪ B1 (i.e., a graph in G1) and Bob will get all edges
between A and C (i.e., a graph in G2)

Assume towards a contradiction that the communication complexity of P is at most cn.
Then there is a set of graphs G∗ ⊆ G1, |G∗| ≥ 2nm−cn, such that on all graphs in G∗ Alice sends
the same message to Bob. Consider the setX∗ ⊆ {0, 1}n×m such that G∗ = {G1(x) |x ∈ X∗},
Since there is a one-to-one correspondence between G∗ and X∗, |X∗| ≥ 2nm−cn, and there are
at most cn entries which are constant over all matrices in X∗, otherwise |X∗| < 2nm−cn. This
means that there are at most cn edges that exist in all graphs in G∗. Let E′ be the set of all these
edges.

Consider now the graph G = (A,B0 ∪ B1, E
′). Since |E′| ≤ cn, by Lemma 31 there

exists a set A′ ⊆ A with |A′| ≤ m and deg max semi(A′, B0 ∪ B1, E
′) > γ. We now define

G∗2 ∈ G2 to be G∗2 = G2(A \A′).
Now observe that on any of G ∈ G∗ × {G∗2} ⊆ G, P gives the same output semi-matching

S. S can include, as edges matching the nodes in A′, only edges from E′, since for any other
edge there exists an input in G∗ × {G∗2} in which that edge does not exist and P would not be
correct on that input. It follows (by Lemma 31) that the maximum degree of S is greater than
γ. On the other hand, since |A′| ≤ m, there is a perfect matching in any graph in G∗ × {G∗2}.
The approximation ratio of P is therefore greater than γ. A contradiction.

5.4 Structure Theorem

We now present our results concerning the structure of semi-matchings. Firstly, we show in
Lemma 32 that a semi-matching that does not admit length 2 degree-minimizing paths can be
decomposed into maximal matchings. In Lemma 33, we show that if a semi-matching does
not admit any degree-minimizing paths, then there is a similar decomposition into maximum
matchings.

Lemma 32 is then used to prove that semi-matchings that do not admit length 2 degree-
minimizing paths approximate optimal semi-matchings within a factor dlog(n + 1)e. To this
end, we firstly show in Lemma 34 that the first d∗ maximal matchings of the decomposition of
such a semi-matching match at least 1/2 of theA vertices, where d∗ is the maximal degree of an
optimal semi-matching. In Theorem 12, we then apply this result dlog(n+ 1)e times, showing
that the maximal degree of a semi-matching that does not admit length 2 degree-minimizing
paths is at most dlog(n+ 1)e times the maximal degree of an optimal semi-matching.
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Lemma 32. Let S = semi2(A,B,E) be a semi-matching in G that does not admit a length 2
degree-minimizing path, and let d = deg maxS. Then S can be partitioned into d matchings
M1, . . . ,Md such that

∀i : Mi is a maximal matching in G|Ai×Bi ,

where A1 = A, B1 = B, and for i > 1 : Ai = A \
⋃

1≤j<iA(Mj) and Bi = B(Mj−1).

Proof. The matchings M1, . . . ,Md can be obtained as follows. For each b ∈ B(S), label its
incident edges in S by 1, 2, . . . ,degS(b) arbitrarily. Matching Mi is then the subset of edges
of S that are labeled by i.

We prove the statement by contradiction. Let i be the smallest index such that Mi is not
maximal in G|Ai×Bi . Then there exists an edge e = ab ∈ E with a ∈ Ai and b ∈ Bi such
that Mi ∪ {e} is a matching in G|Ai×Bi . Note that degS(b) < i since b is not matched in
Mi. Consider now the edge e′ ∈ S matching the node a to b′ in S. Since a ∈ Ai and a is
not matched in Mi, e′ is in a matching Mj with j > i and hence degS(b′) ≥ j > i. Then
P = (b′, a, b) is a length 2 degree-minimizing path since degS(b′) > i and degS(b) < i
contradicting our assumption.

Lemma 33. Let S∗ = semi(A,B,E) be a semi-matching in G that does not admit degree-
minimizing paths of any length, and let d∗ = deg maxS∗. Then S∗ can be partitioned into d∗

matchings M1, . . . ,Md∗ such that

∀i : Mi is a maximum matching in G|Ai×Bi ,

where A1 = A, B1 = B, and for i > 1 : Ai = A \
⋃

1≤j<iA(Mj) and Bi = B(Mj−1).

Proof. The proof is similar to the proof of Lemma 32. The matchings M1, . . . ,Md∗ can be
obtained as follows. For each b ∈ B(S), label its incident edges in S by 1, 2, . . . ,degS∗(b)
arbitrarily. Matching Mi is then the subset of edges of S that are labeled by i.

We prove the statement by contradiction. Let i be the smallest index such that Mi is not a
maximum matching in G|Ai×Bi . Then there exists an augmenting path A = (a1, b1, . . . al, bl)
such that for all j < l : (aj+1, bj) ∈Mi and ∀i : (ai, bi) /∈Mi. Let b′ be the match of a1 in S∗.
Since a1 ∈ Al, degS∗(b

′) > i. Since bl ∈ Bi and bl is not matched inM∗i , degS∗(bl) < i. Then
P = (b′, a1, b1, . . . , al, bl) is a degree-minimizing path contradicting our assumption.

We firstly prove a lemma that is required in the proof of Theorem 12.

Lemma 34. Let A′ ⊆ A, let S = semi2(A′, B,E) be a semi-matching in G|A′×B that does
not admit length 2 degree-minimizing paths and let S∗ = semi(A′, B,E) be an optimal semi-
matching in G|A′×B . Then ∃A′′ ⊆ A′ with |A′′| ≥ 1/2|A′| such that

1. deg maxS|A′′×B ≤ deg maxS∗,

2. S|A′\A′′×B is a semi-matching of G|A′\A′′×B and it does not admit length 2 degree-
minimizing paths.
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Proof. Let d = deg maxS and let d∗ = deg maxS∗. Partition S into matchings M1, . . . ,Md

as in Lemma 32. We will show that A′′ =
⋃
i≤d∗ A(Mi) fulfills Item 1 and Item 2 of the

Lemma.
We have to show that |A′′| ≥ 1/2|A′|. Let A′′′ = A′ \ A′′ and let (a, b) ∈ S∗ be an edge

such that a ∈ A′′′. We argue now, that degS(b) ≥ d∗.
Suppose for the sake of a contradiction that degS(b) < d∗. Then (a, b) could have been

added to some matching Mj with j ≤ d∗. Since by Lemma 32 all Mi are maximal, we obtain
a contradiction and this proves that degS(b) ≥ d∗.

This implies further that |A′′| ≥ d∗ · |B(S∗|A′′′×B)| ≥ d∗ · |A′′′|/d∗ = |A′′′|, where the last
inequality comes from the fact that a node b ∈ B(S∗|A′′′×B) has at most d∗ edges incident in
S∗. Since A′′′ and A′′ form a partition of A′, we obtain |A′′| ≥ 1/2|A′|.

Since A′′ = A(S|A′′×B) and S|A′′×B is a set of d∗ matchings, Item 1 is trivially true.
Concerning Item 2, note that if S|A′\A′′×B admitted a length 2 degree-minimizing path, then
that path would also be a degree-minimizing path in S contradicting the premise that S does
not admit a length 2 degree-minimizing path.

Theorem 12. Let S = semi2(A,B,E) be a semi-matching of G that does not admit a length
2 degree-minimizing path. Let S∗ be an optimal semi-matching in G. Then:

deg maxS ≤ dlog(n+ 1)e deg maxS∗.

Proof. We construct a sequence of vertex sets (Ai) and a sequence of semi-matchings (Si) as
follows. Let A1 = A, and let S1 = S. For any i, Si will be a semi-matching in the graph
G|Ai×B and it will not admit length 2 degree-minimizing paths.

We construct Ai+1 and Si+1 from Ai and Si as follows. By Item 1 of Lemma 34, there
is a subset A′i ⊆ Ai of size at least 1/2|Ai| such that Si|A′i×B has maximal degree d∗. Let
Ai+1 = Ai \ A′i, and let Si+1 = Si|Ai+1×B . By Item 2 of Lemma 34, Si+1 does not comprise
length 2 degree-minimizing paths in the graphG|Ai+1×B . We stop this construction at iteration
l when A′l = Al occurs.

Note that S =
⋃
i Si|A′i×B and hence deg maxS ≤

∑l
i=1 deg maxSi|A′i×B ≤ l · d∗.

It remains to argue that l ≤ log(n) + 1. Since |A′i| ≥ 1/2|Ai| and Ai+1 = Ai \ A′i, we
have |Ai+1| ≤ 1/2|Ai|. Since |A1| = n, we have |Ai| ≤ (1

2)i−1n. Then, |Adlog(n+1)e| < 1
which implies that |Adlog(n+1)e| = 0. We obtain hence l ≤ dlog(n + 1)e, which proves the
theorem.
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Chapter 6

Validating XML Documents in the
Streaming Model

In this chapter, we present our results on the problem of validating XML documents. Let
N denote the length of an XML document. We start our presentation with preliminaries in
Section 6.1 where we define XML documents and DTDs, and we also state the DTD-validity
problem of XML documents formally. Furthermore, we discuss the First-Child-Next-Sibling
(FCNS) encoding, an encoding of unranked trees into binary trees, that we use in Section 6.4
for the validation of arbitrary XML documents.

Then, in Section 6.2 we show that there are DTDs and XML documents that encode ternary
trees such that any p-pass streaming algorithm requires Ω(N/p) space for the validation. We
also show that validating XML documents against XML schemas that are more expressive than
DTDs is even harder: for EDTDs (extended DTDs), validating XML documents that encode a
binary trees in the streaming model with p passes requires Ω(N/p) space.

Then, in Section 6.3 we discuss three streaming algorithms for the validation of XML
documents that encode binary trees. We present two one-pass algorithms with space Õ(

√
N)

and one bidirectional two-pass algorithm with space O(log2N).
In Section 6.4 we present our main result. We show that validity of any XML document

against any DTD can be decided by a streaming algorithm with space O(log2N), O(logN)
passes and a constant number of auxiliary streams.

Finally, we conclude with the presentation of linear space lower bounds for FCNS encoding
and decoding for streaming algorithms without auxiliary streams in Section 6.5.

6.1 Preliminaries

Let Σ be a finite alphabet. The k-th letter of X ∈ ΣN is denoted by X[k], for 1 ≤ k ≤ N , and
the consecutive letters of X between positions i and j by X[i, j]. A subsequence of X is any
string X[i1]X[i2] . . . X[ik], where 1 ≤ i1 < i2 < ... < ik ≤ N .
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6.1.1 XML Documents

We consider finite unranked ordered labeled trees t, where each tree node has a label in Σ.
From now on, we omit the terms ordered, labeled, and finite. Moreover, the children of every
non-leaf node are ordered. k-ranked trees are a special case where each node has at most k
children. Binary trees are a special type of 2-ranked tree, where each node is either a leaf or
has exactly 2 children. We use the following notations to access the nodes of a tree:

• root(t) : root node of tree t,

• children(x) : ordered sequence of children nodes of node x, if x is a leaf then this
sequence is empty,

• fc(x) : first child of node x, if x is a leaf then fc(x) = ⊥,

• ns(x) : next sibling of node x, if x is a right most (last) child then ns(x) = ⊥.

For each label a ∈ Σ, we associate its corresponding opening tag a and closing tag a,
standing for 〈a〉 and 〈/a〉 in the usual XML notations. An XML sequence is a sequence over
the alphabet Σ′ = {a, a : a ∈ Σ}. The XML sequence of a tree t is the sequence of opening
tags and closing tags in the order of a depth-first left-to-right traversal of t (Figure 6.1): when
at step i we visit a node with label a top-down (respectively bottom-up), we let X[i] = a
(respectivelyX[i] = a). HenceX is a word over Σ′ = {a, a : a ∈ Σ} of size twice the number
of nodes of t. The XML file describing t is unique, and we denote it as XML(t). We define
XML(t) as a recursive function in Definition 15. For a node x ∈ t, we write (ambiguously) x
and x to denote its opening and closing tag. x is also used to denote its label.

Figure 6.1: Let Σ = {a, b, c}, and let t be the tree as above. Then XML(t) =
rbaaaaccbbbbaaaabccr.

Definition 15. Let t be an unranked tree, let x, x1, . . . , xn ∈ t be nodes. Then:

XML(x) = xXML(children(x))x,

XML(x1, . . . , xn) = XML(x1) . . .XML(xn),

XML(⊥) = ε,

and we write XML(t) for XML(root(t)).
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6.1 Preliminaries

We assume that the input XML sequences X are well-formed, namely X = XML(t), for
some tree t. The work [MMN10] legitimates this assumption, since checking well-formedness
is at least as easy as any of our algorithms for checking validity. Hence, we could run an
algorithm for well-formedness in parallel without increasing the resource requirements. Note
that randomness is necessary for checking well-formedness with sublinear space, whereas we
will show that randomness is not needed for validation.

Since the length of a well-formed XML sequence is known in advance, we will denote it
by 2N instead of N . Each opening tag X[i] and matching closing tag X[j] in X = XML(t)
corresponds to a unique tree node v of t. We sometimes denote v either by X[i] or X[j]. Then,
the position of v in X is pos(v) = i. Similarly, pos(v) = j.

6.1.2 FCNS Encoding and Decoding

The FCNS encoding (see for instance [Nev02]) is an encoding of unranked trees as extended 2-
ranked trees, where we distinguish left child from right child. This is an extension of ordered 2-
ranked trees, since a node may have a left child but no right child, and vice versa. We therefore
duplicate the labels a ∈ Σ to aL and aR, in order to denote the left and right opening/closing
tags of a. The FCNS tree is obtained by keeping the same set of tree nodes. The root node of
the unranked tree remains the root in the FCNS tree, and we annotate it by default left. The left
child of any internal node in the FCNS tree is the first child of this node in the unranked tree if
it exists, otherwise it does not have a left child. The right child of a node in the FCNS tree is the
next sibling of this node in the unranked tree if it exists, otherwise it does not have a right child.
For a tree t, we denote FCNS(t) the FCNS tree, and XML(FCNS(t)) the XML sequence of
the FCNS encoding of t. Figure 6.2 illustrates the construction of the FCNS encoding, and we
define XML(FCNS(t)) by means of a recursive function XMLF in Definition 16.

Definition 16. Let t be an unranked tree, and let x ∈ t be some node. Let D ∈ {L,R}. Then
XMLF is defined as follows:

XMLF(x,D) = xD XMLF(fc(x),L) XMLF(ns(x),R)xD,

XMLF(⊥, D) = ε,

and we write XML(FCNS(t)) for XMLF(root(t), L).

Instead of annotating by left/right, another way to uniquely identify a node as left or right
is to insert dummy leaves with a new label ⊥, and we assume that ⊥ /∈ Σ. For a tree t, we
denote the binary version without annotations and insertion of⊥ leaves by FCNS⊥(t), and the
XML sequence of FCNS⊥(t) by XML(FCNS⊥(t)). This is illustrated in Figure 6.3. The two
representations can be easily transformed into each other. Depending on the application, we
will use the more convenient version.

