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Abstract

We present the first polynomial uniform random sampling

algorithm for simple branched coverings of degree n of the

sphere by itself. More precisely, our algorithm generates in

linear time increasing quadrangulations, which are equiva-

lent combinatorial structures. Our result is based on the

identification of some canonical labelled spanning trees, and

yields a constructive proof of a celebrated formula of Hur-

witz for the number of some factorizations of permutations

in transpositions. The previous approaches were either non

constructive or lead to exponential time algorithms for the

sampling problem.

1 Introduction

Branched coverings of the sphere are 2-dimensional
topological structures that have raised a lot of interest
ever since the work of Hurwitz at the end of the 19th
century. Okounkov and Pandharipande [17] for instance
have used these objects to derive an alternative to
Kontsevitch’s proof of Witten’s celebrated conjecture.
More recently, their relations to intersection numbers
of moduli spaces and integrable hierachies as studied in
mathematical physics have suggested that large random
simple branched coverings provide an alternative model
of discrete 2-dimensional pure quantum geometry (see
e.g. [21] for a relatively accessible exposition).

Our aim in the present article is to provide means
to effectively sample these alternative random geome-
tries. Since our approach is purely combinatorial we
trade the topological definition of branched coverings
for their combinatorial representation (see however Sec-
tion 8, and the complete treatment in [12]). Define a
factorization in transpositions of the identity permuta-
tion idn on {1, . . . , n} to be an m-tuple of transpositions
τ1, . . . , τm such that τm · · · τ1 = idn. It is transitive if
the graph Gτ on {1, . . . , n} with m edges given by the
τi is connected, and minimal if m = 2n − 2. It can
be checked that indeed this is the minimum number of
transpositions in a transitive factorization of idn.
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†Université Paris Diderot, LIAFA, Paris, France
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Theorem 1.1. (Hurwitz (1891)) Simple branched
coverings of the sphere by itself of degree n are encoded
up to homeomorphisms of the domain by minimal
transitive factorizations in transpositions of the identity
of Sn, and their number, called n-th Hurwitz number,
is nn−3(2n− 2)!.

The usual model of quantum geometries is the uni-
form distribution on fixed size unlabelled planar quad-
rangulations, which was first studied analytically [3]
and via Markov chain simulations [2]. Only later has
it become possible to perform rigourous exact simula-
tions via efficient (linear time) perfect random sampling
[19, 18, 9]. The algorithmic techniques underlying these
samplers, mainly the identification of carefully chosen
canonical spanning plane trees, have in turn triggered
important progresses in the comprehension of the intrin-
sic geometries of random unlabelled quadrangulations
[7], culminating with the construction of their contin-
uum limit, the Brownian map [13, 15, 14].

We show here that a similar approach can be un-
dertaken for simple branched coverings of the sphere:
starting from a variant of the standard representation of
factorizations as graphs embedded on surfaces, we first
recast the problem in terms of some increasing quad-
rangulations. We then show that these labelled quad-
rangulations, which do not fit in the earlier framework,
can be decomposed using labelled trees (akin to Cay-
ley trees) instead of plane trees. We so obtain the first
constructive proof of Hurwitz formula. Previous proofs
were either non constructive (via differential equation
hierachies [16], geometric considerations [11], or ma-
trix integrals [5]) or yield exponential generation algo-
rithms (via cut-and-join decompositions [10, 20], or ex-
clusion/inclusion [6]). We then show that the resulting
algorithm can be implemented in linear time.

From an algorithmic perspective our contribution
is twofold. On the one hand we give a new and unex-
pected example of the versatility of the canonical span-
ning trees that derive from minimal α-orientations of
plane graphs: these structures appear to underlie a
whole chunk of efficient planar algorithmics, from ran-
dom sampling to graph drawing or optimal coding. On
the other hand, we illustrate further the dichotomy be-
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(a) An indexed labelled quadrangulation,
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(c) and the factorization of id8 corresponding to quadrangulation (b).

Figure 1: Labelled quadrangulations and minimal transitive factorizations in transpositions. Quadrangulations
in Figures (a) and (b) are endowed with their descent orientation, with descents highlighted.

tween random samplers based on Markov chain sim-
ulation and those based on constructive enumeration:
while the formers, admittedly much easier to design, are
expected to perform at best in quadratic or cubic time,
the latters lead to extremely efficient algorithms when
they apply. Finally, from the probabilistic and quantum
gravity perspective, we believe that our construction,
apart from the simulations it allows to perform, could
provide a starting point to study the intrinsic geome-
try of increasing quadrangulations, in the same way as
the constructive enumeration of unlabelled quadrangu-
lations has led to the Brownian map.

