Voronoï Tessellations in the CRT and Continuum Random Maps of Finite Excess

Guillaume Chapuy (CNRS - IRIF Paris Diderot)
Louigi Addario-Berry (McGill Montréal)
Omer Angel (UBC Vancouver) Éric Fusy (CNRS - LIX École Polytechnique) Christina Goldschmidt (Oxford)

Work supported by the grant ERC - Stg 716083 - "CombiTop"

Voronoï Tessellations in the CRT and Continuum Random Maps of Finite Excess

Guillaume Chapuy (CNRS - IRIF Paris Diderot)
Louigi Addario-Berry (McGill Montréal)
Omer Angel (UBC Vancouver) Éric Fusy (CNRS - LIX École Polytechnique) Christina Goldschmidt (Oxford)

Work supported by the grant ERC - Stg 716083 - "CombiTop"

The Voronoï vector - main definition of the talk!

- Let G_{n} be your favorite random graph with n vertices ($n \rightarrow \infty$)

Pick k points $v_{1}, v_{2}, \ldots, v_{k}$ uniformly at random (k fixed) and call

$$
V_{i}=\left\{x \in V(G), d\left(x, v_{i}\right)=\min _{j} d\left(x, v_{j}\right)\right\}
$$

(in case of equality, assign to a random V_{i} among possible choices) the $i-t h$ Voronoï cell

The Voronoï vector - main definition of the talk!

- Let G_{n} be your favorite random graph with n vertices $(n \rightarrow \infty)$

Pick k points $v_{1}, v_{2}, \ldots, v_{k}$ uniformly at random (k fixed) and call

$$
V_{i}=\left\{x \in V(G), d\left(x, v_{i}\right)=\min _{j} d\left(x, v_{j}\right)\right\}
$$

the $i-t h$ Voronoï cell

- Question: what is the limit law of the "Voronoï vector" $\left(\frac{\left|V_{1}\right|}{n}, \frac{\left|V_{2}\right|}{n}, \ldots, \frac{\left|V_{k}\right|}{n}\right)$?

Examples with $k=2$

Cycle: deterministic $\left(\frac{1}{2}, \frac{1}{2}\right)$

$$
\begin{gathered}
" \sqrt{n} \times \sqrt{n} \text {-star } ": \text { winner takes (almost) all } \\
\frac{1}{2} \delta_{0,1}+\frac{1}{2} \delta_{1,0}
\end{gathered}
$$

Conjecture and results

- Conjecture [C., published in 2017]

For a random embedded graph of genus $g \geq 0$ and any $k \geq 2$, the limit law is uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.
In particular for $k=2$ points, each of them gets a $U[0,1]$ fraction of the mass.

Conjecture and results

- Conjecture [C., published in 2017]

For a random embedded graph of genus $g \geq 0$ and any $k \geq 2$, the limit law is uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.
In particular for $k=2$ points, each of them gets a $U[0,1]$ fraction of the mass.

- Theorem [Guitter 2017]

True for $(g, k)=(0,2)$ - two points on planar graph
(proof uses sharp tools from planar map enumeration and computer assisted calculations)

Conjecture and results

- Conjecture [C., published in 2017]

For a random embedded graph of genus $g \geq 0$ and any $k \geq 2$, the limit law is uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.
In particular for $k=2$ points, each of them gets a $U[0,1]$ fraction of the mass.

- Theorem [Guitter 2017]

True for $(g, k)=(0,2)$ - two points on planar graph
(proof uses sharp tools from planar map enumeration and computer assisted calculations)

- Theorem [C 2017]

For $k=2$ and any $g \geq 0$, the second moment matches that of a uniform.
(proof uses connection to math- ϕ and the double scaling limit of the 1-matrix model...)

Conjecture and results

- Conjecture [C., published in 2017]

For a random embedded graph of genus $g \geq 0$ and any $k \geq 2$, the limit law is uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.
In particular for $k=2$ points, each of them gets a $U[0,1]$ fraction of the mass.

- Theorem [Guitter 2017]

True for $(g, k)=(0,2)$ - two points on planar graph
(proof uses sharp tools from planar map enumeration and computer assisted calculations)

- Theorem [C 2017]

For $k=2$ and any $g \geq 0$, the second moment matches that of a uniform.
(proof uses connection to math- ϕ and the double scaling limit of the 1 -matrix model...)

- Theorem (main result) [Addario-Berry, Angel, C., Fusy, Goldschmidt, SODA'18]

The uniform Voronoï property is true for random trees.
In fact, true for random one-face maps of genus $g \geq 0$ for fixed g.
For each $g \geq 0, f \geq 1$, we also have an analogue for random graphs of genus g with f faces (f, g fixed)

Conjecture and results

- Conjecture [C., published in 2017]

For a random embedded graph of genus $g \geq 0$ and any $k \geq 2$, the limit law is uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.
In particular for $k=2$ points, each of them gets a $U[0,1]$ fraction of the mass.