We call the transformation of XML(t) into XML(FCNS(t)) FCNS encoding, and the
transformation of XML(FCNS(t)) into XML(t) FCNS decoding.
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6. VALIDATING XML DOCUMENTS IN THE STREAMING MODEL

1. initial tree 2. keep edges to first children

3. insert edges to next siblings 4. FCNS encoding

Figure 6.2: Construction of the First-Child-Next-Sibling Encoding. 1: introductory exam-
ple tree t already shown in Figure 6.1. 2: removal of all edges except edges to first chil-
dren. 3: Insertion of edges to next siblings. 4: FCNS encoding of tree t. XMLF (t) =
rLbLaLaRcRcRaRaLbRbRaLaRaRaLcRcRbRbRbLrL.

6.1.3 Validity and DTDs

We consider XML validity against DTDs.

Definition 17 (DTD). A DTD is a triple (Σ, d, sd) where Σ is a finite alphabet, d is a function
that maps Σ-symbols to regular expressions over Σ and sd ∈ Σ is the start symbol. A tree t
satisfies (Σ, d, sd) if its root is labeled by sd, and for every node with label a, the sequence
a1 . . . an of labels of its children is in the language defined by d(a).

Throughout the document we assume that DTDs are considerably small and our algorithms
have full access to them without accounting this to their space requirements.

Definition 18 (VALIDITY). Let D be a DTD. The problem VALIDITY consists of deciding
whether an input tree t given by its XML sequence XML(t) on an input stream is valid against
D.

We denote by VALIDITY(2) the problem VALIDITY restricted to input XML sequences
describing binary trees.

6.2 Hardness of XML schemas

In this section, we discuss some lower bounds for checking different notions of validity of XML
files. In section 6.2.1, we show that there are DTDs that admit ternary trees and checking those
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6.2 Hardness of XML schemas

Figure 6.3: FCNS⊥ encoding of the example tree already shown in Figure 6.1. XMLF⊥(t) =
rba⊥⊥a⊥⊥ccaab⊥⊥ba⊥⊥aaaccbbb⊥⊥r.

requires linear space. In section 6.3 we show that checking DTD validity of XML documents
encoding binary trees can be done with sublinear space. We conclude that ternary trees are
necessary for obtaining a linear space lower bound.

In section 6.2.2, we consider validity notions that allow to express a node’s validity as a
function of its children and its grandchildren. These validity notions are harder to check than
DTD validity in the sense that even checking XML documents encoding binary trees requires
linear space.

6.2.1 A Linear Space Lower Bound for VALIDITY Using Ternary Trees

We provide now a proof showing that p-pass algorithms require Ω(N/p) space for checking
validity of arbitrary XML files against arbitrary DTDs. Many space lower bound proofs for
streaming algorithms are reductions from problems in communication complexity [AMS99,
BYJKS04, MMN10]. For an introduction to communication complexity we refer the reader to
[KN97].

Consider a player Alice holding an N bit string x = x1 . . . xN , and a player Bob holding
an N bit string y = y1 . . . yN both taken from the uniform distribution over {0, 1}N . Their
common goal is to compute the function f(x, y) =

∨
i x[i] ∧ y[i] by exchanging messages.

This communication problem is the widely studied problem Set-Disjointness (DISJ).
It is well known that the randomized communication complexity with bounded two-sided

error of the Set Disjointness function R(DISJ) = Θ(N). In this model, the players Alice
and Bob have access to a common string of independent, unbiased coin tosses. The answer is
required to be correct with probability at least 2/3.

We make use of this fact by encoding this problem into an XML validity problem. Consider
ΣDISJ = {r, 0, 1}, the DTD DDISJ = (ΣDISJ, dDISJ, r) such that dDISJ(r) = 0r0 | 0r1 | 1r0 | ε,
dDISJ(0) = ε, and dDISJ(1) = ε. Given an input x, y as above, we construct an input tree
t(x, y) as in Figure 6.4.

Clearly, DISJ(x, y) = 0 if and only if XML(t(x, y)) is valid with respect to DDISJ.

Theorem 13. Every p-pass randomized streaming algorithm for VALIDITY with bounded error
uses Ω(N/p) space, where N is the input length.
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dDISJ(r) = 0r0 | 0r1 | 1r0 | ε
dDISJ(0) = dDISJ(1) = ε

Figure 6.4: t(x, y) is a hard instance for VALIDITY.

Proof. Given an instance x ∈ {0, 1}N , y ∈ {0, 1}N of DISJ, we construct an instance for
VALIDITY. Then, we show that if there is a p-pass randomized algorithm for VALIDITY using
space s with bounded error, then there is a communication protocol for DISJ with the same er-
ror and communication O(s ·p). This implies that any p-pass algorithm for VALIDITY requires
space Ω(N/p) since R(DISJ) = Θ(N).

Assume that A is a randomized streaming algorithm deciding validity with space s and
p passes. Alice generates the first half of XML(t(x, y)), that is rx1x1rx2x2 . . . rxNxNr
of length 3N + 1 and executes algorithm A on this sequence using a memory of size
O(s). Alice sends the content of the memory to Bob via message M1

A. Bob initializes his
memory with M1

A, and continues algorithm A on the second half of XML(t(x, y)), that is
ryNyNr . . . ry2y2ry1y1r of length 3N + 1. After execution, Bob sends the content of the
memory back to Alice via M1

B . This procedure is repeated at most p times.
This protocol has a total length ofO(s ·p) since the size of each message is at most s. Since

R(DISJ) ∈ Θ(N), we obtain that s · p ∈ Ω(N). The claim follows.

6.2.2 Lower Bounds for More Expressive XML Schemas than DTDs

Suppose that a validity schema allows to express a node’s validity not only through the labels
of its children but also of its grandchildren. Note that this is not the case for DTDs since DTD
validity only considers the direct descendants of a node for checking its validity. We show
that checking validity against such schemas requires linear space even if the XML document
encodes a binary tree, see Theorem 14 below.

As in the prior subsection, we encode the communication problem Set-Disjointness into
an XML document. Let x = x1 . . . xn ∈ {0, 1}n denote the input of Alice, and let y =
y1 . . . yn ∈ {0, 1}n denote the input of Bob. They construct a binary tree t′(x, y) as on the left
side of Figure 6.5.

t′(x, y) is valid if the subtrees below a node with label r are as in the right side of Figure 6.5.
Only if this is true then DISJ(x, y) = 0. EDTD as well as XML schema allow to express
validity constraints of that kind. EDTDs were introduced in [PV00] under the name specialized
DTDs. They are defined as follows.

Definition 19. An extended DTD (EDTD) is a tuple D = (Σ,∆, d, sd, µ), where ∆ is a finite
set of types, µ is a mapping from ∆ to Σ, and (∆, d, sd) is a DTD. A tree t satisfies D if
t = µ(t′) for some t satisfying the DTD (∆, d, sd).
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Figure 6.5: Left: hard instance t′(x, y) for validity schemas that allow to relate nodes to its grand-
children. Right: the validity constraints for nodes labeled r.

EDTD validity of the trees t′(x, y) of Figure 6.5 can be checked by the EDTD D =
(Σ,∆, d, sd, µ) where

Σ = {r, s, 0, 1},∆ = {r, 0, 1, s0, s1}, sd = r,

µ(r) = r, µ(0) = 0, µ(1) = 1, µ(s0) = s, µ(s1) = s, and

d(0) = ε, d(1) = ε, d(s0) = r 0, d(s1) = r 1, d(r) = 0s0|0s1|1s0|ε.

Theorem 14. Every p-pass randomized streaming algorithm validating XML documents en-
coding binary trees against a validity schema that allows to express a node’s validity as a
function of its children and its grandchildren with bounded error uses Ω(N/p) space, where N
is the input length.

Proof. The proof is identical to the proof of Theorem 13, except that the encoding is slightly
different. Let x ∈ {0, 1}N , y ∈ {0, 1}N be an instance of DISJ. Alice generates the left half
of the tree t′(x, y) as follows: rx1x1srx2x2s . . . rxnxnsrr. Bob generates the right half of
the tree t′(x, y) as follows: ynynsryn−1yn−1sr . . . y1y1sr. A p-pass streaming algorithm with
space s checking the two-level validity constraints as on the right side of Figure 6.5 of t′(x, y)
solves hence DISJ with a protocol of length O(s · p). Since R(DISJ) = Θ(N), the result
follows.

6.3 Validity of Binary Trees

For simplicity, we only consider binary trees in this section. A left opening/closing tag (respec-
tively right opening/closing tag) of an XML sequence X is a tag whose corresponding node is
the first child of its parent (respectively second child).

Our algorithms for binary trees can be extended to 2-ranked trees. This requires few
changes in the one-pass Algorithms 14 and 15, and the two-pass Algorithm 16 (indeed in
the subroutine Algorithm 17) that we do not describe here since they only complicate the pre-
sentation and do not affect the essence of the algorithms.
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We fix now a DTD D = (Σ, d, sd), and assume that in our algorithms we have access to a
procedure check(v, v1, v2) that signalizes invalidity and aborts if v1v2 is not valid against the
regular expression d(v). Otherwise it returns without any action.

In order to validate an XML document, we ensure validity of all tree nodes. For checking
validity of a node v with two children v1, v2, we have to relate the labels v1, v2 to v. In a top-
down verification we use the opening tag v of the parent node v for verification, in a bottom-up
verification we use the closing tag v of the parent node v.

6.3.1 One-pass Block Algorithm

Algorithms 14 reads the XML document in blocks of size K (we optimize by setting K =√
N logN ) into memory. Such a block corresponds to a subtree, and the algorithm performs

all verifications that are possible within this block. We guarantee that all nodes are verified
by ensuring that all substrings v1v2 that correspond to the children of a node v are used for
verification. We show in Lemma 35 that within a block of any size there is at most one node v
with children v1, v2 such that v1 is in that block but neither the opening tag v nor the closing
tag v is in that block. Hence, per block all necessary verifications but at most one can be
performed. If a pair of tags v1v2 can not be related to their parent node within a block, we store
v1v2 and we perform a bottom-up verification upon arrival of the parent node’s closing tag v,
see Algorithm 14.

In order to compute the depth of tags (as it is required for instance in Line 13), throughout
the algorithm we keep track of the current depth with the help of an integer with initial value
0. We increase its value when we encounter an opening tag in the stream and we decrease it
when we encounter a closing tag. The depth of a tag is the number of opening tags minus the
number of closing tags that preceed the tag in the input stream.

The condition in line 10 can be checked as follows. Starting from index i such that
X[i] = v1, we firstly traverse X to the left. The first encountered opening tag that has a
depth depth(v1)− 1 (if any) is the opening tag of the parent node v. If the parent node’s open-
ing tag is not in X , we traverse then X to the right starting at index i. The first encountered
closing tag at level depth(v1)− 1 (if any) is the closing tag of the parent node v. If X does not
comprise any tags at depth depth(v1) − 1 then the condition evaluates to false. Similarly, the
condition in line 19 can be checked. For implementing the condition in line 8 a lookahead of
one on the stream might be required if the last tag of X is an opening tag.

Lemma 35. Let X[i, j] be a block. Then there is at most one left closing tag a with parent
node p such that:

pos(p) < i ≤ pos(a) ≤ j < pos(p). (6.1)

Proof. For the sake of a contradiction, assume that there are 2 left closing tags a, bwith p being
the parent node of a, and q being the parent node of b, for which Inequality 6.1 holds. Without
loss of generality, we assume that pos(p) < pos(q). Since pos(p) < pos(q) < pos(a), q is
contained in the subtree of a or q = a. This, however, implies that pos(q) ≤ pos(a) < j
contradicting pos(q) > j.
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Algorithm 14 Validity of Binary Trees in one Pass, Block Algorithm
Require: input stream is a well-formed XML document

1: K ←
√
N logN

2: X ← array of size K + 1, S ← empty stack
3: while stream not empty do
4: X ← next K tags on stream
5: if X[K] is a closing tag and next tag on stream is an opening tag then
6: X[K + 1]← next tag on stream
7: end if
8: for all leaves v in X do check(v, ε, ε) end for
9: for all substrings v1v2 of X do {denote the parent node of v1, v2 by v}

10: if v ∈ X or v ∈ X then
11: check(v, v1, v2)
12: else
13: push((v1, v2,depth(v1)), S)
14: end if
15: end for
16: if stack S not empty then
17: repeat
18: (v1, v2, d1)← topmost item on stack S {denote the parent node of v1, v2 by v}
19: if v ∈ X or v ∈ X then
20: check(v, v1, v2)
21: pop S
22: end if
23: until v /∈ X and v /∈ X or S empty
24: end if
25: end while

Theorem 15. Algorithm 14 is a one-pass streaming algorithm for VALIDITY(2) with space
O(
√
N logN).

Proof. To prove correctness, we have to ensure validity of all nodes. Leaves are validated in
line 8. Concerning non-leaf nodes, note that all substrings v1v2 are used for validation. Either
a node v is validated in line 11 if its opening tag v or its closing tag v is in the same block as
v1v2, or the node is validated in line 20 if v, v1v2 and v are all in different blocks. In this case,
the children are pushed on the stack S and the verification is done upon arrival of v.

Concerning the space, X is of size at most K + 1. By Lemma 35, the stack S grows
at most by one element per iteration of the while loop. A stack element requires O(logN)
storage space since we require to store the depth of the tags which is a number in [N ]. Since
there are O(N/K) iterations, the total memory requirements are O(K +N/K log(N)) which
is minimized for K =

√
N logN .

6.3.2 One-pass Stack Algorithm

We present now a second one-pass streaming algorithm, Algorithm 15, for checking validity
of XML documents that encode binary trees. This algorithm has the same space complexity as
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the block algorithm, Algorithm 14, of the previous section, however, it has optimal (constant)
processing time per letter.

Algorithm 15 Validity of Binary Trees in one Pass, Stack Algorithm
Require: input stream is a well-formed XML document

1: d← 0, S ← empty stack
2: K ←

√
N logN

3: while stream not empty do
4: x← next tag on stream
5: if x is an opening tag c then
6: if x is a leaf then check(c, ε, ε) end if
7: if S has on top (a,−1), (b, d) then
8: check(a, b, c); pop S {Top-down verification}
9: end if

10: if |{(a,−1) ∈ S | a opening }| ≥ K then
11: remove bottom-most (a,−1) in S, where a is an opening tag
12: end if
13: d← d+ 1
14: push ((x,−1), S)
15: else if x is a closing tag c then
16: d← d− 1
17: if S has on top (a, d+ 1), (b, d+ 1) then
18: check (c, a, b) {Bottom-up verification}
19: pop S, pop S
20: else if S has on top (b, d+ 1) then
21: pop S
22: end if
23: if S has on top (c,−1) then pop S end if
24: push ((x, d), S)
25: end if
26: end while

Algorithms 15 performs top-down and bottom-up verifications. It uses a stack onto which
it pushes all opening tags in order to perform top-down verifications once the information of
the children nodes arrives on the stream. v1v2 forms a substring of the input, hence top-down
verification requires only the storage of the opening tag v since the labels of the children arrive
in a block. The algorithm’s space requirement depends on a parameter K (we optimize by
setting K =

√
N logN ). Once the number of opening tags on the stack is about to exceed

K, we remove the bottom-most opening tag. The corresponding node will then be verified
bottom-up. Note that v2v forms a substring of the input. Hence, for bottom-up verifications
it is enough to store the label of the left child v1 on the stack since the label of the right child
arrives in form of a closing tag right before the closing tag of the parent node. See Algorithm 15
for details.

