Tamari lattice, Intervals, and Enumeration

Introduction

Some classical combinatorial objects

- There are $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$ such objects (Catalan numbers proof later)

Some classical combinatorial objects

- There are $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$ such objects (Catalan numbers proof later)

The Tamari lattice

- In 1962, Tamari defines a partial order on parentheses expressions whose covering relation is given by elementary flips.

The Tamari lattice

- In 1962, Tamari defines a partial order on parentheses expressions whose covering relation is given by elementary flips.

The Tamari lattice

- In 1962, Tamari defines a partial order on parentheses expressions whose covering relation is given by elementary flips.

- This partial order is a lattice (i.e. there is a notion of sup and inf)
- The Tamari lattice was born and had a great future ahead of it...

The Tamari lattice (pictures)

About the Tamari lattice...

- The Hasse diagram of the Tamari lattice is the graph of a polytope called the associahedron. It is studied by combinatorial geometers.

- In algebraic combinatorics the Tamari lattice is an example of Cambrian lattice underlying the combinatorial structure of Coxeter groups.
- More recently the Tamari lattice was studied in enumerative combinatorics. It has extraordinary enumerative properties...

Enumeration in the Tamari lattice

- We have seen that the number of Dyck paths is $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$

Enumeration in the Tamari lattice

- We have seen that the number of Dyck paths is $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$

Theorem [Chapoton 06] The number of intervals, i.e. pairs $[P, Q]$ such that $P \preccurlyeq Q$ is:

$$
I_{n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1} .
$$

Enumeration in the Tamari lattice

- We have seen that the number of Dyck paths is $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$

Theorem [Chapoton 06] The number of intervals, i.e. pairs $[P, Q]$ such that $P \preccurlyeq Q$ is:

$$
I_{n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1} .
$$

Plan of the talk...

1. I will explain where this comes from (non-linear catalytic equation)
2. I'll mention our new results and the kind of new equations we solved
3. Give some comments and perspectives

Part I: An equation with a catalytic variable

[Chapoton 06]
[Bousquet-Mélou, Fusy, Préville-Ratelle 12]

Crash-course on generating functions I - example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \nearrow^{\mathcal{T}}
$$

Crash-course on generating functions I - example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \varnothing^{\mathcal{T}}
$$

Consequence: the number a_{n} of binary trees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \varnothing^{\mathcal{T}}
$$

Consequence: the number a_{n} of binary trees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \varnothing^{\mathcal{T}}
$$

Consequence: the number a_{n} of binary trees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

This is a polynomial equation. Solution: $T(t)=\frac{1-\sqrt{1-4 t}}{2 t}$

$$
\Longrightarrow a_{n}=\text { coeff. of } t^{n} \text { in } T(t)=\frac{1}{2}\binom{1 / 2}{n+1}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \nearrow^{\mathcal{T}}
$$

Consequence: trie numiver a_{n} of imary urees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

This is a polynomial equation. Solution: $T(t)=\frac{1-\sqrt{1-4 t}}{2 t}$

$$
\Longrightarrow a_{n}=\text { coeff. of } t^{n} \text { in } T(t)=\frac{1}{2}\binom{1 / 2}{n+1}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \zeta^{\mathcal{T}}
$$

Consequence: trie numiver a_{n} of imary urees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

This is a polynomial equation. Solution: $T(t)=\frac{1-\sqrt{1-4 t}}{2 t}$

$$
\Longrightarrow a_{n}=\text { coeff. of } t^{n} \text { in } T(t)=\frac{1}{2}\binom{1 / 2}{n+1}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}} \zeta^{\mathcal{T}}
$$

Consequence: time number a_{n} of imary trees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

This is a polynomial equation. Solution $T(t)=\frac{1-\sqrt{1-4 t}}{2 t}$

$$
\Longrightarrow a_{n}=\text { coeff. of } t^{n} \text { in } T(t)=\frac{1}{2}\binom{1 / 2}{n+1}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Crash-course on generating functions I-example

- The class \mathcal{T} of binary trees is defined by the formula

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}}{ }^{\mathcal{T}}
$$

Consequence: time number a_{n} of imary trees with n vertices is solution of

$$
a_{0}=1, \quad a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} .
$$

Better: the generating function $T(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ is solution of

$$
T(t)=1+t T(t)^{2}
$$

This is a polynomial equation. Solution $T(t)=\frac{1-\sqrt{1-4 t}}{2 t}$

$$
a_{n}=\text { coeff. of } t^{n} \text { in } T(t)=\frac{1}{2}\binom{1 / 2}{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

