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Christina Goldschmidt (Oxford)

Omer Angel (UBC Vancouver)

Louigi Addario-Berry (McGill Montréal)
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Work supported by the grant ERC – Stg 716083 – “CombiTop”



The Voronöı vector – main definition of the talk!

• Let Gn be your favorite random graph with n vertices (n→∞)

Pick k points v1, v2, . . . , vk uniformly at random (k fixed) and call

Vi = {x ∈ V (G), d(x, vi) = minj d(x, vj)} (in case of equality, assign to a random Vi among
possible choices)

the i− th Voronöı cell
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Pick k points v1, v2, . . . , vk uniformly at random (k fixed) and call

Vi = {x ∈ V (G), d(x, vi) = minj d(x, vj)}

• Question: what is the limit law of the “Voronöı vector” ( |V1|
n , |V2|

n , . . . , |Vk|
n ) ?
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Conjecture and results

• Conjecture [C., published in 2017]

For a random embedded graph of genus g ≥ 0 and any k ≥ 2, the limit law is
uniform on the k-simplex. OPEN EVEN FOR PLANAR GRAPHS.

In particular for k = 2 points, each of them gets a U [0, 1] fraction of the mass.
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Random maps of finite excess

Fix (g; `;n1, . . . , n`) with g ≥ 0, ` ≥ 1, and with ni ≥ 1.

Consider a uniform random map (=embedded graph) M with n edges
(n→∞) such that:

- M has genus g

- M has ` faces

- inside the i’th face, M has ni marked vertices numbered from i(1) to ini

clockwise.
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Random maps of finite excess

Fix (g; `;n1, . . . , n`) with g ≥ 0, ` ≥ 1, and with ni ≥ 1.

Consider a uniform random map (=embedded graph) M with n edges
(n→∞) such that:

- M has genus g

- M has ` faces

- inside the i’th face, M has ni marked vertices numbered from i(1) to ini

clockwise.

W.h.p. such a map is formed by a cubic skeleton, with edges subdivided in
paths of length O(

√
n), and trees attached:

Example:
(0;3;1,2,1) 11

31

21
22

11

31

21

22

Note: (0; 1; k)= uniform plane tree with k marked points!

. . .

. . .

The number of skeletons is finite and all are equaly likely.



Our most general result: Voronöı vs. Interval vectors
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In the limit, the vectors ~v and ~i have the same law!

Corollary Random trees have uniform Voronöı tessellations!

We DO NOT know how to prove uniformity even for trees without
the trick of introducing interval vectors!

The proof is by induction on Euler characteristic

where Iij is the set of edges sitting along the contour interval

starting at point ij .

Comments:
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. . .

n vertices,
∼ n edges,
excess O(1)

diameter Θ(
√
n)

continuum limit object
is “tree-like”

−→ Why would their Voronoi vectors behave similarly ???

n vertices,
∼ n faces,
excess Θ(n)

diameter Θ(n1/4)

continuum limit object
is “surface-like”
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The proof for trees

Start with k = 2 (two marked points).

Voronöı game

d/2

d/2

Interval game

90 deg. rotation!!

SAME DISTRIBUTION !

... It took us YEARS to find this trick
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The proof for trees, continued k ≥ 2

Take k players (here k = 4) and look at the Voronoi and Interval Games.

Voronoi Game Interval Game

1

2
3

4

δ
stop exploration

at first time δ

when some player

reaches a branch

point.

problem splits in two

subproblems. One

player (here 3) gets

to play twice!

1

2
3

4

3

1

2

4

3

problem AGAIN

splits in two

subproblems, and

AGAIN one player

plays twice!

(here 4)

1

2
3

4

remove same

pieces of length δ

as before

4

−→ proof complete, by induction!



Conclusion

We only have a “proof from the book” that doesn’t explain anything...

WHY would a model of random graphs or random
geometry would have uniform Voronöı tessellations?

But the similarity with the main conjecture is puzzling.
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