For the unique identification of closing tags on the stack, we have to store them with their
depth in the tree. A stack item corresponding to a closing tag requires hence O(logN) space.
Opening tags don’t require the storage of their depth (we store the default depth −1).

The query in line 6 can be implemented by a lookahead of 1 on the stream. The opening
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tag x corresponds to a leaf only if the subsequent tag in the stream is the corresponding closing
tag x.

Figure 6.6 visualizes the different cases with their stack modifications appearing in Algo-
rithm 15.

c

c

c c ca

b a b b

line 6 line 7 line 17 line 21 line 23

X ← X Xab← Xa Xab← X Xb← X Xc← X

Figure 6.6: Visualization of the different conditions in Algorithm 15 with the applied stack mod-
ifications. X represents the bottom part of the stack. Note that Algorithm 15 pushes the currently
treated tag c or c on the stack in Line 14 or Line 24. c or c corresponds to the highlighted node.

Fact 1 (which can be easily proved by induction) and Lemma 36 concern the structure of
the stack S used in Algorithm 15.

Fact 1. Let S = (x1, d1), . . . (xk, dk) be the stack at the beginning of the while loop in line 3.
Then:

1. pos(x1) < pos(x2) · · · < pos(xk),

2. depth(x1) ≤ depth(x2) · · · ≤ depth(xk) ≤ d. Moreover, if depth(xi) = depth(xi+1)
then xi is the left sibling of xi+1,

3. The sequence x1 . . . xk satisfies the regular expression a∗b∗(ε | c | de), where a∗ are left
closing tags, b∗ are opening tags, c is a closing tag, d is a left closing tag, and e is a right
closing tag.

4. A left closing tag a is removed from S just after its parent node is verified.

Lemma 36. Let S = (x1, d1), . . . (xk, dk) be the stack at the beginning of the while loop in
line 3. Let (ci, di), (ci+1, di+1) be two consecutive left closing tags in S such that (ci+1, di+1)
is not the topmost left closing tag. Then pos(ci+1) ≥ pos(ci) + 2K.

Proof. Denote by X = X[1]X[2] . . . X[2N ] the input stream. Since ci+1 is not the top-
most left closing tag in S, the algorithm has already processed the right sibling opening tag
X[pos(ci+1) + 1] of ci+1. By Item 4 of Fact 1, no verification has been done of the parent of
ci+1, since ci+1 is still in S. Therefore, the parent’s opening tag X[k] of ci+1 has been deleted
from S, where pos(ci) < k < pos(ci+1). This can only happen if at least K opening tags have
been pushed on S between X[k] and ci+1. Since these K opening tags must have been closed
between X[k] and ci+1 we obtain pos(ci+1) ≥ pos(ci) + 2K.

Fact 1 and Lemma 36 provide more insight in the stack structure and are used in the proof
of Theorem 16. Item 3 of Fact 1 states that the stack basically consists of a sequence of left
closing tags which are the left children that are needed for bottom-up verifications of nodes
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Figure 6.7: Visualization of the structure of the stack used in Algorithm 15. The stack fulfills the
regular expression a∗b∗(ε | c | de), compare Item 3 of Fact 1. The (ai)i=1...k are closing tags whose
parents’ nodes were not verified top-down. For j > i, aj is connected to ai by the right sibling
of ai. The (bi)i=1...l form a sequence of opening tags such that bi is the parent node of bi+1. On
top of the stack might be one or two closing tags depending on the current state of the verification
process.

that could not be verified top-down. This sequence is followed by a sequence of opening tags
for which we still aim a top-down verification. The proof of Lemma 36 explains the fact that
the two sequences are strictly separated: a left-closing tag v1 only remains on the stack if at the
moment of insertion there are no opening tags on the stack.

Theorem 16. Algorithm 15 is a one-pass streaming algorithm for VALIDITY(2) with space
O(
√
N logN) and O(1) processing time per letter.

Proof. To prove correctness, we have to ensure validity of all nodes. Leaves are correctly
validated upon arrival of its opening tag in line 6. Concerning non-leaf nodes, firstly, note that
all closing tags are pushed on S in line 24, in particular all closing tags of left children appear
on the stack. The algorithm removes left closing tags only after validation of its parent node,
no matter whether the verification was done top-down or bottom-up, compare Item 4 of Fact 1.
Emptiness of the stack after the execution of the algorithm follows from Item 2 of Fact 1 and
implies hence the validation of all non-leaf nodes.

For the space bound, Line 10 guarantees that the number of opening tags in S is always at
most K. We bound the number of closing tags on the stack by N

K + 2. Item 3 of Fact 36 states
that the stack contains at most one right closing tag. From Item 4 of Fact 36 we deduce that S
comprises at most NK + 1 left closing tags, since the stream is of length 2N , and the distance
in the stream of two consecutive left closing tags that reside on S except the top-most one is at
least 2K. A closing tag with depth (a, d) ∈ Σ′ × [N ] requires O(logN) space, an opening tag
requires only constant space. Hence the total space requirements are O((NK + 2) logN + K)
which is minimized for K =

√
N logN .

Concerning the processing time per letter, the algorithm only performs a constant number
of local stack operations in one iteration of the while loop.
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Remark Algorithm 15 can be turned into an algorithm with space complexity
O(
√
D logD), where D is the depth of the XML document. If D is known beforehand, it

is enough to set K =
√
D logD in line 2. If D is not known in advance, we make use of an

auxiliary variable D′ storing a guess for the document depth. Initially we set D′ = C, C > 0
some constant, we set K =

√
D′ logD′, and we run Algorithm 15. Each time d exceeds D′,

we double D′, and we update K accordingly.
This guarantees that the number of opening tags on the stack is limited by O(

√
D logD).

Since we started with a too small guess for the document depth, we may have removed opening
tags that would have remained on the stack if we had chosen the depth correctly. This leads to
further bottom-up verifications, but no more than O(

√
D/ logD) guaranteeing O(

√
D logD)

space.

6.3.3 Bidirectional Two-pass Algorithm

Algorithm 16 Two-pass Algorithm Validating Binary Trees
run Algorithm 17 reading the stream from left to right
run Algorithm 17 reading the stream from right to left, where opening tags are interpreted as closing
tags, and vice versa.

Algorithm 17 Validating Nodes with size(Left Subtree) ≥ size(Right Subtree)
1: l← 0; n← 0; S ← empty stack
2: while stream not empty do
3: x← next tag on stream (and move stream to next tag)
4: y ← next tag on stream, without consuming it yet
5: n← n+ 1
6: if x is an opening tag c then
7: l← l + 1
8: if y = c then check(c, ε, ε) end if
9: else {x is a closing tag c}

10: l← l − 1
11: if S has on top (·, ·, l + 1, ·) then
12: (a, b, ·, ·)← pop from S; check(c, a, b)
13: end if
14: if y is an opening tag d then
15: push (c, d, l, n) to S
16: end if
17: end if
18: while there is s1 = (·, ·, ·, n1) just below s2 = (·, ·, ·, n2) in S with n− n2 > n2 − n1 do
19: delete s2 from S
20: end while
21: end while

The bidirectional two-pass algorithm, Algorithm 16, uses a subroutine that checks in one-
pass validity of all nodes whose left subtree is at least as large as its right subtree. Feeding
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into this subroutine the XML document read in reverse direction and interpreting opening tags
as closing tags and vice versa, it checks validity of all nodes whose right subtree is at least as
large as its left subtree. In this way all tree nodes get verified.

The subroutine performs only checks in a bottom-up fashion, that is, the verification of a
node v with children c1, c2 makes use of the tags c1 and c2 (which are adjacent in the XML
document and hence easy to recognize) and the closing tag of v. When c1, c2 appear in the
stream, a 4-tuple consisting of c1, c2,depth(c1) and pos(c1) is pushed on the stack. Upon
arrival of v, depth(c1) is needed to identify c1, c2 as the children of v. pos(c1) is needed for
cleaning the stack: with the help of the pos values of the stack items, we identify stack items
whose parents’ nodes have larger right subtrees than left subtrees, and these stack items get
removed from the stack. In so doing, we guarantee that the stack size does not exceed log(N)
elements which is an exponential improvement over the one-pass algorithm.

Note that the reverse pass can be done independently of the first one, for instance in parallel
to the first pass.

Figure 6.8 visualizes the different cases in Algorithm 17.

c c

ca b d

line 8 line 11 line 14

Figure 6.8: Visualization of the different conditions in Algorithm 17. The incoming tag x corre-
sponds to the highlighted node.

We highlight some properties concerning the stack used in Algorithm 17.

Fact 2. S in Algorithm 17 satisfies the following:

1. If (a2, b2, depth(a2), pos(a2)) is below (a1, b1, depth(a1), pos(a1)) in S, then
pos(a2) < pos(a1), depth(a2) < depth(a1), and a1, b1 are in the subtree of b2.

2. Consider l at the end of the while loop in line 20. Then there are no stack elements
(·, ·, l′, ·) with l′ > l.

Figure 6.9 illustrates the relationship between two consecutive stack elements as discussed
in Item 1 of Fact 2.

Lemma 37. Algorithm 17 verifies all nodes v whose left subtree is at least as large as its right
subtree.

Proof. Let q be such a node. Let a1, b1 be the children of q. Then it holds that

pos(a1)− pos(a1) ≥ pos(b1)− pos(b1), (6.2)

since the size of the left subtree of q is at least as large as the size of the right subtree.
Upon arrival of a1 Algorithm 17 pushes the 4-tuple t = (a1, b1,pos(a1),depth(a1)) onto

the stack S. We have to show that t remains on the stack until the arrival of q. More precisely,
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p

a2 b2

q

a1 b1

c

Stack S
...

(a1, b1, pos(a1), depth(a1))

(a2, b2, pos(a2), depth(a2))

...

Figure 6.9: Visualization of two consecutive stack items. c is the current element under consider-
ation in Algorithm 17. a1, b1 is in the subtree of b2, compare Item 1 of Fact 2.

we have to show that the condition in line 18 is never satisfied for s2 = t. Since the algorithm
never deletes the bottom-most stack item, we consider the case where there is a stack item
(a2, b2, pos(a2),depth(a2)) just below t. Item 1 of Fact 2 tells us that a1, b1 are in the subtree
of b2. Let c be the current tag under consideration such that pos(b1) < pos(c) < pos(q). The
situation is visualized in Figure 6.9.

According to the condition of line 18, t gets removed from the stack if

pos(c)− pos(a1) > pos(a1)− pos(a2). (6.3)

Note that the left side of Inequality 6.3 is a lower bound on the size of the right subtree of q.
Furthermore, the right side of Inequality 6.3 is an upper bound for the size of the left subtree
of q.

Using pos(c) − pos(a1) ≤ pos(b1) − pos(b1) + 1 and pos(a1) − pos(a2) > pos(a1) −
pos(a1), Inequality 6.3 contradicts Inequality 6.2 which shows that t remains on the stack until
the arrival of q. Item 2 of Fact 2 guarantees that there is no other stack element on top of t upon
arrival of q. This guarantees the verification of node q and proves the lemma.

Theorem 17. Algorithm 16 is a bidirectional two-pass streaming algorithm for VALIDITY(2)
with space O(log2N) and O(logN) processing time per letter.

Proof. To prove correctness of Algorithm 16, we ensure that all nodes get verified. By
Lemma 37, in the first pass, all nodes with a left subtree being at least as large as its right
subtree get verified. The second pass ensures then verification of nodes with a right subtree
that is at least as large as its left subtree.

Next, we prove by contradiction that for any current value of variable n in Algorithm 17,
the stack contains at most log(n) elements. Assume that there is a stack configuration of size
t ≥ log(n) + 1. Let (n1, n2 . . . , nt) be the sequence of the fourth parameters of the stack
elements. Since these elements are not yet removed, due to line 18 of Algorithm 17, it holds
that n− ni ≤ ni − ni−1, or equivalently ni ≥ 1/2(n+ ni−1), for all 1 < i ≤ t. Since n1 ≥ 1,
we obtain that ni ≥ 2i−1

2i
n+ 1

2i
, and, in particular, nt−1 ≥ (n−1)+ 1

n . Since all ni are integers,
it holds that nt−1 ≥ n. Furthermore, since nt > nt−1, we obtain nlogn+1 ≥ n + 1 which is a
contradiction, since the element at position n+ 1 has not yet been seen.
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Since n ≤ 2N and the size of a stack element is in O(log n), Algorithm 17 uses space
O(log2N). This also implies that the while-loop at line 18 of Algorithm 17 can only be
iterated O(log n) times during the processing of a tag on the stream. The processing time per
letter is then O(logN), since we assume that operations on the stack run in constant time.

6.4 Validity of General Trees

First, we present in Subsection 6.4.1 a trivial one-pass algorithm that uses space O(d) where
d is the depth of the input XML document. Then, in Subsection 6.4.2 we design a streaming
algorithm that uses space O(log2N) and 3 auxiliary streams, and makes O(logN) passes.

6.4.1 One-pass Algorithm with Space Linear in the Depth of the Document

We discuss now a straight-forward one-pass streaming algorithm, Algorithm 18, that usesO(d)
space to validate a well-formed XML document of depth d. Let (Σ, e, se) denote the input
DTD, and for all c ∈ Σ let Ac be a deterministic finite automaton with initial state q0

e and
transition function δe that accepts words ω iff e(c) accepts ω. Note that since we assume in this
work that the size of the input DTD is O(1), the size of (Ae)e∈Σ and the time complexity to
compute it is O(1).

In order to validate the input stream, we check for all nodes v that the sequence of labels of
its children fulfills the regular expression e(v) (remember: we write ambiguously v to denote
the node as well as the label of v). We do this by feeding the sequence of labels of its children
into automaton Av, and we reject if the automaton does not accept this sequence.

Consider an internal node v at depth depth(v) with children c1, . . . , ck. Then
vc1 . . . c1c2 . . . ck−1ck . . . ckv is a substring of the input stream. As soon as we encounter
the opening tag v, we store the initial state of Av in an array S at index depth(v). As soon
as an opening tag of a children node of v is encountered, we compute the follow-up state of
S[depth(v)] by feeding the children node’s label into Av on state S[depth(v)]. When v is
reached and S[depth(v)] is not an accepting state of Av, we report invalidity.

Since the depth of the document is d, there are at most d nodes whose validity has to be
checked at the same time. These nodes are the nodes on the path from the current node to the
root node. Therefore, we need to store at most d states of the automata (Aσ)σ∈Σ leading to a
space complexity O(d). See Algorithm 18 for details.
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Algorithm 18 One-pass Streaming Algorithm for VALIDITY with space O(d)

Require: input stream is a well-formed XML document of depth d
1: l← −1, L, S ← array of size d
2: while stream not empty do
3: x← next tag on stream
4: if x is an opening tag c then
5: if l = −1 then {Root node}
6: if c 6= se then report error and abort end if
7: else {Node different from the root node}
8: S[l]← δL[l](S[l], c)
9: end if

10: l← l + 1
11: L[l]← c
12: S[l]← q0c
13: else {x is a closing tag c}
14: if l 6= −1 then
15: if S[l] is not an accepting state of Ac then report error and abort end if
16: end if
17: l← l − 1
18: end if
19: end while

Theorem 18. Algorithm 18 is a deterministic one-pass streaming algorithm for VALIDITY with
space O(d) and O(1) processing time per letter where d is the depth of the input XML docu-
ment.

