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The Tamari lattice

• In 1962, Tamari defines a partial order on parentheses expressions
whose covering relation is given by elementary flips.
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4
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The Tamari lattice

• In 1962, Tamari defines a partial order on parentheses expressions
whose covering relation is given by elementary flips.

• This partial order is a lattice (i.e. there is a notion of sup and inf)

• The Tamari lattice was born and had a great future ahead of it...

flip on triangulations

4
edge flip



The Tamari lattice (pictures)

c© R. Dickau



About the Tamari lattice...

• The Hasse diagram of the Tamari lattice is the graph of a polytope
called the associahedron. It is studied by combinatorial geometers.

• In algebraic combinatorics the Tamari lattice is an example of Cambrian
lattice underlying the combinatorial structure of Coxeter groups.

• More recently the Tamari lattice was studied in enumerative
combinatorics. It has extraordinary enumerative properties...



Enumeration in the Tamari lattice

• We have seen that the number of Dyck paths is Cat(n) = 1
n+1

(
2n
n

)
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Theorem [Chapoton 06] The number of intervals, i.e. pairs [P,Q]
such that P 4 Q is:
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Enumeration in the Tamari lattice

Theorem [Chapoton 06] The number of intervals, i.e. pairs [P,Q]
such that P 4 Q is:

In =
2

n(n+ 1)

(
4n+ 1

n− 1

)
.

Plan of the talk...

1. I will explain where this comes from (non-linear catalytic equation)

2. I’ll mention our new results and the kind of new equations we solved

• We have seen that the number of Dyck paths is Cat(n) = 1
n+1

(
2n
n

)

3. Give some comments and perspectives

Q

P



Part I: An equation
with a catalytic

variable

[Chapoton 06]
[Bousquet-Mélou, Fusy, Préville-Ratelle 12]
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Crash-course on generating functions II – abstraction

• Recursive specification of the set of binary trees using ] and ×

T =
T T

+∅T = {∅}]
(
{•}×T ×T

)
• Operators on sets map to operators on generating functions

] −→ +
× −→ × T (t) = 1 + tT (t)2

• This is a polynomial equation. This is a well known class of equations
and from there one can prove that an = 1

n+1

(
2n
n

)
in various ways.

Main point of the talk and active subject of research:
In combinatorics there are other operators than ] and × that lead
to other classes of equations. We would like to be as good with
them as we are with polynomial equations.

In this talk: equations with catalytic variables.
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Writing an equation for Tamari intervals (I)

Fact: We have a recursive decomposition of Tamari intervals.

Tamari intervalTamari interval Tamari interval with
a pointed zero in the

lower path

... this is a bijection!

first return
to 0 of P



Writing an equation for Tamari intervals (II)

Generating functions

F (t;x) =:
∑
i≥1

Fi(t)x
i

Fi(t) :=
∑
n≥0

an,it
n

where an,i = nb of
intervals of size n with
i zeros in the lower
path.
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i≥1

Fi(t)x
i

Fi(t) :=
∑
n≥0

an,it
n

where an,i = nb of
intervals of size n with
i zeros in the lower
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︸ ︷︷ ︸
i zeros

︸ ︷︷ ︸
j ≤ i zeros
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∑
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Writing an equation for Tamari intervals (II)

F (t, x) = x+ tx
F (t, x)− F (t, 1)

x− 1
F (t, x)

• This is a polynomial equation with one catalytic variable, i.e. it involves

the operators +, × and ∆ : A 7−→
A−A|x=1

x− 1
.

• There is a theory for that coming from map enumeration, going back
to Knuth and Tutte.

• Exemples of solving techniques:

• prehistory (Tutte): guess F (t, 1), solve for F (t, x), and check
the value at x = 1.

• 21st century [Bousquet-Mélou/Jehanne]: general theorem, the
solution is an algebraic function, and there is an algorithm to find
it that you can run on (say) Maple.



An version of the algorithm [Brown, Tutte, 1960’s]

F (t, x) = x+ tx
F (t, x)− F (t, 1)

x− 1
F (t, x)

• Write this equation P (F, f, x, t) = 0 with f = F (t, 1) and F = F (t, x)



An version of the algorithm [Brown, Tutte, 1960’s]

F (t, x) = x+ tx
F (t, x)− F (t, 1)

x− 1
F (t, x)

• Write this equation P (F, f, x, t) = 0 with f = F (t, 1) and F = F (t, x)

• Solve the system

 P (F, f, x, t) = 0
P ′F (F, f, x, t) = 0
P ′x(F, f, x, t) = 0

• Force x to live on a special ”curve” x = x(t) by adding the equation
P ′F (F, f, x, t) = 0.