Crash-course on generating functions II - abstraction

- Recursive specification of the set of binary trees using \uplus and \times

$$
\mathcal{T}=\varnothing+{ }^{\mathcal{T}}{ }^{\mathcal{T}}
$$

Crash-course on generating functions II - abstraction

- Recursive specification of the set of binary trees using \uplus and \times

$$
\mathcal{T}=\{\varnothing\} \uplus(\{\bullet\} \times \mathcal{T} \times \mathcal{T})
$$

- Operators on sets map to operators on generating functions

Crash-course on generating functions II - abstraction

- Recursive specification of the set of binary trees using \uplus and \times

$$
\mathcal{T}=\{\varnothing\} \uplus(\{\bullet\} \times \mathcal{T} \times \mathcal{T})
$$

- Operators on sets map to operators on generating functions

$$
\begin{aligned}
& \uplus \longrightarrow+ \\
& \times \longrightarrow \times
\end{aligned} \quad T(t)=1+t T(t)^{2}
$$

Crash-course on generating functions II - abstraction

- Recursive specification of the set of binary trees using \uplus and \times

$$
\mathcal{T}=\{\varnothing\} \uplus(\{\bullet\} \times \mathcal{T} \times \mathcal{T})
$$

- Operators on sets map to operators on generating functions

$$
\begin{aligned}
& \uplus \longrightarrow+ \\
& \times \longrightarrow \times
\end{aligned} \quad T(t)=1+t T(t)^{2}
$$

- This is a polynomial equation. This is a well known class of equations and from there one can prove that $a_{n}=\frac{1}{n+1}\binom{2 n}{n}$ in various ways.

Crash-course on generating functions II - abstraction

- Recursive specification of the set of binary trees using \uplus and \times

$$
\mathcal{T}=\{\varnothing\} \uplus(\{\bullet\} \times \mathcal{T} \times \mathcal{T})
$$

- Operators on sets map to operators on generating functions

$$
\stackrel{\uplus}{\times \longrightarrow+} \quad T(t)=1+t T(t)^{2}
$$

- This is a polynomial equation. This is a well known class of equations and from there one can prove that $a_{n}=\frac{1}{n+1}\binom{2 n}{n}$ in various ways.

Main point of the talk and active subject of research:
In combinatorics there are other operators than \uplus and \times that lead to other classes of equations. We would like to be as good with them as we are with polynomial equations.
In this talk: equations with catalytic variables.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

... this is a bijection!

Writing an equation for Tamari intervals (II)

Generating functions
$F_{i}(t):=\sum_{n \geq 0} a_{n, i} t^{n}$
$F(t ; x)=: \sum_{i \geq 1} F_{i}(t) x^{i}$
where $a_{n, i}=\mathrm{nb}$ of intervals of size n with
i zeros in the lower path.

Writing an equation for Tamari intervals (II)

Generating functions
$F_{i}(t):=\sum_{n \geq 0} a_{n, i} t^{n}$
$F(t ; x)=: \sum_{i \geq 1} F_{i}(t) x^{i}$
where $a_{n, i}=\mathrm{nb}$ of intervals of size n with
i zeros in the lower path.

Writing an equation for Tamari intervals (II)

Generating functions
$F_{i}(t):=\sum_{n \geq 0} a_{n, i} t^{n}$

$$
\begin{aligned}
F(t ; x) & =x+t \sum_{i \geq 1}\left(x+x^{2}+\cdots+x^{i}\right) F_{i}(t) F(t, x) \\
& =x+t x \sum_{i \geq 1} \frac{x^{i}-1}{x-1} F_{i}(t) F(t, x) \\
& =x+t x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
\end{aligned}
$$

Writing an equation for Tamari intervals (II)

Generating functions
$F_{i}(t):=\sum_{n \geq 0} a_{n, i} t^{n}$

$$
F(t ; x)=x+t \sum_{i \geq 1}\left(x+x^{2}+\cdots+x^{i}\right) F_{i}(t) F(t, x)
$$

$F(t ; x)=: \sum_{i \geq 1} F_{i}(t) x^{i}$

$$
=x+t x \sum_{i \geq 1} \frac{x^{i}-1}{x-1} F_{i}(t) F(t, x)
$$

where $a_{n, i}=\mathrm{nb}$ of intervals of size n with i zeros in the lower path.

$$
=x+x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
$$

Writing an equation for Tamari intervals (II)

$$
F(t, x)=x+t x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
$$

- This is a polynomial equation with one catalytic variable, i.e. it involves the operators,$+ \times$ and $\Delta: A \longmapsto \frac{A-A_{\mid x=1}}{x-1}$.