Proof. Correctness of the algorithm follows by construction. Concerning space, the arrays L
and S are of size O(d) and since l does not exceed d, the space requirements for storing l are
O(log d).

6.4.2 Streaming Algorithm with 3 Auxiliary Streams

In the following subsections we provide streaming algorithms for FCNS encoding which is the
transformation of XML(t) to XML(FCNS(t)), and FCNS decoding which is the transforma-
tion of XML(FCNS(t)) to XML(t), see the definition in Section 6.1.2.

We are interested in computing the transformation XML(t) → XML(FCNS(t)). Our
strategy is to compute the subsequence of opening tags of XML(FCNS(t)) (discussed in
Subsection 6.4.2.1) and the subsequence of closing tags (discussed in Subsection 6.4.2.2) of
XML(FCNS(t)) independently, and merge them afterwards (discussed in Subsection 6.4.2.3).

6.4.2.1 Computing the sequence of opening tags

First, we provide a lemma that shows that the sequence of opening tags in XML(t) and
XML(FCNS(t)) coincide.

Lemma 38. The opening tags in XML(t) are in the same order as the opening tags in
XML(FCNS(t)).
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Proof. Recall Definition 15 of XML and Definition 16 of XMLF. We will show that the
following two functions XML′ and XMLF′ which, applied to the root of a tree t, generate the
sequences of opening tags of XML(t) and XML(FCNS(t)) (without left/right annotations) are
equivalent. For a tree t and nodes x, x1, . . . , xn we define

XML′(x) = xXML′(children(x)),

XML′(x1, . . . , xn) = XML′(x1) . . .XML′(xn),

XML′(⊥) = ε,

and

XMLF′(x) = xXMLF′(fc(x)) XMLF′(ns(x)),

XMLF′(⊥) = ε.

Clearly, XML′(root(t)) and XMLF′(root(t)) construct the sequences of opening tags of
XML(t) and XML(FCNS(t)). Let x ∈ t be any node. We prove the following statement
by induction on the size of the subtree below x:

XML′(x) = xXMLF′(fc(x)). (6.4)

The statement is trivially true if x is a leaf, that is a tree of size 1. Let x be a non-leaf node
with children x1, . . . , xn. Then

xXMLF′(fc(x)) = xx1 XMLF′(fc(x1)) XMLF′(ns(x1)) (6.5)

= xXML′(x1) XMLF′(x2) (6.6)

= xXML′(x1)x2 XMLF′(fc(x2)) XMLF′(ns(x2)) (6.7)

= xXML′(x1) XML′(x2) XMLF′(x3) (6.8)

. . .

= xXML′(x1) . . . XML′(xn) = xXML′(children(x)) = XML′(x).

We used the induction hypothesis in Equation 6.5 to obtain Equation 6.6 and in Equa-
tion 6.7 to Equation 6.8. Let r denote the root of t. Then using Equation 6.4 the result follows

XMLF′(r) = rXMLF′(fc(r))XMLF′(ns(r))

= XML′(r)XMLF′(⊥) = XML′(r).

Since due to Lemma 38 the subsequences of opening tags in XML(t) and XML(FCNS(t))
coincide, we extract the subsequence of opening tag of XML(t), and we annotate them with
left or right as they should be in XML(FCNS(t)). Recall that an opening tag is left if it is the
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opening tag of a first child, otherwise it is right. Furthermore, for later use we annotate each
opening tag c with depth(c) in t and the position in the stream pos(c), see Algorithm 19.

Algorithm 19 Extracting the opening tags of XML(t)

Require: input stream is a well-formed XML document
1: d← 0, p← 0
2: D ← L
3: while stream not empty do
4: x← next tag on stream
5: p← p+ 1
6: if x is an opening tag c then
7: d← d+ 1
8: write on output stream (cD, d, p)
9: D ← L

10: else {x is a closing tag c}
11: d← d− 1
12: D ← R
13: end if
14: end while

Fact 3. Algorithm 19 is a streaming algorithm with space O(logN) that, given XML(t) as
input, outputs on an auxiliary stream the sequence of opening tags of XML(FCNS(t)) with
left/right annotations, and furthermore, annotates each tag c with depth(c) and pos(c). It
performs one read pass on the input stream and one write pass on the auxiliary stream.

6.4.2.2 Computing the sequence of closing tags

For a node v of some tree t, let pos′(v) and pos′(v̄) be the respective positions of the opening
and closing tags of v in XML(FCNS(t)). Lemma 39 refers to the structure of the subsequence
of closing tags in XML(FCNS(t)).

Lemma 39. Let v1, v2 be nodes of t with pos(v1) < pos(v2). Then pos′(v2) < pos′(v1) iff:

1. v2 is in the subtree of v1 in t;

2. or v2 is in the subtree of a right sibling of v2 in t.

Proof. Suppose that either Item 1 or Item 2 is true. Note that for a node x, XMLF(x) generates
opening and closing tags for the entire subtree of x, and for all right siblings of x. Disregarding
the annotations, we have XMLF(v2) = v2XMLF(fc(v2))XMLF(ns(v2))v2, and hence v2 is
preceded by all closing tags that are in the subtree of v2 (Item 1) and all closing tags that are
right siblings of v2 or in the subtrees of right siblings of v2 (Item 2).

We prove now that if Item 1 and Item 2 are false then pos′(v1) < pos′(v2). Suppose
now that Item 1 and Item 2 are false. Let p = lca(v1, v2) where lca(x, y) denotes the lowest
common ancestor of nodes x and y. Then depth(p) ≤ depth(v1) − 2 since otherwise Item 1
or Item 2 would be true.
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Consider now XMLF(p) = pXMLF(fc(p))XMLF(ns(p))p. If v2 equals p then the
lemma follows immediately since v1 is generated by XMLF(fc(p)) and p is generated after
XMLF(fc(p)). Otherwise, let p′ be the node at depth depth(p) + 1 that is on the path from
v1 to p. Then v2 is a right sibling of p′ or v2 is in a subtree of a right sibling of p′. Consider
XMLF(p′) = p′XMLF(fc(p′))XMLF(ns(p′))p′. Then v1 is generated by XMLF(fc(p′)) and
v2 is generated by XMLF(ns(p′)) and this proves that pos′(v1) < pos′(v2).

For computing the sequence of closing tags, we start with the sequence of opening tags of
XML(FCNS(t)) as produced by the output of the Algorithm 19, that is, correctly annotated
with left/right and with depth and position annotations. To obtain the correct subsequence of
closing tags as in XML(FCNS(t)), we interpret the opening tags as closing tags and we sort
them with a merge sort algorithm. Merge sort can be implemented as a streaming algorithm
with O(log(N)) passes and 3 auxiliary streams [GHS09]. For the sake of simplicity, Algo-
rithm 20 assumes an input of length 2l for some l > 0.

Algorithm 20 Merge sort

Require: unsorted data of length 2l on stream 1
1: for i = 0 . . . l − 1 do
2: copy data in blocks of length 2i from stream 1 alternately onto stream 2 and stream 3
3: for j = 1 . . . 2l−i−1 do
4: merge(2i)
5: end for
6: end for

The function merge(b) reads simultaneously the next b values from stream 2 and stream 3,
and merges them onto stream 1. The for loop in Line 3 of Algorithm 20 requires one read pass
on stream 2, one read pass on stream 3, and one write pass on stream 1. See Figure 6.10 for an
illustration.

line 2 (copy) line 3 (merge)
str 1:
str 2:
str 3:

B1 B2 B3 B4 . . . B2l−i

B1

B2

B3

B4

. . .

. . .
Bl−i−1

Bl−i

B12 B34 . . .B2l−i−12l−i

B1

B2

B3

B4

. . .

. . .
Bl−i−1

Bl−i

Figure 6.10: Left: Illustration of the copy operation in Line 2 of Algorithm 20. Blocks from stream
1 are copied alternately onto stream 2 and stream 3. Right: Illustration of the merge operations
executed within the for loop of Line 3 of Algorithm 20. The Bi are sorted blocks. All blocks Bi

and Bi+1 are merged into a sorted block Bi(i+1).

In order to use merge sort, we have to define a comparator function that, given two closing
tags c1, c2 with pos(c1) < pos(c2), decides whether pos′(c1) < pos′(c2). Lemma 39 states
that if c2 is in the subtree of c1 or c2 is in the subtree of a right sibling of c1 then pos′(c2) <
pos′(c1), otherwise pos′(c2) > pos′(c1). Therefore, a comparator has to be able to distinguish
between these two situations. This, however, seems difficult in the streaming model.

To overcome this problem, instead of only defining a comparison function, we design a
complete merge function in Lemma 40 that, by construction, never encounters the situation
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that nodes v1, v2 with pos(v1) < pos(v2) that do not fulfill Item 1 and Item 2 of Lemma 39 are
compared. The key idea is to introduce separator tags which we denote by new tags outside of
Σ. They are initially inserted right after each closing tag of a last child u. We denote by u the
separator we introduce when seeing the last child u, and we define depth(u) = depth(u).

Algorithm 21 Unsorted sequence of closing tags of XML(FCNS(t)) with separators
Require: input stream is a well-formed XML document

1: d← 0, p← 0
2: D ← L
3: while stream not empty do
4: x← next tag on stream
5: p← p+ 1
6: if x is an opening tag c then
7: d← d+ 1
8: write on output stream (cD, d, p)
9: D ← L

10: else {x is a closing tag c}
11: if next item on stream is a closing tag then
12: write on output stream (c, d, p)
13: end if
14: d← d− 1
15: D ← R
16: end if
17: end while

Fact 4. Algorithm 21 is a streaming algorithm with space O(logN) that, given a se-
quence XML(t) on a stream, computes on an auxiliary stream the sequence of closing tags
XML(FCNS(t)) together with their separators and annotates the tags with depth, pos, and
left/right. It performs one read pass on the input stream and one write pass on the auxiliary
stream.

We have to define the way we integrate the separators into our sorting. Let v1, v2, . . . , vk be
the ordered sequence of the children of some node. For the separator vk we ask their position
among the closing tags to satisfy for each node v:

pos′(v) < pos′(vk) iff pos′(v) ≤ pos′(v1); (6.9)

and for any other separator wk:

pos′(vk) < pos′(wk) iff pos′(vk) < pos′(wk). (6.10)

Blocks appearing in merge sort fulfill a property that we call well-sorted. A block B of
closing tags is well-sorted if the corresponding tags in XML(FCNS(t)) appear in the same
order, and for all v1, v2 ∈ B with pos(v1) < pos(v2), all closing tags v of nodes v with
pos(v1) < pos(v) < pos(v2) are in B as well.

In addition, for two blocks B1, B2 of closing tags, we say that (B1, B2) is a well-sorted
adjacent pair, if B1 and B2 are well-sorted, for each closing tag v1 ∈ B1 and each closing tag

91



6. VALIDATING XML DOCUMENTS IN THE STREAMING MODEL

v2 ∈ B2 pos(v1) < pos(v2) is satisfied, and furthermore, all closing tags v of nodes v with
pos(v1) < pos(v) < pos(v2) are either in B1 or B2.

The following lemma shows that we can merge a well-sorted adjacent pair correctly.

Lemma 40. Let (B1, B2) be a well-sorted adjacent pair, and let b1 = B1[p1] and b2 = B2[p2]
for some p1, p2. Assume that pos′(b) < pos′(b1) and pos′(b) < pos′(b2), for all b ∈ B1[1, p1−
1] ∪B2[1, p2 − 1]. Then:

1. If b1 is a separator, or there is a separator in B1 after b1, then pos′(b1) < pos′(b2);

2. Else if b2 is a separator then:

(a) if depth(b1) < depth(b2) then pos′(b2) < pos′(b1),
(b) else depth(b1) = depth(b2) and pos′(b1) < pos′(b2);

3. Else (neither b1 nor b2 are separators and there is no separator in B1 after b1):
pos′(b2) < pos′(b1).

Proof. Let (B1, B2) be a well-sorted adjacent pair. Let l = max{i : B1[i] is a separator}. If
there are no separators in B1, let l = 0.

Item 1. Since B1 is well-sorted, we only need to check that pos′(B1 [l]) < pos′(B2 [1]).
Denote by u the last child that was responsible for the insertion of the separator tag B1[l].
Let u′ be the left-most sibling of u. Due to Equation (6.9) it suffices to show that pos′(u′) <
pos′(B2[1]). Since the separator B1[l] indicates that the last child u has been seen, B2[1] is
not in the subtree of u′ or in a subtree of a right sibling of u′. Therefore, by Lemma 39 we get
pos′(u′) < pos′(B2[1]).

Item 2. Let v denote a node in the tree with children v1, . . . , vk. First, note that the
separator vk is initially inserted after vk. Furthermore, between the initial position of any vi
and vk there are no other separators with a depth smaller than depth(vk). Therefore, it can not
happen that the node b1 is compared to a separator tag with depth smaller than depth(b1).

If depth(b2) = depth(b1) then b2 is the seperator tag that was inserted after the right-most
sibling of b1. Let l be the left-most sibling of b1. Then pos′(b1) < pos′(l) and therefore
by Equation 6.9 we have pos′(b1) < pos′(b2). If depth(b2) > depth(b1) then b2 is the
separator that was introduced after a node that is either in the subtree of b1 or in the subtree of
a right sibling of b1. Let l′ denote the left-most sibling of that node. By Lemma 39 we have
pos′(l′) < pos′(b1) and hence by Equation 6.9 we have pos′(b2) < pos′(b1).

Item 3. We argue that b2 is in the subtree of b1 or b2 is in the subtree of a right sibling of
b1. Then, by Lemma 39, we have pos′(b2) < pos′(b1). Suppose for the sake of contradiction
that this is not the case. Then the separator that was introduced after the right-most sibling of
b1 must be in B1[p1 + 1, k] ∪ B2[1, p2 − 1], where k = |B1|. Suppose that this separator was
in B1[p1 + 1, k]. Then this is a contradiction since this case is treated in Item 1 of this lemma.
Suppose that this separator was in B2[1, p2− 1]. Then this is a contradiction to the assumption
of the lemma that pos′(B2[j]) < pos′(b1) for all j < p1.

Lemma 41. There is a O(logN)-pass streaming algorithm with space O(logN) and 3 auxil-
iary streams that computes the subsequence of closing tags of the FCNS encoding of any XML
document given in the input stream.
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Proof. Using Algorithm 21, we compute on the first auxiliary stream the sequence of opening
tags interpreted as closing tags with corresponding annotations, together with separators.

We show that we can do a merge sort algorithm with a merge function inspired by
Lemma 40 on the first three auxiliary streams withO(logN) space and passes. For that assume
that the first stream contains a sequence (B1, B2, . . . , BM ) of blocks of size 2i. For simplicity
we assume that M is even, otherwise we add an empty block. We alternately copy odd blocks
on the second stream, and even blocks on the third stream. For a block B2i that we write on
the third stream, we write before each of them, the number of separators that occur in the block
B2i−1 that was copied on the second stream.

Then we merge sequentially all pairs of blocks (B2k−1, B2k) for 1 ≤ k ≤ M/2 us-
ing Lemma 40. Note that (B2k−1, B2k)k are all well-sorted pairs. Let l = max{i :
B2k−1[i] is a separator}. Firstly, we copy elements B2k−1[1, l] onto auxiliary stream 1. Know-
ing the number of separators in B2k−1 allows us to perform this operation. The correctness of
this step follows from Item 1 of Lemma 40. Then, we merge blocks B2k−1[l + 1, 2i] and B2k

by using the comparison function defined in Items 2 and 3 of Lemma 40.