2 Preliminaries

2.1 Planar maps and quadrangulations. A pla-
nar map is a proper embedding of a connected graph
in the sphere, considered up to orientation preserving
homeomorphisms of the sphere. The connected compo-
nents of the complement of the graph in the sphere are
called faces and are homeomorphic to discs. A corner is
an angular sector between two successive edges around a
vertex. The degree of a vertex or of a face is its number
of corners. A (bicolored) quadrangulation is a map such
that all faces have degree 4 and vertices are bicolored
in black and white, with adjacent vertices having differ-
ent colors. We require moreover that it be simple, that
is, without double edges: all faces are real quadrangles
with 4 distinct edges and 4 distinct vertices. By Euler’s
formula, a planar quadrangulation with n black and `
white vertices has m = n+ `− 2 faces.

Define a labelled quadrangulation as a planar

quadrangulation whose m faces have distinct labels
{1, . . . ,m}. It is indexed if its n black vertices have
distinct labels {x1, . . . , xn}. vertices. The descent ori-
entation D of a labelled quadrangulation is such that
each oriented edge has its incident face with larger la-
bel on its left, see Figure 1. An edge is a descent if it
is oriented from its white to its black end in D. A la-
belled quadrangulation is increasing if each vertex is
incident to exactly one descent – which implies that
descent edges provide a perfect matching of black and
white vertices. Equivalently a labelled quadrangulation
is increasing if around each white (resp. black) vertex
v, the clockwise (resp. counterclockwise) cyclic arrange-
ment of edge labels around v is increasing, i.e. if it can
be written (i1, . . . , ip) with i1 < · · · < ip. As opposed
to the labelled quadrangulation of Figure 1(a), that of
Figure 1(b) is increasing. Let In denote the set of in-
dexed increasing quadrangulations with n black and n
white vertices.

2.2 Graphical representations of transitive fac-
torizations. Let Q be an element of In. Then for all
k ≤ 2n − 2, let τk be the transposition (i, j) given by
the labels xi and xj of the two black vertices incident to
the unique face of Q with label k. This correspondence
is illustrated by Figure 1(b) and (c).

Proposition 2.1. (Reformulated folklore [12])
The above construction is a one-to-one correspondence
between indexed increasing quadrangulations in In and
minimal transitive factorizations of the identity idn.
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(a) The minimal orientation. (b) Spanning tree and closure edges.

Figure 2: Minimal 1-1-orientation of a quadrangulation and bipartition of its edges.

Proof. Tutte’s bijection between planar quadrangula-
tions with m faces and planar maps with m edges
goes as follows: Given a quadrangulation Q with black
and white vertices, draw one new edge in each quad-
rangle, connecting the two black vertices. The map
M(Q) consists of the black vertices and the m new
edges. Conversely given a map M , the quadrangulation
Q =M−1(M) is obtained upon triangulating each face
of M from a new internal white vertex, and forgetting
the edges of M . Tutte’s bijection maps indexed increas-
ing quadrangulations of In onto increasing edge-labelled
maps, i.e. planar maps with n black labelled vertices
and m labelled edges such that around each vertex the
counterclockwise arrangement of incident edge labels is
increasing.

Now given a quadrangulation Q of In, and τk
defined for k = 1, . . . , 2n − 2 as before the proposition,
it is easy to check that Gτ is the underlying graph
of M−1(Q), and more precisely that M−1(Q) is the
unique embedding of Gτ in a closed compact surface
such that the couterclockwise arrangement of edge label
around each black vertex is increasing. Euler’s formula
for M−1(Q) is then equivalent to the minimality of τ .
�

Increasing quadrangulations can thus be considered
as graphical representations of minimal transitive fac-
torizations of the identity in transpositions. From now
on we adopt this point of view and concentrate on in-
creasing quadrangulations.

2.3 Plane maps and orientations. A plane map
is the representation of a planar map in the plane, con-
sidered up to orientation preserving homeomorphisms
of the plane. Plane maps are in one-to-one correspon-
dence with planar maps with a distinguished face, that

indicates which face of the planar map is taken as outer
(unbounded) face in the plane map.