Writing an equation for Tamari intervals (II)

$$
F(t, x)=x+t x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
$$

- This is a polynomial equation with one catalytic variable, i.e. it involves the operators,$+ \times$ and $\Delta: A \longmapsto \frac{A-A_{\mid x=1}}{x-1}$.
- There is a theory for that coming from map enumeration, going back to Knuth and Tutte.
- Exemples of solving techniques:
- prehistory (Tutte): guess $F(t, 1)$, solve for $F(t, x)$, and check the value at $x=1$.
- 21st century [Bousquet-Mélou/Jehanne]: general theorem, the solution is an algebraic function, and there is an algorithm to find it that you can run on (say) Maple.

An version of the algorithm [Brown, Tutte, 1960's]

$$
F(t, x)=x+t x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
$$

- Write this equation $P(F, f, x, t)=0$ with $f=F(t, 1)$ and $F=F(t, x)$

An version of the algorithm [Brown, Tutte, 1960's]

$$
F(t, x)=x+t x \frac{F(t, x)-F(t, 1)}{x-1} F(t, x)
$$

- Write this equation $P(F, f, x, t)=0$ with $f=F(t, 1)$ and $F=F(t, x)$
- Force x to live on a special "curve" $x=x(t)$ by adding the equation $P_{F}^{\prime}(F, f, x, t)=0$.
- Then we also have that $P_{x}^{\prime}(F, f, x, t)=0$.
- Solve the system $\begin{cases}P(F, f, x, t) & =0 \\ P_{F}^{\prime}(F, f, x, t) & =0 \\ P_{x}^{\prime}(F, f, x, t) & =0\end{cases}$
for the 3 unknowns $F=F(t, x), f=F(t, 1), x=x(t)$.
[Bousquet-Mélou-Jehanne 04] say that this always works (actually a far reaching generalization of this...)

Part II: Labelled Dyck paths and intervals

Labelled Dyck paths

up steps labelled from 1 to n and increasing along rises

A labelled Dyck path

Labelled Dyck paths

- Number of labelled Dyck paths $=(n+1)^{n-1}$

Labelled Dyck paths

- Number of labelled Dyck paths $=(n+1)^{n-1}$

Labelled Dyck paths

- Number of labelled Dyck paths $=(n+1)^{n-1}$
- Refinement: Let $\sigma \in \mathfrak{S}_{n}$ be a permutation. Then the number of labelled Dyck paths whose rise-partition is stable by σ is $(n+1)^{k-1}$ where $k=\# \operatorname{cycles}(\sigma)$.

Labelled Tamari intervals: Bergeron's conjectures

A labelled Tamari interval is a pair $[P, Q]$ where

- P is a Dyck path
- Q is a labelled Dyck path
- $P \preccurlyeq Q$ for Tamari

Labelled Tamari intervals: Bergeron's conjectures

A labelled Tamari interval is a pair $[P, Q]$ where

- P is a Dyck path
- Q is a labelled Dyck path
- $P \preccurlyeq Q$ for Tamari

Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

The number of labelled Tamari intervals is $2^{n}(n+1)^{n-2}$
Refinement: Let $\sigma \in \mathfrak{S}_{n}$ be a permutation. Then the number of labelled Tamari intervals whose rise-partition is stable by σ is

$$
(n+1)^{k-2} \prod_{i \geq 1}\binom{2 i}{i}^{\alpha_{i}} \quad \begin{aligned}
& \text { if } \sigma \text { has } \alpha_{i} \text { cycles of length } i \text { for } i \geq 1 \\
& \text { and } k \text { cycles in total }
\end{aligned}
$$

The decomposition for LABELLED intervals

- The number of labellings of a Dyck path depends on the lengths of the rises.
- Our recursive decomposition does not change the lengths of rises... except for the first one!

The decomposition for LABELLED intervals

- The number of labellings of a Dyck path depends on the lengths of the rises.
- Our recursive decomposition does not change the lengths of rises... except for the first one!

The decomposition for LABELLED intervals

- The number of labellings of a Dyck path depends on the lengths of the rises.
- Our recursive decomposition does not change the lengths of rises... except for the first one!
- We introduce a new variable y for first rise of Q.

$$
\frac{\partial}{\partial y} F(t, x, y)=x+t x \frac{F(t, x ; y)-F(t, 1 ; y)}{x-1} F(t, x ; 1)
$$

since: $\frac{\partial}{\partial y} y^{k}=k y^{k-1}$
\rightarrow the factor $k=\frac{k!}{(k-1)!}$ compensates the change of the first rise

What about LABELLED intervals (II)

$$
\frac{\partial}{\partial y} F(t, x, y)=x+t x \frac{F(t, x ; y)-F(t, 1 ; y)}{x-1} F(t, x ; 1)
$$

- Never seen such an equation (two catalytic variables, one "standard", one "differential").