6.4.2.3 Merging opening and closing tags

Merging the subsequence of opening tags of XML(FCNS(t)) and the subsequence of closing
tags of XML(FCNS(t)) can be done by simultaneously reading the two subsequences and
performing one write pass over an auxiliary stream.

Algorithm 22 Merging the sequence of opening and closing tags
Require:

• stream 1: annotated opening tags as output by Algorithm 19

• stream 2: annotated closing tags as output by the algorithm of Lemma 21

1: while stream 2 not empty do
2: (c1, p1, d1), . . . , (ck, pk, dk)(ck+1, pk+1, dk+1)← next k+1 annotated opening tags from stream

1 such that d1 ≤ d2 ≤ · · · ≤ dk and dk > dk+1 and (ck+1, pk+1, dk+1) is not discarded from
the stream

3: output c1 . . . ck on output stream
4: for i = 1 . . . dk − dk+1 do
5: (c1, p1, d1), . . . , (cl, pl, dl)(cl+1, pl+1, dl+1) ← next l annotated closing tags from stream 2

such that (ci)1≤i≤l are closing tags and cl+1 is a separator
6: output c1 . . . cl on output stream
7: end for
8: end while

When merging the sequence of opening tags and closing tags, we have to write closing
tags only between two opening tags am, bi+1 (see Figure 6.11) if depth(am) > depth(bi+1)
in t. Figure 6.11 shows the closing tags that have to be written at that moment. The sequences
am . . . a1, e, dl . . . d1 and cj . . . c1 are all separated by a separator in the sequence of closing
tags. Therefore, it is enough to write the next depth(am)−depth(bi+1) blocks of closing tags
that are separated by a separator between am and bi+1.
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Figure 6.11: A part of a tree and its FCNS encoding. Consider nodes am and bi+1. In the FCNS
encoding, the sequence of closing tags am . . . a1edl . . . d1cj . . . c1 has to be written in between the
opening tag am and bi+1.

Lemma 42. Algorithm 22 merges correctly the sequence of opening tags and closing tags
using space O(logN).

Proof. First, we argue that closing tags only have to be written between consecutive open-
ing tags a and b in the sequence of opening tags such that depth(a) > depth(b). We have
XMLF (a) = aXMLF (fc(a))XMLF (ns(a))a, and therefore if depth(a) < depth(b) then b is
either the first child of a or if a is a leaf then b is the next sibling of a. In both cases, there are
no closing tags between a and b.

Figure 6.11 illustrates the closing tags that have to be written beween two consecutive
opening tags a and b with depth(a) > depth(b). Since closing tags at different levels are
separated by a separator, it is enough to write the next depth(a)− depth(b) blocks of closing
tags that are separated by a separator between the tags a and b.

From Fact 3, Lemma 41 and Lemma 42 we obtain Theorem 19.

Theorem 19. There is a O(logN)-pass streaming algorithm with space O(logN) and 3 aux-
iliary streams and O(1) processing time per letter that computes on the third auxiliary stream
the FCNS transformation of any XML document given in the input stream.

Proof. Firstly, we compute according to Lemma 41 the sequence of closing tags and we store
them on auxiliary stream 1. Then, by Fact 3 we extract the sequence of opening tags, and we
store them on auxiliary stream 2. By Lemma 42 we can merge the tags of auxiliary stream 1
and auxiliary stream 2 correctly onto stream 3.

The space requirements of these operations do not exceed O(logN). The processing time
per letter of these operations is constant.

The algorithm described in the proof of Theorem 19 can be easily modified such that it
outputs XML(FCNS⊥(t)) instead of XML(FCNS(t)). We state this fact in the following.

Corollary 1. There is a O(logN)-pass streaming algorithm with space O(logN) and 3 aux-
iliary streams and O(1) processing time per letter that computes on the third auxiliary stream
the FCNS⊥ encoding of any XML document given in the input stream.
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Proof. Firstly, we use the algorithm described in Theorem 19 to compute the transformation
XML(t) into XML(FCNS(t)). Then, with an additional read pass and an additional write
pass we transform XML(FCNS(t)) into XML(FCNS⊥(t)). To perform this transformation,
we read the tags of XML(FCNS(t)) and output them on another stream without left/right
annotations, and at the same time we insert leaves labeled with ⊥. Such a leaf has to be
inserted below internal nodes that have only a single child. The left/right annotations of the
input stream allow us to recognize those nodes. Note that the transformation XML(FCNS(t))
into XML(FCNS⊥(t)) requires only constant space.

6.4.2.4 Checking Validity on the encoded form

The problem of validating trees given in their encoded form and the problem of validating
binary trees are similar. We will provide intuition that basically any streaming algorithm that
decides validity of binary trees by calling a check function upon all triplets (v, v1, v2) of internal
nodes v with children v1, v2 ((v, ε, ε) for leaves) can be transformed into an algorithm that
decides validity of trees given in their encoded form. We will explicitly show how to use the
bidirectional 2-pass algorithm, Algorithm 16, and the one-pass algorithm, Algorithm 15, to
perform this task.

To validate a node v with children v1, . . . , vk, an algorithm has to ensure that the sequence
v1 . . . vk is valid with respect to the regular expression d(v). To perform such a check, an
algorithm has to gather the relevant information, which is the label of v and the label of its
children v1, . . . , vk, from the stream. Figure 6.12 illustrates the fact that vk . . . v1 forms a
substring in XML(FCNS⊥(t)). Suppose that the information about the labels of the children
v1, . . . , vk was available at node v1 in FCNS⊥(t) (in a compressed form since the number
of children of a node can be large). Then we could use any algorithm validating binary trees
which uses a check function as described above for our purpose: since such an algorithm relates
a node to its two children, we can use this algorithm on FCNS⊥(t) to relate a node to its left
child.

Granting access to all children labels when it is required is established with the help of a
finite automaton that we discuss later. Consider a left-to-right pass over FCNS⊥(t). When
seeing the sequence vk . . . v1, we feed it into a finite automaton. The resulting state is a com-
pressed version of this sequence. A binary tree validity algorithm will then relate this state to
the parent node. The details follow.

For a non-leaf node v, we gather the information of the children nodes v1, . . . , vk with the
help of finite automata A1 (for left-to-right passes) and A2 (for right-to-left passes).

We denote by (Σ, Q, q0, δ, F ) a deterministic finite automaton where Σ is its input alphabet,
Q is the state set, q0 is its initial state, δ : Q× Σ→ Q is the transition function, and F is a set
of final states. Furthermore, for a word ω = ω1 . . . ωn of length n, we define ωrev to be ω read
from right to left, that is ωrev = ωn . . . ω1.

Lemma 43. Let D = (Σ, d, sd) denote a DTD. Then there is a deterministic finite automaton
A1 = (Σ, Q1, q

1
0, δ1, F1) that for any v ∈ Σ and any v1 . . . vk in Σk accepts the word vk . . . v1v

only if v1 . . . vk fulfills the regular expression d(v).
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t :

v

v1 v2 . . . vk

t1 t2 tk

FCNS⊥(t) :

v

v1

v2

. . .

vk

t′1

t′2

t′k

Figure 6.12: A tree t and its FCNS⊥ encoding. While the opening and closing tags of the children
of a node v are separated by the subtrees t1, . . . tk in XML(t), the closing tags of the children of v
are consecutive in XMLF⊥(t) in reverse order, that is vkvk−1 . . . v2v1 is a substring of XMLF⊥(t).

Proof. For a ∈ Σ, denote by Aa a deterministic finite automaton that accepts the regular
expression d(a). We compose the Aa as in the left illustration of Figure 6.13 to an automaton
A that accepts words ω′ such that ω′ = aω, a ∈ Σ, ω ∈ Σ∗ if ω ∈ d(a). A1 is a deterministic
finite automaton that accepts a word ω, iff ωrev is accepted by A.

Lemma 44. Let D = (Σ, d, sd) denote a DTD. Then there is a deterministic finite automaton
A2 = (Σ, Q2, q

2
0, δ2, F2) that for any v ∈ Σ and any v1 . . . vk in Σk accepts the word v1 . . . vkv

only if v1 . . . vk fulfills the regular expression d(v).

Proof. For a ∈ Σ, denote by Aa a deterministic finite automaton that accepts the regular
expression d(a). We compose the Aa as in the right illustration of Figure 6.13 to an automaton
A that accepts words ω′ such that ω′ = ωa, a ∈ Σ, ω ∈ Σ∗ if ω ∈ d(a). Then A2 is a
deterministic version of A without ε transitions.

q0

A1

A2

A|Σ|

...

a1

a2

a|Σ|

q0 qf

A1

A2

A|Σ|

...

ǫ

ǫ

ǫ

a1

a2

a|Σ|

Figure 6.13: Left: Automaton A. A1 accepts words ω if A accepts ωrev. Right: Automaton A2 is
a version of the illustrated automaton without ε transitions.

We show now that by the help of automata A1 and A2, Algorithm 16 can be reused for the
validation of trees given in their encoded form.

Theorem 20. There is a bidirectional two-pass deterministic algorithm for VALIDITY with
space O(log2N) and O(logN) processing time per letter when the input is given in its FCNS
encoding.
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Proof. We run a modified version of Algorithm 16 on XML(FCNS⊥(t)). The modifications
concern the subroutine described in Algorithm 17. The modifications are different for the left-
to-right pass and the right-to-left pass.

Firstly, we consider the left-to-right pass. We will annotate the closing tags of left children
on the fly by states of the automaton A1 as described in Lemma 43. Let v1, . . . , vk denote
the children of a node v. Then the annotation of v1 is a state that we denote by q1(v). q1(v)
is the resulting state of A1 when feeding the sequence vk, . . . , v1 into it. We describe later
how to compute it on the fly. Given this annotation, we use a different implementation of the
check function. For internal nodes v with first child v1 and annotation q1(v), the check function
simply computes the state δ1(q1(v), v) and stops if the prior state is not an accepting state. Note
that by the definition of A1, v is valid if δ1(q1(v), v) is an accepting state.

We discuss now how to compute this annotation. As discussed before and illustrated in
Figure 6.12, the closing tags vk . . . v1 of children v1, . . . , vk of a node v form a substring.
Hence, as soon as we see vk which we can easily identify since it is a right leaf, we run the
automaton A1 on the labels of the upcoming closing tags. We stop this procedure after v1 is
read which we can identify since v1 is followed by an opening tag. Hence, when v1 is pushed
on the stack (in Algorithm 17 it is actually pushed on the stack together with the opening tag
of the right child of v), we can annotate it with q1(v1).

Consider now a right-to-left pass. Note that in a right-to-left pass, closing tags are inter-
preted as opening tags and vice versa. This implies that a left child becomes a right child and
a right child becomes a left child. Let v1, . . . , vk denote the children of a node v. Then in a
right-to-left pass, we see the sequence of opening tags v1, . . . , vk as a substring, where v1 is a
right opening tag and v2, . . . , vk are left opening tags. We will annotate the closing tag of the
left child of v. Note that due to the exchange of the role of left and right, the left closing tag
is the next sibling of v and not the first child. Since our input tree FCNS⊥(t) is a binary tree,
it is guaranteed that this node exists. The annotation is the state q2(v). q2(v) is obtained by
feeding the sequence v1, . . . , vk into the automaton A2, who is described in Lemma 44. The
check function then computes δ2(q2(v), v) and stops if the resulting state is not an accepting
state.

We discuss now that this annotation can be computed on the fly and it can be added correctly
to the closing tag of the left child of v. The main difference to the left-to-right pass is that we
compute the annotation after having pushed the children of v onto the stack and we add the
annotation afterwards. Denote by vl the left child of v in FCNS⊥(t). Then in the right-to-left
pass we see the substring vlv1v2 . . . vk. Algorithm 17 pushes vl, v1 on the stack as soon as v1

is seen. We then feed the sequence v1v2 . . . vk into A2. As soon as vk is read which can be
easily identified since vk is either a leaf of followed by a right opening tag, we annotate the left
closing tag of the topmost stack item by the state q2(v).

Correctness, that is the validation of all nodes, follows then from the correctness of Al-
gorithm 16. The automata A1,A2 are of constant size since we assumed that the input DTD
is of constant size. Hence, the described algorithm has the same space complexity as Algo-
rithm 16.

By modifying the one-pass algorithm Algorithm 15 in a similar way, the following theorem
can be obtained.
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Theorem 21. There is a one-pass deterministic algorithm for VALIDITY with space
O(
√
N logN) and O(1) processing time per letter when the input is given in its FCNS⊥

encoding.

Proof. We reuse Algorithm 15. Concerning the modifications, the idea is the same as for the
left-to-right pass of the algorithm described in the proof of Theorem 20. For all internal nodes
v with children v1, . . . , vk, we compress the sequence v1, . . . , vk into a state q1(v) of the finite
automaton A1 who is described in Lemma 43. q1(v) is obtained by feeding vk . . . v1 into A1

which can be done since vk . . . v1 forms a substring of the input XML sequence. We annotate
the closing tag of v1 with this state. The check routine is modified in the same way as in the
proof of Theorem 20: only if δ1(q1(v), v) is an accepting state then v is valid, otherwise the
check routine aborts and the algorithm reports an invalid node. The correctness of Algorithm 15
ensures the validation of all nodes.

Applying the bidirectional algorithm of Theorem 20 on the encoded form
XML(FCNS⊥(t)), we obtain that validity of general trees can be decided memory effi-
ciently in the streaming model with auxiliary streams.

Corollary 2. There is a bidirectional O(logN)-pass deterministic streaming algorithm for
VALIDITY with spaceO(log2N),O(logN) processing time per letter, and 3 auxiliary streams.

Proof. We perform the transformation XML(t) into XML(FCNS⊥(t)) with the algorithm
stated in Corollary 1. Then, we run the two-pass bidirectional algorithm of Theorem 20 on
XML(FCNS⊥(t)) and the result follows.

Note that this result only holds for the validation of DTDs. Nothing is known about the
validation of more powerful validity schemas such as extended DTDs or XML Schema if access
to auxiliary streams is granted.

6.4.3 Decoding

In the following, we present streaming algorithms for FCNS decoding, that is, given
XML(FCNS(t)) of some tree t, output XML(t). These results complement our results on
the computation of the FCNS encoding and are mainly of theoretical interest to us. There
are, however, potential applications: It may have advantages to store the FCNS encoding of
an XML file instead of the XML file itself. Then validity could be efficiently ensured by Al-
gorithm 20 with two bidirectional passes and space O(log2N). The original document could
then be exported by means of the algorithms that we present in this section. The applicability
of this approach is left open.

We start with a non-streaming algorithm, Algorithm 23 performing this task.
We first discuss the correctness of Algorithm 23. We show that the algorithm run on

XML(FCNS(t)) computes the function dec(root(t)) which we define in the following. Let t
be a tree and let x ∈ t be a node, then

dec(x) = x dec(fc(x))x dec(ns(x)),

dec(⊥) = ε.
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Algorithm 23 Offline algorithm for FCNS decoding
1: for i = 1→ 2N do
2: if X[i] is an opening tag then
3: write X[i]
4: if X[i] does not have a left subtree then {X[i] is a leaf}
5: write X[i]
6: end if
7: else if X[i] is a left closing tag then {See Figure 6.14}
8: let p be the parent node of X[i]
9: write p

10: end if
11: end for

p

v1 v2

subtree of v1 subtree of v2

Figure 6.14: The main difficulty of the FCNS decoding is to write the closing tag of a node p when
the closing tag of its left child is seen. This is difficult when the subtrees of v1 and v2 are large.