A circuit in an oriented map is an oriented cycle
of edges (i.e. a cycle that can be traversed following
the orientations of the edges). A simple circuit is a
circuit that does not visit the same vertex twice. In a
plane map, each simple circuit divides the plane into
two components, the left one and right one (w.r.t.
the orientation of the circuit), and one of these two
components contains the outer face, while the other is
bounded. A circuit is clockwise if its right hand side
component is bounded, and counterclockwise otherwise.

Similarly, given a spanning tree T of an oriented
map and an edge e not in T , we say that e turns coun-
terclockwise around T if the bounded region delimited
by e and T lies on the left hand side of e. Observe
that this property is independant of the orientation or
rooting of T if any.

3 From increasing quadrangulations to trees

3.1 Properties of the descent orientation. Given
an orientation O of a map M and a vertex v of M ,
the in-degree of v in O, denoted by inO(v), is the
number of its incoming edges with respect to O. Its
out-degree outO(v) is defined accordingly. Let us define
a 1-1-orientation of a bipartite map as an orientation O
such that for any black vertex v• and any white vertex
v◦: inO(v•) = outO(v◦) = 1. Observe that such a 1-
1-orientation actually provides a perfect matching of
black and white vertices. With this definition, a labelled
quadrangulation is increasing if and only if its descent
orientation is a 1-1-orientation. Recall that a vertex v is
accessible in an orientation if there is an oriented path
from any other vertex to v, and that an orientation is
strongly connected if every vertex is accessible in this
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(b) and the resulting labelled tree.

Figure 3: Construction of the Hurwitz tree corresponding to the increasing quadrangulation of Figure 1(b).

orientation. Then we have moreover:

Proposition 3.1. The descent orientation of any la-
belled quadrangulation is strongly connected.

Proof. Otherwise, let v be a vertex that is not accessible
from all vertices, and let C1 and C2 be the (disjoint) sets
of vertices from which v can (resp., cannot) be accessed.
All edges between vertices in C1 and C2 are oriented
from C1 to C2. Extract from these a simple co-circuit,
that is a sequence of edges e1, . . . , ek such that there is
a sequence of distinct faces f0, . . . , fk−1 such that for
all i = 0, . . . , k − 1, ei is incident to fi and fi+1 (with
fk = f0). Then for all i = 0, . . . , k − 1, the label of fi
is strictly larger than that of fi−1, a contradiction with
fk = f0. �

3.1.1 Minimal α-orientations of plane maps.
Our 1-1-orientations are actually a special case of so-
called α-orientations that have been introduced by Fel-
sner [8]. This terminology refers to orientations O with
prescribed inO and outO functions, α usually denoting
the outO prescription. The following theorem reveals
the remarkable structure of the set of α-orientations of
a given graph:

Theorem 3.1. (Felsner [8]) Given a plane map M
and a feasible mapping α, the set of all α-orientations of
M has a lattice structure for the partial order generated
by clockwise circuit reversal.

In particular, if M admits an α-orientation then
it has a unique α-orientation without clockwise circuit,
which is the minimum of the lattice.

The minimal orientation of the quadrangulation in
Fig. 1(b) is given in Fig. 2(a). Since circuit reversal
does not affect the accessibility, this implies moreover

that for a given α, either all α-orientations of M are
strongly connected, or none of them are. This proves
interesting in light of the following theorem:

Theorem 3.2. (Bernardi [4]) Let M be a plane
map, endowed with an orientation O without clockwise
circuit, in which r is an accessible vertex. Then the set
of edges of M can be uniquely partitioned into a span-
ning tree T , oriented towards its root r, and a set C of
edges that turn counterclockwise around T . Moreover,
edges in C are in one-to-one correspondence with inner
faces of M , each edge corresponding to the face on its
left.

Edges in C are called closure edges, since each one
closes a bounded face of the plane map. The partition
of the edges of the quadrangulation in Fig. 2(a) induced
by Theorem is given in Fig. 2(b), with r taken to be the
upper right vertex.