- Theorem [Guitter 2017]

True for $(g, k)=(0,2)$ - two points on planar graph
(proof uses sharp tools from planar map enumeration and computer assisted calculations)

- Theorem [C 2017]

For $k=2$ and any $g \geq 0$, the second moment matches that of a uniform.
(proof uses connection to math- ϕ and the double scaling limit of the 1-matrix model...)

- Theorem (main result) [Addario-Berry, Angel, C., Fusy, Goldschmidt, SODA'18]

The uniform Voronoï property is true for random trees.
In fact, true for random one-face maps of genus $g \geq 0$ for fixed g.
For each $g \geq 0, f \geq 1$, we also have an analogue for random graphs of genus g with f faces (f, g fixed)

Random maps of finite excess

Fix $\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
Consider a uniform random map (=embedded graph) M with n edges ($n \rightarrow \infty$) such that:

- M has genus g
- M has ℓ faces
- inside the i 'th face, M has n_{i} marked vertices numbered from $i^{(1)}$ to $i^{n_{i}}$ clockwise.

Random maps of finite excess

Fix $\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
Consider a uniform random map (=embedded graph) M with n edges ($n \rightarrow \infty$) such that:

- M has genus g
- M has ℓ faces
- inside the i 'th face, M has n_{i} marked vertices numbered from $i^{(1)}$ to $i^{n_{i}}$ clockwise.
W.h.p. such a map is formed by a cubic skeleton, with edges subdivided in paths of length $O(\sqrt{n})$, and trees attached:

Example:
(0;3;1,2,1)

Random maps of finite excess

Fix $\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
Consider a uniform random map (=embedded graph) M with n edges ($n \rightarrow \infty$) such that:

- M has genus g
- M has ℓ faces
- inside the i^{\prime} th face, M has n_{i} marked vertices numbered from $i^{(1)}$ to $i^{n_{i}}$ clockwise.
W.h.p. such a map is formed by a cubic skeleton, with edges subdivided in paths of length $O(\sqrt{n})$, and trees attached:

Example:
(0;3;1,2,1)

Random maps of finite excess

Fix $\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
Consider a uniform random map (=embedded graph) M with n edges ($n \rightarrow \infty$) such that:

- M has genus g
- M has ℓ faces
- inside the i^{\prime} th face, M has n_{i} marked vertices numbered from $i^{(1)}$ to $i^{n_{i}}$ clockwise.
W.h.p. such a map is formed by a cubic skeleton, with edges subdivided in paths of length $O(\sqrt{n})$, and trees attached:

Example:
(0;3;1,2,1)

Random maps of finite excess

Fix $\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
Consider a uniform random map (=embedded graph) M with n edges ($n \rightarrow \infty$) such that:

- M has genus g
- M has ℓ faces
- inside the i^{\prime} th face, M has n_{i} marked vertices numbered from $i^{(1)}$ to $i^{n_{i}}$ clockwise.
W.h.p. such a map is formed by a cubic skeleton, with edges subdivided in paths of length $O(\sqrt{n})$, and trees attached:

Example:
(0;3;1,2,1)

The number of skeletons is finite and all are equaly likely.
Note: $(0 ; 1 ; k)=$ uniform plane tree with k marked points!

Our most general result: Voronoï vs. Interval vectors

$M \sim\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
In the map M look at the two vectors of length $k=\sum_{i} n_{i}$

$$
\begin{aligned}
& \vec{v}:=\left(\frac{\left|V_{1}^{1}\right|}{n}, \ldots, \frac{\left|V_{1}^{n_{1}}\right|}{n}, \ldots, \frac{\left|V_{k}^{1}\right|}{n}, \ldots, \frac{\left|V_{\ell}^{n_{\ell}}\right|}{n}\right) \text { Voronoï vector } \\
& \vec{i}:=\left(\frac{\left|I_{1}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{1}^{n_{1}}\right|}{2 n}, \ldots, \frac{\left|I_{k}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{\ell}^{n_{\ell}}\right|}{2 n}\right) \text { Interval vector }
\end{aligned}
$$

where I_{j}^{i} is the set of edges sitting along the contour interval starting at point i^{j}.

Our most general result: Voronoï vs. Interval vectors

$M \sim\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
In the map M look at the two vectors of length $k=\sum_{i} n_{i}$

$$
\begin{aligned}
& \vec{v}:=\left(\frac{\left|V_{1}^{1}\right|}{n}, \ldots, \frac{\left|V_{1}^{n_{1}}\right|}{n}, \ldots, \frac{\left|V_{k}^{1}\right|}{n}, \ldots, \frac{\left|V_{\ell}^{n_{\ell}}\right|}{n}\right) \text { Voronoï vector } \\
& \vec{i}:=\left(\frac{\left|I_{1}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{1}^{n_{1}}\right|}{2 n}, \ldots, \frac{\left|I_{k}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{\ell}^{n_{\ell}}\right|}{2 n}\right) \text { Interval vector }
\end{aligned}
$$

where I_{j}^{i} is the set of edges sitting along the contour interval starting at point i^{j}.