• Then we also have that P ′x(F, f, x, t) = 0.

for the 3 unknowns F = F (t, x), f = F (t, 1), x = x(t).

[Bousquet-Mélou-Jehanne 04] say that this always works
(actually a far reaching generalization of this...)



Part II: Labelled
Dyck paths and

intervals
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1
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5
6

7
up steps labelled
from 1 to n and
increasing along
rises
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Labelled Dyck paths

A labelled Dyck path

• Number of labelled Dyck paths = (n+ 1)n−1

1
2

3
4

5
6

7
up steps labelled
from 1 to n and
increasing along
rises

spanning tree of
Kn+1

1

2

3

4

5

6

7

8

• Refinement: Let σ ∈ Sn be a permutation. Then the number of
labelled Dyck paths whose rise-partition is stable by σ is (n+ 1)k−1

where k = #cycles(σ).

rise-partition {2, 6} {1, 4, 7} {3} {5}



Labelled Tamari intervals: Bergeron’s conjectures

A labelled Tamari interval is a pair [P,Q] where
- P is a Dyck path
- Q is a labelled Dyck path
- P 4 Q for Tamari

1
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4

5
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Labelled Tamari intervals: Bergeron’s conjectures

A labelled Tamari interval is a pair [P,Q] where
- P is a Dyck path
- Q is a labelled Dyck path
- P 4 Q for Tamari

1

2

3

4

5

6

7
Q

P

The number of labelled Tamari intervals is 2n(n+ 1)n−2
Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

Refinement: Let σ ∈ Sn be a permutation. Then the number of
labelled Tamari intervals whose rise-partition is stable by σ is

(n+ 1)k−2
∏
i≥1

(
2i

i

)αi

if σ has αi cycles of length i for i ≥ 1

and k cycles in total



The decomposition for LABELLED intervals

• The number of labellings of a Dyck path depends on the
lengths of the rises.

• Our recursive decomposition does not change the lengths of
rises... except for the first one!
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The decomposition for LABELLED intervals

• The number of labellings of a Dyck path depends on the
lengths of the rises.

• Our recursive decomposition does not change the lengths of
rises... except for the first one!

• We introduce a new variable y for first rise of Q.

∂
∂yF (t, x, y) = x+ tx

F (t, x; y)− F (t, 1; y)

x− 1
F (t, x; 1)

since: ∂
∂y
yk = kyk−1

→ the factor k = k!
(k−1)!

compensates the change of the first rise



What about LABELLED intervals (II)

∂
∂yF (t, x, y) = x+ tx

F (t, x; y)− F (t, 1; y)

x− 1
F (t, x; 1)

• Never seen such an equation (two catalytic variables, one
“standard”, one “differential”).



What about LABELLED intervals (II)

∂
∂yF (t, x, y) = x+ tx

F (t, x; y)− F (t, 1; y)

x− 1
F (t, x; 1)

• Never seen such an equation (two catalytic variables, one
“standard”, one “differential”).

• Go back to prehistory:

1. guess F (t, x, 1) (“only”2 variables).

3. solve the differential equation

4. reconstitute F (t, x, y) and check the value at y = 1

2. use the symmetries of the equation to eliminate F(t,1;y)



Part III:
comments



Why we are interested in all this

The number of labelled Tamari intervals is 2n(n+ 1)n−2
Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

Refinement: Let σ ∈ Sn be a permutation. Then the number of
labelled Tamari intervals whose rise-partition is stable by σ is

(n+ 1)k−2
∏
i≥1

(
2i

i

)αi

if σ has αi cycles of length i for i ≥ 1

and k cycles in total

• Original motivation: algebraists believe that this formula is the character
of the trivariate coinvariant module over Sn . (very hard conjecture!)

• Our proof is extremely technical but contains ideas hidden behind piles of
details. We don’t fully understand why it worked but we hope that this will
open the way to a general theory.

• There is a generalization of everything to the m-Tamari lattice and it is
harder and even more technical.
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A historical analogy with planar maps

• A planar map is a planar
graph drawn on the plane.

• 1960: the number of planar maps with n edges is
2 · 3n

n+ 2
Cat(n).

[Tutte via the first catalytic equation solved with prehistorical techniques]

• 1960-1990’s many variants discovered with similar techniques
[Tutte, Brown, Bender, Canfield.... the techniques get stronger]

• 2004 theory + algorithms for these equations.
[Bousquet-Mélou, Jehanne]

• 1998 and 2000’s BIJECTIVE PROOFS of these formulas
[Schaeffer, Bouttier, Di Francesco, Guitter]

Planar maps reveal their true structure via nice tree-decompositions

The theory of random planar maps becomes extremely rich and active

Many applications to theoretical physics and probability theory...

on en
est là...

?
?



Merci !