The only difference between dec and XMLF is that for some non-leaf node x, dec(x) outputs
x between the recursive calls to dec(fc(x)) and dec(ns(x)) while XMLF outputs x at the very
end. Algorithm 23 computes dec since it ignores the closing tags of the FCNS encoding and it
inserts closing tags when we do a transition from the left child to a right child, that is between
the recursive calls to dec(fc(x)) and dec(ns(x)). We show in Lemma 45 that dec(root(t))
produces the same output as XML(root(t)).

Lemma 45. dec(root(t)) = XML(root(t)).

Proof. We will prove that for a node x ∈ t the following is true

XML(x) = x dec(fc(x))x. (6.11)

The proof is by induction on the height of the subtree below x and is similar to the proof
of Lemma 38. The claim is obvious for leaves. Let x be a node and let v1, . . . , vn denote the
children of x. Then

x dec(v1)x = x v1 dec(fc(v1)) v1 dec(v2)x (6.12)

= xXML(v1) v2 dec(fc(v2)) v2 dec(v3)x (6.13)

= xXML(v1) XML(v2) v3 dec(fc(v3)) v3 dec(v4)x (6.14)

. . .

= xXML(children(x))x = XML(x),

where we used the induction hypothesis in Equation 6.12 to obtain Equation 6.13, and in Equa-
tion 6.13 to obtain Equation 6.14. Since the root node r of the tree t does not have a next
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sibling, the result follows using Equation 6.11

dec(r) = r dec(fc(r)) r dec(ns(r)) = XML(r).

Corollary 3. Algorithm 23 is an offline algorithm that computes XML(t) given
XML(FCNS(t)).

We describe how this algorithm can be converted into a streaming algorithm. For an open-
ing tag X[i], checking the condition in Line 4 can easily be done by investigating X[i+ 1]. If
X[i+ 1] is a right opening tag or equals X[i], X[i] does not have a left subtree. The difficulty
in converting this algorithm into a streaming algorithm is in Line 8, it is difficult to keep track
of opening tags until the respective closing tags of their left children are seen, and indeed, this
cannot be done with sublinear space in one pass, see Theorem 24.

In the following, we present a streaming algorithm that performs one pass over the input,
but two passes over the output, and uses O(

√
N logN) space, and a streaming algorithm that

performs O(logN) passes over the input and 3 auxiliary streams using O(log2(N)) space.

6.4.3.1 One read-pass and two write-passes

We read blocks of size
√
N logN and execute Algorithm 23 on each block. In Lemma 35 we

showed that in any block there is at most one left closing tag for which the parent’s opening and
closing tag are not in that block. Hence per block there is at most one left closing tag for which
we can not obtain the label of the parent node. We call this closing tag critical. In this case
we write a dummy symbol on the output stream that will be overwritten by the parent’s closing
tag in the second pass. The closing tag of the parent node will arrive in a subsequent block,
and it can easily be identified as this since it is the next closing tag arriving at a depth −1 of
the critical closing tag. We store it upon its arrival in our random access memory. Since there
is at most one critical closing tag per block and we have a block size of

√
N logN , we have

to recover at most O(
√
N/ logN) parent nodes. At the end of the pass over the input stream

we have recovered all closing tags of parent nodes for which we wrote dummy symbols on the
output stream. In a second pass over the output stream we overwrite the dummy symbols by
the correct closing tags.

The space complexity uses Lemma 35 that was already applied in Section 6.3.1.

Theorem 22. There is a streaming algorithm using O(
√
N logN) space and O(1) processing

time per letter which performs one pass over the input stream containing XML(t) and two
passes over the output stream onto which it outputs XML(FCNS(t)).

6.4.3.2 Logarithmic number of passes

Again, we use the offline Algorithm 23 as a starting point for the algorithm we design now.
For coping with the problem that it is hard to remember all opening parent tags when their
corresponding closing tag ought to be written on the output, we always write dummy symbols
on the output stream for all parent closing tags. The crux then is the following observation:
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Fact 5. Let c1L . . . cNL be the subsequence of closing tags of left children of XML(FCNS(t)).
Then the sequence p1 . . . pN is a subsequence of XML(t) where pi is the parent node of ci in
FCNS(t).

We apply a modified version of our bidirectional two-pass Algorithm 16 to recover the
missing tags. Instead of checking validity, once the check function is called in Algorithm 17
with variables (a, b, c), we output the parent label a onto an auxiliary stream, annotated with
pos(b). We do the same in a reverse pass over the input stream counting positions from 2N
downwards to 1. In so doing, the auxiliary stream contains all parent labels for which dummy
symbols are written on the output stream.

Fact 5 shows that it is enough to sort by means of two further auxiliary streams the auxiliary
stream with respect to the annotated position of the closing tags of the left children of these
nodes. In a last pass we insert the parent closing tags into the output stream.

Theorem 23. There is a O(logN)-pass streaming algorithm with space O(log2N) and
O(logN) processing time per letter and 3 auxiliary streams that computes on the third auxil-
iary stream the FCNS decoding of any FCNS encoded document given in the input stream.

6.5 Lower Bounds for FCNS Encoding and Decoding

6.5.1 Lower bound for FCNS encoding

Let x ∈ Σn. We define a family of hard instances t(x) of lengthN = Θ(n) for the computation
of XML(FCNS(t(x))) given XML(t(x)) as in Figure 6.15.

r

x1 x2 . . . xn

r

x1

x2

. . .

xn

Figure 6.15: Left: hard instance. Right: its FCNS encoded form.

It is easy to see that computing the sequence of closing tags in the FCNS encoding requires
to reverse a stream. Let t be a hard instance. Then XML(t) = rx1x1x2x2 . . . xnxnr, and
XML(FCNS(t)) = rLx1Lx2R . . . xnRxnRxn−1R . . . x2Rx1LrL. Since writing the closing tags
on the output stream can only start after reading xn, we deduce that memory space Ω(n) is
required in order to store all previous tags x1, . . . , xn−1.

Fact 6. Every randomized streaming algorithm for FCNS encoding that performs one pass on
the input stream and one pass on the output stream with bounded error requires Ω(N) space.

6.5.2 Lower bound for FCNS decoding

We define now a family of hard instances of length N = Θ(n) for decoding a FCNS encoded
tree. Let X ∈ {0, 1}n, Y ∈ {0, 1}n and K ∈ [n] be uniformly distributed random variables.
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Let x ← X, y ← Y and k ← K. Denote by t′(y) an arbitrary but fixed two-ranked tree with
n nodes that are labeled by y1, . . . , yn, and let s′(y) be the decoded form of t′(y). We define
then the hard instance t(x, y, k) and its decoded form s(x, y, k) as in Figure 6.16.

r

x1

xk−1

xk

xk+1

xn
subtree t′(y)

r

x1

xk−1

xk

xk+1

xn

subtree s′(y)

Figure 6.16: Left: hard instance t(x, y, k) in FCNS form. Right: its decoded form s(x, y, k). s′(y)
is the decoded form of subtree t′(y).

Then we have

XML(t(x, y, k)) = rx1L . . . xnLxnL . . . xk+1LXML(t′(y))xkL . . . x1LrL, and

XML(s(x, y, k)) = rx1 . . . xnxn . . . xkXML(s′(y))xk−1 . . . x1r.

The crucial difference between t(x, y, k) and s(x, y, k) is that the subtree t′(y) is attached to
node xk in t(x, y, k) while the subtree s′(y) is attached to node xk−1 in s(x, y, k). As a conse-
quence, XML(t′(y))xkL is a substring of XML(t(x, y, k)) while xkXML(s′(y)) is a substring
of XML(s(x, y, k)). We will see that it is difficult to write the substring xkXML(s′(y)) with
sublinear space.

Note that xk has to be written before s′(y) (which is the decoded version of t′(y)). How-
ever, xk appears after the subtree t′(y) in XML(t(x, y, k)). Hence, we either have to store the
entire subtree t′(y) in memory using Θ(n) space, or we have to infer xk from the opening tag
xkL in t(x, y, k). Since, however, k is not known to the algorithm before seeing the subtree
t′(y), this can not be done with sublinear memory.

We start with the definition of a one-way three-party communication game that we denote
by INDEXCOPY. Let the input be uniformly distributed random variables X ∈ {0, 1}n, Y ∈
{0, 1}n and K ∈ [n]. They are given to the three parties Alice, Bob and Charlie as follows:

Alice MA−→ Bob MB−→ Charlie
X K,X[K + 1, n], Y X[1,K]

The common goal of the parties is to write the sequence X[K]Y on a shared output stream.
Firstly, Alice is allowed to write, followed by Bob and then Charlie. The communication is
one-way: Alice sends message MA to Bob, and then Bob sends message MB to Charlie.

From the presentation of the family of hard instances for FCNS decoding, it is easy to see
that an algorithm for FCNS decoding that makes one pass over the input stream and one pass
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over the output stream can be used to obtain a communication protocol for INDEXCOPY. We
state this as a fact.

Fact 7. A streaming algorithm for FCNS decoding that makes one pass over the input stream
and one pass over the output stream with space s serves as a communication protocol for
INDEXCOPY with communication cost O(s).

We will prove now that a communication protocol for INDEXCOPY has communication
cost Ω(N).

Lemma 46. Every possibly randomized communication protocol for INDEXCOPY with error
O(1/N) has communication cost Ω(N).

Proof. Let P be a (possibly randomized) communication protocol such that the parties output
X[K]Y on the shared output stream with error ε = 1

32n on any input. We will prove now that
P has communication cost Ω(n).

By Yao’s minimax principle, there is a deterministic communication protocol Pd with dis-
tributional error at most ε that has the same communication complexity as P . Suppose that
Alice’s message in Pd is at most of length n/100 bits. We will show that under this assump-
tion, for a particular input, Bob has to send a message of length Ω(n) bits which proves the
theorem.

Since Pd has distributional error ε = 1
32n , we obtain by the Markov inequality:

Pr
x←X

[error ≥ 1/(16n) |X = x] ≤ ε

1/(16n)
=

1

2
.

Therefore, there are at least (1/2)2n = 2n−1 values x for which the protocol errs with proba-
bility at most 1/(16n). Denote this set of x values by U . Furthermore, again by the Markov
inequality:

∀x ∈ U : Pr
k←K

[error ≥ 1/4 |X = x,K = k] ≤
1

16n

1/4
=

1

4n
.

Therefore, for any x ∈ U and any k ∈ [n], the protocol errs with probability less than 1/4.
Consider an input of Alice x coming from U that is different from x0 = 0 . . . 0 and x1 =

1 . . . 1. Then Alice cannot write the bit X[K] on the output stream. If on input x Alice writes
deterministically 0 (or 1) then there is a value of K such that Alice wrote the wrong bit. The
error on x would then be greater than 1/(16n) contradicting the fact that x ∈ U . Therefore,
for all x ∈ U \ {x0, x1} it is either Bob or Charlie who writes the bit X[K].

We will argue now that there is at least one x ∈ U and k ∈ [n] such that Charlie has to
output the bit X[K].

Since the maximal message length of Alice is n/100 bits, there is a subset U ′ ⊆ U with
|U ′| ≥ |U |

2n/100
= 2n−1−n/100 such that for all x ∈ U ′, the message MA sent by Alice is the

same. Denote this message by mA.
Using a technique of [MMN10], we will show now that there are x1, x2 ∈ U ′ and k ∈ [n]

such that x1[k] 6= x2[k] and x1[k + 1, n] = x2[k + 1, n]. This can be seen by building the

103



6. VALIDATING XML DOCUMENTS IN THE STREAMING MODEL

following two-ranked tree: For each x ∈ U ′ the tree has exactly one leaf at depth n that is
labeled by x. All edges of the tree are labeled by bits 0 or 1. The sequence of labels of the
edges of a path from a leaf to the root then equals the label of the leaf. An example for such a
tree is provided in Figure 6.17.

Figure 6.17: Organizing the set {010, 110, 001, 111} in a two-ranked tree.

By construction of the tree, the labels of leaves that have a common ancestor at depth i
have the same suffix of length i. Consider now an inner node v of this tree with two children
nodes. Such an inner node exists since the two-ranked tree has depth n and contains |U ′| ≥
2n−1−n/100 leaves. Let k be its depth. Furthermore, let x1 be the label of an arbitrary leaf
connected to the left child of v, and let x2 be the label of an arbitrary leaf connected to the right
child of v. Then x1[k + 1, n] = x2[k + 1, n] and x1[k] 6= x2[k] as desired.

Since x1, x2 ∈ U ′, the protocols errs with probability at most 1/4 if X ∈ {x1, x2} and
K = k. Note that on both inputs x1 and x2, Bob has the same suffix X[K + 1, n] since
x1[k+1, n] = x2[k+1, n]. Furthermore, Bob receives the same messagemA of Alice. Hence,
Bob can not distinguish between the two events X = x1 and X = x2 if K = k. Since
x1[k] 6= x2[k], Bob can not output the bit X[K] since this would lead to an error larger than
1/4.

Therefore, in this setting Charlie has to output the bit X[K]. This also requires that sub-
sequently Charlie outputs Y . Since Y is independent of the conditioning X = x1 (or x2) and
K = k and Charlie has no information about Y , we deduce that Charlie can learn Y from
Bob’s message MB with error at most 3/4.

Fix the input distribution X ∈ {x1, x2}, K = k and Y is chosen uniformly at random.
Then

H(MB) ≥ H(MB)−H(MB |Y ) = I(MB : Y ),

where H is the entropy function and I(MB : Y ) denotes the mutual information between MB

and Y . Furthermore,

I(MB : Y ) = H(Y )−H(Y |MB) = n−H(Y |MB).

By the Fano Inequality, we obtain

H(Y |MB) ≤ 1 + 1/4n.
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This implies that I(MB : Y ) ≥ 3/4n − 1 and H(MB) ∈ Ω(n) which in turn implies that the
average message length is Ω(n).

Finally, we state our space lower bound for streaming algorithm for FCNS decoding that
make one pass over the input stream and one pass over the output stream.

Theorem 24. Every randomized streaming algorithm for FCNS decoding that makes one pass
over the input stream and one pass over the output stream with error probability O(1/N)
requires space Ω(N).

Proof. The proof is by contradiction. Suppose that there is such a streaming algorithm with
space o(N). Then, by Fact 7 there is a communication protocol for INDEXCOPY with com-
munication cost o(N). This, however, is a contradiction to Lemma 46 that states that such a
communication protocol has communication cost at least Ω(N).
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Chapter 7

Budget Error-Correcting under
Earth-Mover-Distance

Before presenting our results on the EMD k-Budget Error-Correcting problem, we recapitulate
briefly the problem. For a given grid length ∆ > 0, Alice has n points x = {x1, . . . , xn} ∈
[∆]d and Bob has n points y = {y1, . . . , yn} ∈ [∆]d on the d-dimensional grid [∆]d. We
consider the one-way communication setting: Alice sends a message M to Bob, and using this
message, Bob changes his points y to y∗ such that the Earth-Mover-Distance EMD(x, y∗) is
minimized. The quality of the adjustment is measured as follows. For a given parameter k that
Alice and Bob are aware of, Bob aims to find a y∗ such that

EMD(x, y∗) ≤ C minỹ∈Nk(y) EMD(x, ỹ),

where Nk(y) is the set of point sets that can be obtained from y by moving at most k points
to a different location. We are hence comparing our adjustment to the best adjustment that can
be obtained by moving at most k points. For a given approximation factor C, the goal is to
minimize the message length |M |.