Our most general result: Voronoï vs. Interval vectors

$M \sim\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
In the map M look at the two vectors of length $k=\sum_{i} n_{i}$

$$
\begin{aligned}
& \vec{v}:=\left(\frac{\left|V_{1}^{1}\right|}{n}, \ldots, \frac{\left|V_{1}^{n_{1}}\right|}{n}, \ldots, \frac{\left|V_{k}^{1}\right|}{n}, \ldots, \frac{\left|V_{\ell}^{n_{\ell}}\right|}{n}\right) \text { Voronoï vector } \\
& \vec{i}:=\left(\frac{\left|I_{1}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{1}^{n_{1}}\right|}{2 n}, \ldots, \frac{\left|I_{k}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{\ell}^{n_{\ell}}\right|}{2 n}\right) \text { Interval vector }
\end{aligned}
$$

where I_{j}^{i} is the set of edges sitting along the contour interval starting at point i^{j}.

Theorem [AB-A-C-F-G, SODA'18]
In the limit, the vectors \vec{v} and \vec{i} have the same law!

Corollary Random trees have uniform Voronoï tessellations!

Our most general result: Voronoï vs. Interval vectors

$M \sim\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
In the map M look at the two vectors of length $k=\sum_{i} n_{i}$

$$
\begin{aligned}
& \vec{v}:=\left(\frac{\left|V_{1}^{1}\right|}{n}, \ldots, \frac{\left|V_{1}^{n_{1}}\right|}{n}, \ldots, \frac{\left|V_{k}^{1}\right|}{n}, \ldots, \frac{\left|V_{\ell}^{n_{\ell}}\right|}{n}\right) \text { Voronoï vector } \\
& \vec{i}:=\left(\frac{\left|I_{1}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{1}^{n_{1}}\right|}{2 n}, \ldots, \frac{\left|I_{k}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{\ell}^{n_{\ell}}\right|}{2 n}\right) \text { Interval vector }
\end{aligned}
$$

where I_{j}^{i} is the set of edges sitting along the contour interval starting at point i^{j}.

Theorem [AB-A-C-F-G, SODA'18]
In the limit, the vectors \vec{v} and \vec{i} have the same law!

Corollary Random trees have uniform Voronoï tessellations!

Our most general result: Voronoï vs. Interval vectors

$M \sim\left(g ; \ell ; n_{1}, \ldots, n_{\ell}\right)$ with $g \geq 0, \ell \geq 1$, and with $n_{i} \geq 1$.
In the map M look at the two vectors of length $k=\sum_{i} n_{i}$

$$
\begin{aligned}
& \vec{v}:=\left(\frac{\left|V_{1}^{1}\right|}{n}, \ldots, \frac{\left|V_{1}^{n_{1}}\right|}{n}, \ldots, \frac{\left|V_{k}^{1}\right|}{n}, \ldots, \frac{\left|V_{\ell}^{n_{\ell}}\right|}{n}\right) \text { Voronoï vector } \\
& \vec{i}:=\left(\frac{\left|I_{1}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{1}^{n_{1}}\right|}{2 n}, \ldots, \frac{\left|I_{k}^{1}\right|}{2 n}, \ldots, \frac{\left|I_{\ell}^{n_{\ell}}\right|}{2 n}\right) \text { Interval vector }
\end{aligned}
$$ where I_{j}^{i} is the set of edges sitting along the contour interval starting at point i^{j}.

Theorem [AB-A-C-F-G, SODA'18]
In the limit, the vectors \vec{v} and \vec{i} have the same law!

Corollary Random trees have uniform Voronoï tessellations!
Comments: We DO NOT know how to prove uniformity even for trees without the trick of introducing interval vectors!
The proof is by induction on Euler characteristic

Note

finite excess random maps of genus $g \neq$ general random maps of genus g

n vertices,
$\sim n$ edges,
excess $O(1)$
diameter $\Theta(\sqrt{n})$
continuum limit object is "tree-like"

diameter $\Theta\left(n^{1 / 4}\right)$ continuum limit object is "surface-like"

Note

finite excess random maps of genus $g \neq$ general random maps of genus g

\longrightarrow Why would their Voronoi vectors behave similarly ???

The proof for trees

Start with $k=2$ (two marked points).

Voronoï game

The proof for trees

Start with $k=2$ (two marked points).

Voronoï game

Interval game

The proof for trees

Start with $k=2$ (two marked points).

Interval game
... It took us YEARS to find this trick

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.
Voronoi Game
Interval Game

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.

Interval Game

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.

Interval Game

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.

Interval Game

The proof for trees, continued $k \geq 2$

Take k players (here $k=4$) and look at the Voronoi and Interval Games.

Voronoi Game

Interval Game

Conclusion

We only have a "proof from the book" that doesn't explain anything... But the similarity with the main conjecture is puzzling.

WHY would a model of random graphs or random geometry would have uniform Voronoï tessellations?

THANK YOU