What about LABELLED intervals (II)

$$
\frac{\partial}{\partial y} F(t, x, y)=x+t x \frac{F(t, x ; y)-F(t, 1 ; y)}{x-1} F(t, x ; 1)
$$

- Never seen such an equation (two catalytic variables, one "standard", one "differential").
- Go back to prehistory:

1. guess $F(t, x, 1)$ ("only" 2 variables).
2. use the symmetries of the equation to eliminate $F(t, 1 ; y)$

3 . solve the differential equation
4. reconstitute $F(t, x, y)$ and check the value at $y=1$

Part III: comments

Why we are interested in all this

Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

The number of labelled Tamari intervals is $2^{n}(n+1)^{n-2}$
Refinement: Let $\sigma \in \mathfrak{S}_{n}$ be a permutation. Then the number of labelled Tamari intervals whose rise-partition is stable by σ is

$$
(n+1)^{k-2} \prod_{i \geq 1}\binom{2 i}{i}^{\alpha_{i}} \quad \begin{aligned}
& \text { if } \sigma \text { has } \alpha_{i} \text { cycles of length } i \text { for } i \geq 1 \\
& \text { and } k \text { cycles in total }
\end{aligned}
$$

- Original motivation: algebraists believe that this formula is the character of the trivariate coinvariant module over \mathfrak{S}_{n}. (very hard conjecture!)
- Our proof is extremely technical but contains ideas hidden behind piles of details. We don't fully understand why it worked but we hope that this will open the way to a general theory.
- There is a generalization of everything to the m-Tamari lattice and it is harder and even more technical.

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3^{n}}{n+2} \operatorname{Cat}(n)$.
[Tutte via the first catalytic equation solved with prehistorical techniques]

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3^{n}}{n+2} \operatorname{Cat}(n)$. [Tutte via the first catalytic equation solved with prehistorical techniques]
- 1960-1990's many variants discovered with similar techniques [Tutte, Brown, Bender, Canfield.... the techniques get stronger]

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3^{n}}{n+2} \operatorname{Cat}(n)$.
[Tutte via the first catalytic equation solved with prehistorical techniques]
- 1960-1990's many variants discovered with similar techniques
[Tutte, Brown, Bender, Canfield.... the techniques get stronger]
- 2004 theory + algorithms for these equations.
[Bousquet-Mélou, Jehanne]

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3^{n}}{n+2} \operatorname{Cat}(n)$.
[Tutte via the first catalytic equation solved with prehistorical techniques]
- 1960-1990's many variants discovered with similar techniques
[Tutte, Brown, Bender, Canfield.... the techniques get stronger]
- 2004 theory + algorithms for these equations.
[Bousquet-Mélou, Jehanne]
- 1998 and 2000's BIJECTIVE PROOFS of these formulas
[Schaeffer, Bouttier, Di Francesco, Guitter]
Planar maps reveal their true structure via nice tree-decompositions
The theory of random planar maps becomes extremely rich and active Many applications to theoretical physics and probability theory...

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3}{n+2} \operatorname{Cat}(n)$.

[Tutte via the first catalytic equation solved with prehistorical techniques]

- 1960-1990's many variants discovered with similar techniques
[Tutte, Brown, Bender, Canfield.... the techniques get stronger]
- 2004 theory + algorithms for these equations.
[Bousquet-Mélou, Jehanne]
- 1998 and 2000's BIJECTIVE PROOFS of these formulas
[Schaeffer, Bouttier, Di Francesco, Guitter]
Planar maps reveal their true structure via nice tree-decompositions
The theory of random planar maps becomes extremely rich and active Many applications to theoretical physics and probability theory...

A historical analogy with planar maps

- A planar map is a planar graph drawn on the plane.

- 1960: the number of planar maps with n edges is $\frac{2 \cdot 3^{n}}{n+2} \operatorname{Cat}(n)$.

[Tutte via the first catalytic equation solved with prehistorical techniques]

- 1960-1990's many variants discovered with similar techniques [Tutte, Brown, Bender, Canfield.... the techniques get stronger]
- 2004 theory + algorithms for these equations. [Bousquet-IVelou, Jehanne]
- 1998 and 2000's BIJECTIVE PROOFS of thest tormulas [Schaetter, Bouttier, DI Francesco, Guitter]

Planar maps reveal their true structure via nice tree-decompositions
The theory of random planar maps becomes extremely rich and active Many applications to theoretical physics and probability theory...

Merci !