In Section 7.1, we discuss a protocol that achieves an O(d)-approximation, and in Sec-
tion 7.2, we show an almost matching lower bound for protocols that achieve an O(d)-
approximation.

7.1 Upper Bound

Intuition. We illustrate our protocol in the one dimensional case. Let ∆ > 0 be an integer.
Given Alice’s input x = {x1, . . . , xn} ∈ [∆]n and Bob’s input y = {y1, . . . , yn} ∈ [∆]n

on the one-dimensional grid [∆], the optimal solution will return a set of k pairs of points
{(u1, v1), . . . , (uk, vk)} (ui ∈ x, vi ∈ y) so that if Bob moves point vi to ui for all i ∈ [k], the
EMD between Alice’s point set x and Bob’s modified point set yOPT is minimized. Intuitively,
we can view the k pairs of points as the top k edges of a perfect matching between x and y.
Our objective is to report those edges.

For the sake of a simple presentation, we assume that ∆ = 2L for some integer L. Firstly,
we employ an idea that was already used in [IN03]. Alice builds a hierarchical partition (we
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later call it pyramid arrays) PA(x) = {PA0(x),PA1(x), . . . ,PAL(x)} for x, where PAi(x)
is an array containing 2i elements, and the j-th element of PAi(x) contains the number of
points in x that fall into the interval

(
(j − 1) · 2L−i, j · 2L−i

]
. This partitioning is illustrated

in Figure 7.1. Bob builds a similar hierarchical partition PA(y) for y.
Consider two points u, v (u ∈ x, v ∈ y) such that 2L−r ≤ ‖u− v‖2 < 2L−r+1. Then u

and v lie in cells with different indices in PA`(x) and PA`(y) for all r ≤ ` ≤ L, and hence
(u, v) contributes with 2 to ‖PA`(x)− PA`(y)‖1 for r ≤ ` ≤ L. On the other hand, it is very
likely that u and v lie in cells with the same index in PA`(x) and PA`(y) for all 0 ≤ ` < r.
Hence, (u, v) does not contribute to ‖PA`(x)− PA`(y)‖1 for 0 ≤ ` < r. This observation
leads to the following quite natural approach to our problem: Firstly, find the largest ` such that
‖PA`(x)− PA`(y)‖1 ≤ 2αk for some small constant α > 1. Then, Alice sends an encoding
of PA`(x) to Bob, from which Bob can compute a set of edges that approximate the k longest
ones. There are two difficulties to consider.

1. For a pair of points (u, v) with ‖u− v‖2 < 2L−r, u and v may lie in cells with different
indices in PA`(x) and PA`(y) for an ` ≤ r. In this case we may introduce a false positive
into the relocation.

2. For a pair (u, v) (u ∈ x, v ∈ y), Bob can only learn from PA`(x) that u lies in the
interval

(
(j − 1) · 2L−`, j · 2L−`

]
. Hence, Bob does not know the exact location of u to

where he should relocate his corresponding point v.

To handle the first problem, we perform a random shift of all points in x and y. In doing
so, we guarantee with that there are not many false positives with good probability. This is a
standard technique and was used before, e.g., in [Ind07].

To handle the second problem, we introduce a constant redundancy factor α > 1 in the
algorithm. That is, Alice sends a message to Bob so that Bob is able to relocate αk (> k)
points (if needed). Now, since Bob cannot decide the exact location that he should relocate a
point to, he simply moves the point to an arbitrary location in the corresponding interval. Such
an operation may introduce an additional error, but since the optimal solution can only relocate
k points, we can charge the errors that we make when relocating each point to the error that the
optimal solution has to make on the (at least) (α−1)k points that it is unable to relocate. Some
extra difficulties come from the interplay of these two problems: It is for instance possible that
the relocation of a false positive will again introduces some error. We hence have to carefully
design a charging scheme such that those errors can also be charged to the error that the optimal
solution makes on the (α− 1)k points that it fails to recover.

Communication Protocol. In order to present our communication protocol, we require a
formal definition of the pyramid arrays.

Definition 20 (d-Dimensional Pyramid Arrays). Let ∆ > 0 be an integer. Let x =
{x1, . . . , xn} ⊆ [∆]n be a set of n points on the d-dimensional grid [∆]d, and assume
that ∆ = 2L. We define the d-dimensional pyramid arrays of x to be a set of arrays
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PA(x) = {PA0(x), . . . ,PAL(x)}, where PAl(x)’s are constructed as follows.

for 0 ≤ l < L : PAl(x) = (PAi
l)i∈[2l]d with PAi

l =
∑

s∈{0,1}d
PA2i+s

l+1 ,

PAL(x) = (PAi
L)i∈[∆]d with PAi

L = |{j |xj = i}|.

Figure 7.1: Here, we can see a point set x of 116 points in the domain [16]2, and the first 3 levels
of the pyramid array of x. PA(x) has tree structure where the sum of the labels of the children of
an internal node is the label of the node.

The d-dimensional pyramid arrays can naturally be seen as a tree with the coordinates of
PAL(x) as leaves. Each coordinate r of PA`(x) (0 ≤ ` ≤ L − 1) corresponds to an internal
node of the tree, and the value of coordinate r is the sum of the values of all leaves in the
subtree rooted at r. For a leaf u, let r`(u) be the internal node at level ` such that u is in the
subtree rooted at node r`(u).

Given two arrays A,B of the same length, we define ‖A−B‖1 =
∑

i |A[i]−B[i]|. For
the upper bound we need an encoding scheme for arrays with certain properties. This encoding
is stated in Lemma 47.

Lemma 47. Let n,N, t be positive integers and let A,B ∈ [n]N . Alice has A and Bob
has B. Then there is a one-way two-party communication protocol with a message of length
O(log(nN) log(1

ε ) + t log(n)) and error probability at most ε such that

• if ‖A−B‖1 ≤ t then Bob outputs A, and

• if ‖A−B‖1 > t then Bob outputs ⊥.

The computation time of Alice and Bob is O(N polylog(nN) log(1
ε ) +N2 log(n)2).
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Proof. Alice sends a message M = (M1,M2) composed of two messages M1 and M2 to Bob.

• Message M1: M1 is a sketch of A that allows Bob to estimate the l1 distance ‖A−B‖1.
To this end, we borrow an idea from [FKSV02].

Lemma 48 ([FKSV02]). Let A,B ∈ {0, . . . , n}N . For some small constants ε, δ > 0
there is a sketch s(A, ε, δ) of A such that |s(A, ε, δ)| ∈ O(log(Nn) log(1/ε)/δ2) bits,
and using s(A, ε, δ) and B an approximation a to the l1 distance of x and y can be
computed such that

(1− δ) ‖A−B‖1 ≤ a ≤ (1 + δ) ‖A−B‖1
with probability at least 1 − ε. The time complexity for encoding and decoding is
O(N polylog(nN) log(1

ε )
1
δ2

).

Alice sets M1 = s(A, ε, 1/2). Then |M1| ∈ O(log(nN) log(1
ε )).

• Message M2: M2 is the error-correcting part of a Reed-Solomon code.

Lemma 49 (Reed-Solomon Code [HP03, WB86]). For a message Q of l elements from
GF (2r), there is a systematic erasure code of l + 2d + 1 < 2r elements which can be
used to recover Q if there are at most d lost elements in the coding. Moreover, the code
is of the form (Q, G), where G is the “error-correcting” part consisting of 2d elements.
The encoding and decoding time of the code is O((l + d)2).

Let x̄ = {x̄1, . . . , x̄N} and ȳ = {ȳ1, . . . , ȳN} be theN(log(n)+1) binary representation
of x and y, respectively, such that for each i : x̄i, ȳi ∈ {0, 1}log(n)+1. Note that if
‖x− y‖1 ≤ t then

∑N
i=1 ‖x̄i − ȳi‖1 ≤ t(log(n) + 1).

We set M2 = G, where (x̄, G) is the message from Lemma 49 with the following pa-
rameters: r = 1, d = 3t(log(n) + 1). Then |M2| ∈ O(t log n).

Bob receives the message M = (M1,M2). Firstly, using M1 and according to Lemma 48,
Bob computes a value A such that 1/2 ‖x− y‖1 ≤ A ≤ 3/2 ‖x− y‖1. If A > 3/2t then Bob
outputs ⊥ since this implies that ‖x− y‖1 > t with probability 1− ε.

If A ≤ 3/2t then with probability 1 − ε it holds that ‖x− y‖1 ≤ 3t. Using M2 and
according to Lemma 49, Bob can recover x with probability 1 − ε. Then, Bob computes
‖x− y‖1 and outputs x if ‖x− y‖1 ≤ t and ⊥ if ‖x− y‖1 > t.

The communication cost of the protocol is O(|M1| + |M2|) = O(log(nN) log(1
ε ) +

t log(n)). The computation time of Alice and Bob is O(N polylog(nN) log(1
ε ) +

N2 log(n)2).

Theorem 25. The protocol depicted in Algorithm 24 is a randomized protocol for EMD k-
Budget Error-Correcting with approximation ratio O(d) on the d-dimensional grid [∆]d with
communication cost Õ(k log ∆ log(n∆d)) bits and success probability 2/3.

Proof. Set α = 6 and β = 2. Let the approximation ratio be C = 10d 1. The communication
protocol is shown in Algorithm 24. We show now its correctness and analyze its communica-
tion complexity.

1We are not trying to optimize constants here.
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Algorithm 24 Communication protocol for d-dimensional EMD k-Budget Error-Correcting
Alice and Bob use α = 6 and ε = 1/(12 log(2∆)). Denote by enc(A, t, ε) (encoding) the
message of Alice as in Lemma 47, and denote by dec(M,B, t, ε) (decoding) the output of Bob
as in Lemma 47.
Alice:

1. Pick vector δ ∈ [∆]d uniformly at random and let x′ = x+ δ (note that x′ ∈ [2∆]d)

2. Construct d-dimensional Pyramid-Arrays PA(x′)

3. Encoding of PA(x′). For all 0 ≤ i ≤ L+ 1 : Mi = enc(PAi(x
′), 2αk, ε)

4. Send Message M = (δ,M0, . . . ,ML+1) to Bob

Bob:

1. Receive message M = (δ,M0, . . . ,ML+1) from Alice

2. Let y′ = y + δ (note that y′ ∈ [2∆]d)

3. Construct d-dimensional Pyramid-Arrays PA(y′)

4. Decoding of PA(x′). For all 0 ≤ i ≤ L+ 1 : PA′i = dec(Mi,PAi(y
′), αk, ε)

5. Let l∗ be the largest value such that ‖PA′l∗ − PAl∗(y
′)‖1 ≤ 2αk and PA′l∗+1 = ⊥

6. Relocate at most 2αk points of y′ to y′∗ such that PA′l∗ = PAl∗(y
′∗)

7. Let y∗ = y′∗ − δ
8. output y∗

Correctness. Let yOPT ∈ Nk(y) be such that EMD(x, yOPT) is minimized. Our goal is to
show that EMD(x, y∗) ≤ C · EMD(x, yOPT) with probability 2/3.

Let {(u1, v1), . . . , (uk, vk)} be a set of pairs such that in the optimal solution Bob moves
one of his points at location vi to ui (that is, to match one of Alice’s point at location ui) for
each i ∈ [k]. Let (uk+1, vk+1), . . . , (un, vn) be a minimum weight perfect matching between
the remaining (n−k) of Bob’s points with the remaining (n−k) of Alice’s points. If there are
more than one such minimum perfect matchings, the choice can be made arbitrarily. W.l.o.g.,
we assume that ‖u1 − v1‖2 ≥ ‖u2 − v2‖2 ≥ . . . ≥ ‖un − vn‖2.

Consider level `∗ computed by Bob. `∗ is the largest level ` ∈ [L] ∪ {0} such that
‖PA`(x

′)− PA`(y
′)‖1 ≤ 2αk (assuming that no error occurred). Let A =

√
d · 2L−`∗ be

the diagonal distance of a grid cell in level `∗. Then, for all those pairs (ui, vi) (i ∈ [n])
with ‖ui − vi‖2 ≥ A, we have r`∗(ui) 6= r`∗(vi) at level `∗ in the corresponding tree.
Thus each such pair will contribute 2 to ‖PA`∗(x

′)− PA`∗(y
′)‖1. However, there may also

be pairs (ui, vi) with ‖ui − vi‖2 < A, r`∗(ui) 6= r`∗(vi), and they also contribute 2 to
‖PA`∗(x

′)− PA`∗(y
′)‖1. In this case we say such a pair (ui, vi) is misclassified. We will

bound now EMD(x, yOPT) and EMD(x, y∗) separately.
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7. BUDGET ERROR-CORRECTING UNDER EARTH-MOVER-DISTANCE

• Lower bound on EMD(x, yOPT): In yOPT, only the first k pairs are corrected. Hence:

EMD(x, yOPT) ≥
n∑

i=k+1

‖ui − vi‖2 ≥
n∑

i=βk

‖ui − vi‖2 . (7.1)

• Upper bound on EMD(x, y∗): In our protocol, the first αk pairs are recovered so that
the distance between each such pair is at mostA after the relocation. Let n1 be the largest
number such that ‖un1 − vn1‖2 ≥ A. The first n1 pairs always get recovered since the
original distance between each such pair is at least A. Therefore,

EMD(x, y∗) ≤ αk ·A+
n∑

i=n1+1

‖ui − vi‖2

≤ αk ·A+ max{βk − n1, 0} ·A+
n∑

i=βk

‖ui − vi‖2 . (7.2)

Using Inequality 7.1 and Inequality 7.2, we obtain:

EMD(x, y∗)

EMD(x, yOPT)
≤

αk ·A+ max{βk − n1, 0} ·A+
∑n

i=βk ‖ui − vi‖2∑n
i=βk ‖ui − vi‖2

≤ 1 +
(α+ β)Ak∑n
i=βk ‖ui − vi‖2

. (7.3)

We will show later that with probability at least 3/4, it holds:

A ≤ 4d

(α− β)k

n∑
i=βk

‖ui − vi‖2 . (7.4)

Using Inequality 7.4 and Inequality 7.3, we obtain

EMD(x, y∗)

EMD(x, yOPT)
≤ 1 +

4d(α+ β)

α− β
= 1 + 8d < C.

Therefore with probability (3/4 − ε · log(2∆)) ≥ 2/3 our algorithm achieves a C-
approximation. The first term 3/4 is the probability that Equation 7.4 holds, and the second
error term is introduced by applying Lemma 47 (choose ε = 1/(12 log(2∆))) to each of the
log(2∆) levels of the pyramid arrays.

It remains to prove that Inequality 7.4 holds with probability at least 3/4. To this end, we
require the following observation (the proof of Proposition 1 is deferred to after the current
proof).