3.2 Application to increasing quadrangula-
tions. LetQ be an increasing quadrangulation of size n,
and let us embed Q in the plane by choosing as outer
face its face with the largest label among the ones in-
cident to xn. Let O be its minimal 1-1-orientation.
By Proposition 3.1 and Theorem 3.1, O is strongly
connected, hence Theorem 3.1.1 may be applied to
(Q,O, xn), so as to obtain an oriented spanning tree
T rooted at xn, and a set C of closure edges. T is a
bipartite tree on n labelled black vertices and n unla-
belled white ones, hence it has 2n − 1 edges, while C
has cardinality 2n− 3.

Now let us transfer to each edge the label of the
face on its black-to-white left-hand side, as illustrated
in Fig. 3(a): in this way each face label in {1, . . . , 2n−2}
is given to two edges.
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h◦

h•

(a) Consecutive half-edges h◦ and h•,

fe

e

(b) and their local closure.

Figure 4: The local closure of two half-edges at distance 3.

Lemma 3.1. For any i ∈ {1, . . . , 2n − 2}, except the
label of the root face, exactly one edge of C and one
edge of T have label i.

Proof. First observe that, since for any white vertex v◦,
outO(v◦) = 1, each white-to-black oriented edge belongs
to T – which implies that edges in C are all black-to-
white oriented, meaning that their black-to-white left-
hand side is precisely their left-hand side according toO.
Since edges in C are in one-to-one correspondence with
bounded faces on their left according to O, the 2n − 3
distinct labels of the bounded faces are distributed to
the 2n − 3 edges in C. The other 2n − 1 labels are
therefore distributed to the edges of T . Finally observe
that the outer face is on the black-to-white left-hand
side of two edges of T , one of which is the only in-coming
edge at xn. �

Let us define a Hurwitz tree of size n as any (un-
rooted) bicolored tree with n unlabelled white vertices,
n − 1 labelled black vertices of degree 2, and 2n − 2
labelled edges, and denote by Hn the set of such trees.
Depending on the context each Hurwitz tree can be con-
sidered as a non-embedded tree (i.e. a graph without cy-
cle) or as an embedded tree (i.e. a planar map with one
face) such that the clockwise cyclic arrangement of edge
labels around each white vertex is increasing: indeed
there is a unique way to embedded a non-embedded
Hurwitz tree so that this condition is satisfied.

The tree H obtained from T after the edge labelling
and the removal of the black root vertex xn is a Hurwitz
tree of size n: indeed in view of their in-degrees, black
vertices have exactly one child, so that the removal of
the black root vertex does not disconnects the tree, and
all other black vertices have degree 2. Let Φ denote the
map from In to Hn that associates with any increasing
quadrangulation Q of size n the Hurwitz tree H as
above. Fig. 3(b) shows the Hurwitz tree associated to
the decomposition of Fig. 3(a).

Theorem 3.3. Φ is a bijection between indexed in-
creasing quadrangulations of size n and Hurwitz trees
of size n.

The proof of this theorem will be given in Section 5,

once we have described our sampling algorithm, or
equivalently, the inverse of Φ.

4 Sampling Hurwitz trees and mapping them
on quadrangulations

4.1 Random Hurwitz trees. A Cayley tree is a
spanning tree of the complete graph with vertices
{1, . . . , n}. There are nn−2 Cayley trees of size n, see
e.g. [1].

Proposition 4.1. There is a n-to-1 correspondence
between pairs (T, π) formed of a Cayley tree t with n
vertices and a permutation π in S2n−2, and Hurwitz
trees of size n. In particular the number of Hurwitz trees
of size n is the n-th Hurwitz number nn−3(2n− 2)!.

Proof. Let T be a Cayley tree on n white vertices, and π
a permutation of S2n−2. Let yi denote the white vertex
with label i. Root T at yn, and for all i = 1, . . . , n− 1,
insert a black vertex with label xi on the middle of the
first edge on the path from yi to yn, and give the labels
π(2i − 1) and π(2i) to the two resulting edges. Upon
forgetting the (redundant) labels of white vertices we
obtain a rooted Hurwitz tree H with n unlabelled white
vertices, n − 1 black vertices of degree 2 with distinct
labels in {x1, . . . , xn−1} and 2n− 2 edges with distinct
labels in {1, . . . , 2n − 2}. This construction is clearly
bijective. Upon forgetting H’s root position, we get a
n-to-1 correspondence with (unrooted) Hurwitz trees.
�

We construct here Hurwitz as non-embedded trees,
but as already observed, there is a unique way to embed
a non-embedded Hurwitz tree so that the clockwise
arrangement of edge labels around each white vertex
is increasing.

Corollary 4.1. Hurwitz trees of size n can be gener-
ated uniformly at random in linear time.

Proof. Sampling permutations uniformly at random in
linear time is a classical textbook exercise. For Cayley
trees, it can be done e.g. following Joyal’s bijective proof
of Cayley’s formula [1]. �
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RandomQuad(n)
uses an initially empty stack S of half-edges, a current pre-map M and a current half-edge h.

1. Generate a uniform random Hurwitz tree T of size n.

2. Let M be the hairy tree T̄ associated to T , and h any of its half-edges.

3. Repeat the following loop: (loop invariant: M is a valid pre-map with m more white than black half-edges)

(a) If h is a white half-edge,

i. If h is already marked, go to Step 4. (all black half-edges have been matched)
ii. Otherwise, mark h and insert it in S.

(b) Otherwise, if S is not empty, pop the last half-edge h◦ from S.
(h◦ and h are consecutive, hence at distance 1 or 3, and have equal labels)
Let M be the local closure of h and h◦, and give their common label to the new face.

(c) Let h be the next half-edge around M in clockwise direction.

4. (S contains m white half-edges, and the consecutive ones are at distance 0 or 2) Match the m white half-edges
in S to the m black half-edges of a new black vertex of degree m in the outer face to get a new pre-map M .

5. (M is a valid pre-map without half-edges and with faces of degree 2 and 4) Contract all faces of degree 2 of
M and forget the orientation of closure edges to get an indexed labelled quadrangulation Q.

Figure 5: The algorithm RandomQuad (assertions leading to the proof of Theorem 4.1 are emphasized)

4.2 A general technique to build planar maps
out of trees. In order to describe how to construct a
quadrangulation out of a tree, we will consider inter-
mediate objects. A pre-map is a plane bicolored map
with some distinguished pending edges in the outer face
called half-edges (and whose loose endpoint will not
count as a vertex). A half-edge is either black or white
according to the vertex it is attached to. We say that
the half-edges h◦ and h• are consecutive if, while trav-
elling clockwise from h◦ on the boundary of the outer
face, h• is the first encountered half-edge; they are at
distance p ≥ 0 if moreover h• is reached after travelling
along p sides of edges.

Let us describe our basic operation on pre-maps.
Given two consecutive white and black half-edges h◦
and h• in the outer face f of a pre-map M , let us merge
h• and h◦ into a black-to-white oriented edge e in the
unique way that preserves planarity, and divides f into
a face fe on the left-hand side of e and a new outer face
f ′ on its right hand side. Then immediately:

Proposition 4.2. If h◦ and h• are consecutive and at
distance p, then the bounded face fe has degree p+1 and
contains no half-edges.

The local closure of h◦ and h• is the resulting pre-map
M ′ = M ∪{e}\{h•, h◦}. An example is given in Fig. 4.
In the case of edge-labelled pre-maps, the local closure
is compatible with the labelling provided that h◦ and

h• have the same label. In this case, the label of e is
this common label.

4.3 The closure of a Hurwitz tree. Given a Hur-
witz tree T of size n (with edges labels {1, . . . ,m}, for
m = 2n − 2), let the associated hairy tree T̄ be ob-
tained by inserting labelled half-edges at every vertex
to complete the cycle of incident labels to be (1, . . . ,m)
in clockwise (resp. counterclockwise) direction around
every white (resp. black) vertex.

A pre-map M with labelled edges and half-edges is
said valid if around every white (resp. black) vertex,
incident labels form the clockwise (resp. counterclock-
wise) cycle (1, . . . ,m), and if for all i ∈ {1, . . . ,m}, at
most one edge with label i has its black-to-white left-
hand side incident to the outer face. In the following,
we will actually consider that each edge carries its label
(in the face) on its black-to-white left-hand side. With
this convention, the second condition defining valid pre-
maps is that each label occurs at most once in the outer
face.

Lemma 4.1. In a valid pre-map, any two consecutive
half-edges h◦ and h• are at distance 1 or 3 and have
the same label, and their local closure produces a valid
pre-map.

Proof. If h◦ has label i, then edges between h◦ and h•
have alternatively label i+ 1 or i because of the cyclical
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(d) and a second one.