Proposition 1. Let l be any line of length x in d dimensions. Then the probability that a random
grid G with side length K intersects l is at most

√
dx
K .
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7.1 Upper Bound

Set η = α−β
4
√
d

. We focus on a level ` such that 2L−` =
∑n

i=βk ‖ui − vi‖2 /(ηk) 1, and we
will show that with probability 3/4, ‖PA`(x

′)− PA`(y
′)‖1 ≤ 2αk. If this is the case, then

according to the definition of `∗, it holds that A =
√
d · 2L−`∗ ≤

√
d · 2L−`.

For i = βk, . . . , n, let Ti be the indicator variable of the event that (ui, vi) is misclassified

at level `. Then by Proposition 1, we have that Pr[Ti = 1] ≤
√
d‖ui−vi‖2

2L−`
. Let T =

∑n
βk Ti.

We have

E[T ] ≤
n∑

i=βk

√
d ‖ui − vi‖2

2L−`
=

∑n
i=βk

√
d ‖ui − vi‖2∑n

i=βk ‖ui − vi‖2 /(ηk)
=
√
dηk.

By the Markov inequality, we have T ≤ 4
√
dηk = (α − β)k with probability 3/4. Therefore

with probability 3/4, it holds that∥∥PA`(x
′)− PA`(y

′)
∥∥

1
≤ 2(T + βk) ≤ 2αk.

Consequently, with probability 3/4,

A ≤
√
d ·

n∑
i=βk

‖ui − vi‖2 /(ηk) =
4d

(α− β)k

n∑
i=βk

‖ui − vi‖2 .

Communication complexity. Note that M = (δ,M0, . . . ,ML+1) with L = O(log ∆). For
all 0 ≤ i ≤ L + 1 we have |Mi| ∈ O(log(n∆d) log(log ∆) + k log n), and δ can be encoded
with O(d log ∆) bits. Hence, the total communication is bounded by

O
(

log(n∆d) log(∆) log(log ∆) + k log n log ∆
)
.

Proposition 2. Let l be any line of length x in d dimensions. Then the probability that a random
grid G with side length K intersects l is at most

√
dx
K .

Proof. Let (x1, . . . , xd) be the direction vector of l. Then clearly
∑

i x
2
i = x2. We bound

Pr[l intersects G] as follows:

Pr[l intersects G] ≤
∑
i

Pr[xiei intersects G],

where ei denotes the d-dimensional standard basis vector pointing into dimension i. Further-
more, ∑

i

Pr[xiei intersects G] =
∑
i

xi
K

=
1

K

∑
i

xi ≤
1

K

√
d
∑
i

x2
i =

√
dx

K
,

where we used the fact that for any d-dimenional vector v with non-negative coordinates the
inequality

∑
i vi ≤

√
d
∑

i v
2
i holds. This fact is an immediate consequence of Hölder’s in-

equality.
1For convenience, we assume that

∑n
i=βk ‖ui − vi‖2 /(ηk) is a power of 2. Such an assumption will not

change the approximation ratio by more than a factor of 2.
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7.2 Lower Bound

We again illustrate the idea in the one dimensional case. We first describe a family of hard
instances for EMD k-Budget Error-Correcting on the one dimensional grid [∆]. Alice and Bob
hold sets of n points x and respectively y on grid [∆]. The construction is performed in two
steps. In the first step, we choose p point center locations 1,∆/p + 1, 2∆/p + 1, . . . , (p −
1)∆/p+ 1, and in both x and y we assign n/p points to each point center. In the second step,
we move points from these point centers in x and y to the right. At this step we make the point
sets x and y different. We pick L (= Θ(log ∆)) subsets X1, . . . , XL ⊆ [p] such that |Xi| = k
for all i ∈ [L]. In x, for all i ∈ [L], for all j ∈ Xi, we move one point in the j-th point center
by a distance of 2Bi where B is a technical parameter. In y we perform similar operations: we
first pick a random I ∈ [L], and then for all i = {I + 1, . . . , L}, for all j ∈ Xi, we move one
point from the j-th point center by a distance of 2Bi. Note that x and y differ by those points
that are moved in x indicated by X1, . . . , XI . These points remain in point centers in y. The k
most significant differences in point set x and y are the k points that Alice moved by distance
2BI , that is, those points indicated by XI . Intuitively, if Bob wants to correct most of these
points, Bob has to learn XI approximately.

The technical implementation of this idea is a reduction from the well-known two-party
one-way communication problem called Augmented Indexing. Augmented Indexing has been
used to prove lower bounds in streaming and sparse-recovery literature [CW09, KNW10a,
DBIPW10]. In Augmented Indexing, Alice has (X1, . . . , XL) and Bob has (XI+1, . . . , XL)
for some index I ∈ [L]. Alice sends a single message to Bob and upon reception Bob out-
puts XI . In our application, each Xi (i ∈ [L]) is a subset of [p] of cardinality k. The main
difficulty lies in the fact that we aim to solve Augmented Indexing given a protocol for EMD
k-Budget Error-Correcting that only computes a constant factor approximation. The key of
our argument is that on our hard instances a constant factor approximation to EMD k-Budget
Error-Correcting must identify many of the k points indicated by Xi. We use a family of k-
subsets with bounded intersection which is similar to a binary constant weight code such that
those identified points are enough to recover the correct k-subset, that is Xi. We comment that
similar ideas have also been used in [DBIPW10] for proving lower bounds for sparse-recovery
problems.

In this section, we show that any randomized communication protocol that computes a C-
approximation for d-dimensional EMD k-Budget Error-Correcting has communication com-
plexity Ω(k log ∆

logC (d log ∆− log k). The proof is a reduction from the two-party one-way com-
munication problem Augmented Indexing.

Definition 21 (Augmented Indexing). Let X = (X1, . . . , Xn) where X ∈ Un for some uni-
verse U. Let I ∈ [n]. Alice is given X , Bob is given I and (XI+1, . . . , Xn). Alice sends
message MAI to Bob and upon reception Bob outputs XI .

In [JW11] it is shown that the uniform distribution on X is a hard distribution for a version
of Augmented Indexing where Bob also holds some Y ∈ U and the goal is to output 1 if XI =
Y and 0 otherwise. They show that Ω(n log |U|) communication is necessary for protocols
with error at most 1

4|U| . In our version of Augmented Indexing , Bob has to learn XI . This
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7.2 Lower Bound

allows us to modify (actually simplify) the proof in [JW11] to obtain the same communication
bound for constant error.

Lemma 50. If X and I are chosen uniformly at random and the failure probability of the
protocol is at most 1/3, then EX |MAI| = Ω(n log |U|).

Proof. The proof follows [JW11], and uses the standard tools from information complexity.
We refer the reader to [BYJKS04] for an introduction of information complexity. Let X =
(X1, . . . , Xn) where Xi is chosen uniformly and independently of (Xj)j 6=i from U. Since
EX |MAI| ≥ H(MAI) ≥ I(X : MAI), it is enough to bound I(X : MAI). Then, by the chain
rule for mutual information, and the definition of mutual information we obtain

I(X : MAI) =
n∑
i=1

I(Xi : MAI |Xi+1, . . . , Xn)

=
n∑
i=1

H(Xi |Xi+1, . . . , Xn)−
n∑
i=1

H(Xi |MAI, Xi+1, . . . , Xn).

By independence, we can simplify for all i ∈ {1, . . . , n} as follows

H(Xi |Xi+1, . . . , Xn) = H(Xi) = log(|U|).

It remains to upper bound H(Xi |MAI, Xi+1, . . . , Xn) for all i ∈ {1, . . . , n}. Note that
{MAI, Xi+1, . . . , Xn} is exactly Bob’s input for Augmented Indexing. Bob outputs Xi with
error ε, hence MAI, Xi+1, . . . , Xn is a predictor for Xi with error probability ε. We apply
Fano’s Inequality and obtain

H(Xi |MAI, Xi+1, . . . , Xn) ≤ H(ε) + ε · log(|U| − 1),

where H(ε) denotes the binary entropy of ε. Combining and setting ε = 1/3, we obtain I(X :
MAI) = Ω(n log |U|).

In the following, we will show how to solve Augmented Indexing with a protocol for d-
dimensional EMD k-Budget Error-Correcting. In our application, the universe U from which
the elements of X are chosen is a large family of k-subsets of a set [p] (p > k) with bounded
intersection. For ε > 0, we define Cεkk,p to be a family of k-subsets of [p] such that any two

subsets have at most k(1 − ε) elements in common. Then we will use U = C
k/100
k,p . Such a

family is equivalent to a binary constant weight code of length p, weight k, and distance 2εk.
In Lemma 52 we show that there is a large set of k-subsets with bounded intersection.

Lemma 51 (Gilbert-Varshamov Bound [HP03]). Let Aq(M,d) be the maximum possible size
of a q-ary code with length M and Hamming distance at least d. Then,

Aq(M,d) ≥ qM∑d−1
j=0

(
M
j

)
(q − 1)j

.
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Lemma 52. Let k, p be integers such that k < p/2, and let ε < 1− 1/(bp/kc). Then there is
a family Cεkk,p of k-subsets of [p] such that for c1, c2 ∈ Cεkk,p, c1 6= c2 : |c1 ∩ c2| ≤ k(1− ε) and

|Cεkk,p| ≥ (bp/kc)k(1−Hbp/kc(ε)),

where Hq is the q-ary entropy function Hq(x) = −x logq
x
q−1 − (1− x) logq(1− x).

Proof. We follow the proof of Lemma 3.1 of [DBIPW10]. Let T be a code of block length
k, alphabet {1, . . . , bp/kc} and Hamming distance εk. From T we obtain a binary code T ′

with block length p and Hamming distance 2εk by replacing each character i with the bp/kc-
long standard basis vector ei. Note that T ′ has exactly k ones. The set Cεkk,p is obtained by
interpreting the code words of T ′ as the characteristic vectors of the subsets. Then if code
words t′1, t

′
2 ∈ T ′ have Hamming distance 2εk then the corresponding k-subsets c1, c2 obtained

from t′1, t
′
2 are such that |c1 ∩ c2| = k(1 − ε). By the Gilbert-Varshamov bound (Lemma 51)

we obtain

|Cεkk,p| = |T | ≥
(bp/kc)k∑εk−1

i=0

(
k
i

)
(bp/kc − 1)i

.

Following [DBIPW10], for ε < 1 − 1/(bp/kc) we can use
∑εk−1

i=0

(
k
i

)
(bp/kc − 1)i <

(bp/kc)Hbp/kc(ε)k, and the result follows.

Suppose that the EMD k-Budget Error-Correcting protocol outputs a C-approximation.
We take three integer parameters L, p, k such that p > k and L = d log(p1/d/10)

log(200C)+2e. Let

X = (X1, . . . , XL) where Xi ∈ U = C
k/100
k,p . Xi is a k-subset of [p] and we write

Xi = (X1
i , . . . , X

k
i ).

Consider the Augmented Indexing problem where Alice has X , Bob has I ∈ [L] and
(XI+1, . . . , XL). Then by applying Lemma 50 and Lemma 52, the communication complexity
of this problem is

Ω(L · log |U|) = Ω
(
L · log(|Ck/100

k,p |)
)

= Ω

(
log(p1/d)

logC
· log

(
(bp/kc)k(1−Hbp/kc(1/100))

))

= Ω

(
k

d

log p

logC
log
(p
k

))
, (7.5)

where we used the fact that for any q ≥ 1, Hq(1/100) < 0.35.

Reduction. Given such an Augmented Indexing instance, Alice and Bob construct a d-
dimensional instance for EMD k-Budget Error-Correcting with grid [∆]d (∆ = p2/d) and
n = 10kpL points. The construction requires a parameterB which we set to be log(200C)+2.
Furthermore, we make use of the set of coordinates Zp = {1, p1/d + 1, 2p1/d + 1, . . . (p1/d −
1)p1/d + 1}d that we call point centers since in the reduction Alice and Bob place many points
onto these coordinates. Note that |Zp| = p.

The reduction consists of 3 steps.
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7.2 Lower Bound

Step 1. Alice and Bob use an arbitrary but fixed bijection f : [p] → Zp. They proceed as
follows to set up the EMD k-Budget Error-Correcting instance:

1. Alice and Bob place n
p points to each point center in Zp.

2. For each Xj
i (i ∈ [L], j ∈ [k]), Alice moves one point from point center f(Xj

i ) by a
distance of 2Bi, resulting a new point at location f(Xj

i ) + 2Bie1, where e1 is the d-
dimensional standard basis unit vector pointing to dimension 1. Bob does the same for
each Xj

i with i > I . Denote Alice’s points set by x and Bob’s points set by y. Since
n = 10kpL, there will be n/p = 10kL points on each point center. Thus Alice and Bob
can ensure that there are always enough points to move.

Here, the effect of parameter B becomes clear: Alice and Bob displace points from the point
centers by distances 2Bi. B is hence responsible for increasing the distance of points that
correspond to different values of i. Note that we set B = Θ(logC), hence the distances
increase as the approximation factor increases.

Step 2. Alice and Bob run the protocol for EMD k-Budget Error-Correcting. Let y∗ denote
the points of Bob after the relocation outputted by the protocol.

Step 3. Bob rounds the points y∗ to the closest positions in {Zp + 2Bie1 | i ∈ [L]}. Then,
he computes an estimate X̃ ′I of XI as follows: if there is a point in y∗ at position x + 2BIe1

for some x ∈ Zp, then f−1(x) ∈ X̃ ′I . Next, Bob selects X̃I ∈ C
k/100
k,p such that |X̃I ∩ X̃ ′I | is

maximized.

Theorem 26. Any randomized communication protocol that computes a C-approximation to
EMD k-Budget Error-Correcting on d-dimensional grid [∆]d with probability 2/3 requires a
message of size Ω(k log ∆

logC (d log ∆− log k)), assuming that k < ∆d/2.

Proof. We use the prior reduction from Augmented Indexing to EMD k-Budget Error-
Correcting. Recall that the setup for the EMD k-Budget Error-Correcting instance uses
p = ∆d/2, B = log(200C) + 2, L = dlog(p1/d/10)/Be, and n = 10kpL.

Firstly, note that the distance between any two point centers is larger than or equal to
√

∆.
The maximal distance that a point is displaced from its point center is 2BL = 0.1p1/d =
0.1
√

∆. Under this condition, the EMD between Alice’s and Bob’s points is the sum of the
distances of the points that only Alice moved, that is, EMD(x, y) = k

∑I
i=1 2Bi. Furthermore,

we have minỹ∈Nk(y) EMD(x, ỹ) = k
∑I−1

i=1 2Bi, which can be obtained by correcting the k
points that Alice moved by a distance of 2BI . Since our protocol approximates the EMD
within a factor C, we obtain EMD(x, y∗) ≤ C · k

∑I−1
i=1 2Bi. Let err = |XI \ X̃I | be the

number of points that Bob failed to recover. Then each of these points contributes to the EMD
by at least (2BI − 2B(I−1))/2, since these points got rounded to some index other than I . We
obtain

err ·
(
2BI − 2B(I−1)

)/
2 ≤ C · k

∑I−1
i=1 2Bi,
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7. BUDGET ERROR-CORRECTING UNDER EARTH-MOVER-DISTANCE

Therefore we conclude that err < Ck
2B−2 = k

200 . Since the k-subsets of C
k/100
k,p differ by at

least k
100 elements, we can recover X̃i

I = XI . The lower bound for EMD k-Budget Error-
Correcting follows by plugging p = ∆d/2 into Equation (7.5).
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