Figure 6: A Hurwitz tree, the associated hairy tree, and two steps of RandomQuad, starting with the leftmost
half-edge (with label 3). Black vertex labels are omitted for clarity.

labelling rules. Hence h• has label i, and since only one
label i may appear in the outer face, the distance is at
most 3. The local closure of h◦ and h• creates an edge
that has the outer face on its black-to-white right hand
side, so that no new label is created in the outer face
and the pre-map remains valid. �

From the definitions, the following lemma is imme-
diate:

Lemma 4.2. Hairy trees are valid pre-maps.

4.4 The first algorithm. We can now state and
analyse the first algorithm, given in Figure 5. The first
steps of an execution are given in Figure 6.

Theorem 4.1. Steps 2-5 of the algorithm RandomQuad
describe a mapping from Hn to In which is the inverse
of the mapping Φ of Theorem 3.3. RandomQuad(n) thus
generates indexed increasing quadrangulations of size n
uniformly at random.

Proof. Let us first check the emphasized assertions
in the algorithm. The first assertion is true at the
beginning by a direct counting argument: there is
one more white vertex than black ones. a clear loop
invariant since the half-edges are only modified in Step
3(b) by a local closure, which preserves validity by
Lemma 4.1, and removes simultaneously one black and
one white half-edges. Assertion in 3(b) follows from
the fact that white half-edges are stored in a (last in,
first out) stack, so that h◦ is always the last inserted
white half-edge among those that have not yet been
matched. Since M is a valid pre-map, Lemma 4.1
applies. Assertion in 3(a)i follows from the observation
that between two visits to the same white half-edge h, a
full turn around the pre-map is performed, and all black
half-edges are considered. Since the stack contains (at
least) h during this full turn, it is never empty, hence
all black half-edges are matched. Assertion in Step 4
follows from the fact that M is valid. The last assertion
follows immediately from the previous ones.

Step 3(b) creates exactly one face of degree 4 for
each label i in {1, . . . ,m}, since the original hairy
tree has exactly one edge with label i, and this label
disappears from the outer face at the exact step when
the face with label i is created. As M is a valid pre-
map, the labels of faces around each white (resp. black)
vertex in clockwise (resp. counterclockwise) direction
form a cyclic subsequence of (1, . . . ,m). Hence Q is an
increasing quadrangulation.

This proves the first half of the theorem, namely
that the algorithm indeed correctly produces an increas-
ing quadrangulation. The proof that the correspon-
dence is one-to-one and inverse of Φ is delayed to the
next sections. �

Proposition 4.3. The algorithm RandomQuad can be
implemented in linear time and space with respect to the
number of edges and half-edges of T̄ . Since there are n
white vertices and m = 2n − 2 half-edges incident to
each white vertex, it has quadratic complexity in n.

5 The linear complexity algorithm

In this section we give an alternative description of the
bijection producing an increasing quadrangulation out
of a Hurwitz tree. The idea is to create the half-edges
only when they lead to faces of degree 4. In order to do
this we analyse more finely the previous algorithm.

Let us consider an edge e with label j that has its
white-to-black left-hand side in the outer face of a pre-
map M during the execution of the first algorithm. Let
i and k be the labels of the previous and next edges (not
half-edges) e− and e+ around the outer face (the relative
positions of i, j and k are illustrated by Figure 9). We
wish to understand how the first algorithm deals with
white half-edges between e− and e, and black half-edges
between e and e+. Observe that j can be equal to i
but not to k because white vertices can be leaves in a
Hurwitz tree while black vertices cannot (they all have
degree 2). There are two main cases:

• First suppose i = j (i.e. the white endpoint of e
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FastRandomQuad(n)
uses a stack S of half-edges, a current pre-map M and a current arc ~e.

1. Generate a uniform random Hurwitz tree T of size n; let M ← T .

2. Let ~e be an arbitrary edge of M . Orient ~e from its white to its black endpoint, and repeat the following loop:
(at this point ~e has the outer face on its left-hand side)

• If ~e is a white half-edge then go to Step 3. (at this point a white half-edge has been encountered twice).

• Let ~e− and ~e+ be the previous and next edges around the outer face.

• Let i, j and k be the labels of ~e−, ~e and ~e+.

• If i = j or the cycle (i, j, k) is a subcycle of (m, . . . , 1), create a half-edge h◦ with label k on the white
endpoint of ~e and insert h◦ in S. Set ~e to the edge or half-edge following ~e+ around the outer face.

• Otherwise (i.e. if the cycle (i, j, k) is a subcycle of (m, . . . , 1)),

(a) If S is empty then set ~e to the edge or half-edge following ~e+ around the outer face.
(b) Otherwise pop from S a half-edge h◦ and create a half-edge h• with label k on the black endpoint

of ~e.
Match h• and h◦ to create a closure edge ~e′ enclosing a face of degree 4 with label k, and let ~e← ~e′.

3. (at this point S contains at least one white half-edge)
Match the p ≥ 1 white half-edges in S to the p black half-edges of a new black vertex in the outer face to
form p new edges and p new faces of degree 4.

Figure 7: The algorithm FastRandomQuad (emphasized texts are again assertions)

has degree 1) or the cycle (i, j, k) is a subcycle of
(m, . . . , 1) (i.e. i > j > k, j > k > i or k > i > j).
Then there are more white half-edges between e−

and e than black half-edges between e and e+. The
white half-edge with label k will be the first of
the half-edges between e and e− to be matched at
distance 3.

This case is illustrated with (i, j, k) = (9, 6, 2) in
Figure 8(a): half-edges with labels 5, 4, 3 are
matched at distance 1 and the half-edge with label
2 is the first to be matched at distance 3.

• Now suppose (i, j, k) is a subcycle of (1, . . . ,m) (i.e.
i < j < k, j < k < i, or k < i < j). Then there are
more black half-edges between e and e+ than white
ones between e− and e. The black half-edge with
label i will be the first not to match a white half-
edge at distance 1: it will either remain unmatched
or match a half-edge at distance 3.

This case is illustrated with (i, j, k) = (2, 4, 8) in
Figure 8(a): the half-edge with label 3 is matched
at distance 1, while the half-edge with label 2 gets
matched at distance 3.

Upon iterating the above case analysis during the
application of the first algorithm, all the closure edges
that produce faces of degree 4 can be constructed

without constructing those that produce faces of degree
2. Our second algorithm FastRandomQuad, as presented
in Figure 7, exactly performs this iteration until all
closure edges have been created. The first steps of
the execution of this algorithm on the Hurwitz tree of
Figure 3(b) are given in Figure 10 in the Appendix.

Proposition 5.1. Steps 2-3 of FastRandomQuad are
equivalent to Steps 2-5 of RandomQuad. Moreover Fas-
tRandomQuad can be implemented to work in linear time
and space with respect to the size n of the constructed
increasing quadrangulation.

Proof. The equivalence is a direct consequence of the
previous discussion: FastRandomQuad exactly performs
the subset of the stack operations performed by Ran-
domQuad that concern half-edges whose closure yield
faces of degree 4. This implies that a white half-edge is
indeed encountered twice at some point, and that Fas-
tRandomQuad stops and produces an increasing quad-
rangulation. To check that FastRandomQuad works in
linear time we observe that less than n closure edges
are produced, and that Step (a) is performed at most
2n times because RandomQuad visits at most twice each
edge side. �
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(a) First algorithm,
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Figure 8: A partial comparison of the local closures involved in the two algorithms.

i k
j

k

(a) Case i ≥ j > k: creation of a white

half-edge with label k.

i k
j

ii

(b) Case i < j < k: creation of a face with label i.

Figure 9: The two local rules of FastRandomQuad depending on the (cyclical) order of i, j, k.

6 End of the proof of Theorem 3.3 and 4.1.

To conclude the proof we only need to understand
why the increasing quadrangulation Q produced by
RandomQuad from a tree T is such that Φ(Q) =
T . But this follows immediately from the alternative
description given by FastRandomQuad. Indeed Step 2
only adds to the tree T closure edges that turn clockwise
around T when oriented from their black to their white
endpoint: orienting one of the final edges e toward the
extra vertex xn, and all the edges of the tree toward e,
we can apply the uniqueness condition of Theorem 3.1.1
to conclude. �

Corollary 6.1. The numbers of indexed increasing
quadrangulations of size n, of minimal transitive factor-
izations of the identity in Sn, and of simple branched
coverings of degree n of the sphere by itself, are
nn−3(2n − 2)!, and all these objects can be generated
uniformly at random in linear time.

7 Application to the study of large random
increasing quadrangulations

From a probabilistic and quantum gravity perspective,
the main concern is to understand the geometry of
natural discrete models of random surfaces. In order
to compare our approach to the existing literature, let
Xn (resp. Yn) denote a uniform random increasing
(resp. planar) quadrangulation with 2n − 2 faces and
let dXn

(., .) be the graph distance on vertices of Xn.
It is known that the expected distance ∆Yn

between
two uniform random vertices of Yn is of order n1/4.
More precisely, as n goes to infinity the random vari-
able ∆Yn

n−1/4 converges in law to a continuous positive
random variable D. The analog question is unsettled
for increasing quadrangulations and numerical simula-
tion was out of reach with previous approaches. Our

linear time algorithm makes it possible to check exper-
imentally the hypothesis that the distances ∆Xnn

−1/4

converge to the same limit.
In the case of Yn, much more precise results have

been obtained in the recent years. In particular upon
setting the edge length to n−1/4, the random uniform
quandrangulation Yn converges as a metric space to a
continuum limit, the Brownian map, which is a random
space with the topology of the sphere [13, 15, 14].

Conjecture 1. The pair (Xn, n
−1/4dXn) converges to

the Brownian map in the sense of [13, 15, 14].

In other terms we conjecture that large increas-
ing quadrangulations behave very much like large unla-
belled quadrangulations. This should be understood as
a statement analogous to the well known statement that
both random uniform binary trees and uniform random
Cayley trees, although quite different at a discrete level,
converge upon rescaling edge length to a same contin-
uum limit, the continuum random tree (CRT), when
their size go to infinity.

Proving the above convergence would be a remark-
able achievement as it would on the one hand give a
strong support to the belief of the community that the
Brownian map is a new universal limit object, in the
same sense as the Brownian motion or the CRT, and
on the other hand it would make more precise the con-
nection between the realm of branched coverings and
Hurwitz numbers, and that of quantum gravity.

The bijection between Hurwitz trees and increasing
quadrangulations that we propose in the present paper
can be seen as labelled counterparts to the bijections
between plane trees and families of maps that are the
basic building blocks of the approach that culminated
with [13, 15, 14]. Hopefully they can lead to a proof of
the above conjecture.
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Figure 10: Execution of FastRandomQuad on the Hurwitz tree of Figure 3(b). At each step, the current edge is
the bold green one, and the created (half-)edge is the thin green one.
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8 Branched coverings of the sphere by itself

We give here for completeness a definition of branched
coverings, but refer again to [12] for a gentle intro-
duction to the topological and combinatorial aspects of
their mathematical theory.

A covering of degree n of a surface I by another
surface D is a mapping φ : D → I such that each value
y of I has n preimages, and each point x of D has a
neiborhood Vx such that φ is an homeomorphism from
Vx to φ(Vx). A branched covering of degree n of the
sphere by itself is a mapping from S2 to itself such that
there is a finite set of values Y = {y1, . . . , ym} ⊂ S2 such
that φ|S2\φ−1(Y ) is a covering of degree n and for every x
in φ−1(Y ) there is an integer k, an open neighborhood
Vx of x and two homeomorphisms h : C → Vx and
h′ : φ(Vx) → C such that h′ ◦ φ ◦ h is the mapping
z → zk of the complex plane. In this case the preimage
x is said to have order k. A preimage with order 1 is
a regular point. By continuity the sum of the orders of
all the preimages of a value y by φ has to be n, and the
multiset of these orders is called the type of the critical
value y. A critical value y is said to be simple if all its
preimages but one are regular and the only non regular
one has order 2: equivalently a critical value is simple
if its type is 1n−2 2. A simple branched covering is a
branched covering whose critical values are all simple.

In order to dispose of symmetry problems we follow
the approach of Hurwitz: we fix a regular value and
label its preimage with integers 1 to the degree. Finally
we consider these coverings up to homeomorphisms of
the sphere. The resulting equivalence classes are the
simple branched coverings considered by Hurwitz in
Theorem 1.1, for which he gave the quoted formula.

In his work Hurwitz also considered more gener-
ally the case where one critical value is non simple, of
type λ = 1`1 . . . n`n (where `i denotes the number of
preimages of order i). In terms of permutations, these
almost simple coverings correspond to minimal transi-
tive factorizations into transpositions of a permutation
with cycle type λ. Hurwitz provided also a formula for
their number, and our approach extends almost directly
to prove this general formula.
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