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Introduction



Some classical combinatorial objects

a binary tree
with n vertices a triangulation of an (n + 2)-gon

with n triangles

a Dyck path of length 2n \ >

1 2
e There are Cat(n) = 3 ( n) such objects (Catalan numbers —
n n

proof later)
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The Tamarn lattice

e In 1962, Tamari defines a partial order on parentheses expressions
whose covering relation is given by elementary flips.

excursion following here we switched the excursion
the down step and the down step

flip on Dyck paths
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fllp on triangulations
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fllp on triangulations
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e This partial order is a lattice (i.e. there is a notion of sup and inf)

e The Tamari lattice was born and had a great future ahead of it...



The Tamari lattice (pictures)
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About the Taman lattice...

e The Hasse diagram of the Tamari lattice is the graph of a polytope
called the associahedron. It is studied by combinatorial geometers.
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e In algebraic combinatorics the Tamari lattice is an example of Cambrian
lattice underlying the combinatorial structure of Coxeter groups.

e More recently the Tamari lattice was studied in enumerative
combinatorics. It has extraordinary enumerative properties...
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Enumeration in the Tamari lattice

e We have seen that the number of Dyck paths is Cat(n) = n+r1(2$)

Theorem [Chapoton 06] The number of intervals, i.e. pairs [P, Q|

such that P < Q@) is: 9 An 4 1
I, = :
n(n—l—l)(n—l)
......................................................................................... 0
............................... p

Plan of the talk...

1. I will explain where this comes from (non-linear catalytic equation)

2. I'll mention our new results and the kind of new equations we solved

3. Give some comments and perspectives



Part |I: An equation
with a catalytic
variable

[Chapoton 06]
[Bousquet-Mélou, Fusy, Préville-Ratelle 12]
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Crash-course on generating functions |l — abstraction

e Recursive specification of the set of binary trees using & and X

T = {@}Lﬂ({o}xTxT)
e Operators on sets map to operators on generating functions

W — +
X — X T(t) =1+ tT(t)2

e This is a polynomial equation. This is a well known class of equations
1 2n\ - -
and from there one can prove that a, = 37 ( n) in various ways.

Main point of the talk and active subject of research:
In combinatorics there are other operators than & and x that lead

to other classes of equations. We would like to be as good with
them as we are with polynomial equations.

In this talk: equations with catalytic variables.
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Writing an equation for Tamari intervals (1)

Fact: We have a recursive decomposition of Tamari intervals.

first return
....................... 10 0.0f. 2

A

Tamari interval with @ [ Tamari interval
—»  a pointed zero in the
lower path

Tamari interval

... this is a bijection!



Writing an equation for Tamari intervals (11)

Generating functions

Fi(t) := )  anqt"

n >0

F(t;z) =: Z>:1 Fi(t)x"

where a,, ; = nb of :
intervals of size n with
1 zeros In the lower '
path.
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Writing an equation for Tamari intervals (11)

A

7 < 1 zeros 1 Zeros

Generating functions

n Ftie) =a+t (CU+5132—|— -I—ZEZ)thFt,ZE
Fi(t) := Z Ap, it g ( ) 222:1 ( ) ( )
. rt—1
Fltsz) = 2, Fut)e! =+t Fi(t)F(t,
(t52) = X Filt)e m—l—x;x_l (OF(t.2)
where a,, ; = nb of B
Intervals of size n with — r+ th(t’ :L‘) F(t’ 1) F(t, :I:)

i zeros in the lower r—1
path. '



Writing an equation for Tamari intervals (11)

A

7 < 1 zeros

1 Zeros
Generating functions
. F(t;z) =x+t (z + 2%+ + 2" |7
Fi(t) := )  an,;t (t;2) ; |
n >0 B
. b —1
F(t;z) =: F;(t)x" = t F;(t)F(t,
(t:) =t 3 Fi(t) $+$;x—1 (DF (¢, )

where a,, ; = nb of :
intervals of size n with
1 zeros In the lower '
path.

|
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Writing an equation for Tamari intervals (11)

F(t,x) — F(t,1)
r— 1

F(t,x) =z +tx F(t,x)

e This is a polynomial equation with one catalytic variable, i.e. it involves
A— A|:13:1

r— 1

the operators +, X and A: A+



Writing an equation for Tamari intervals (1)

F(t,x) — F(t,1)
x — 1

F(t,z) =x+tx F(t,x)

e This is a polynomial equation with one catalytic variable, i.e. it involves
A — A|x:1

the operators +, X and A: A+ ;
:B -

e There is a theory for that coming from map enumeration, going back
to Knuth and Tutte.

e Exemples of solving techniques:

e prehistory (Tutte): guess F'(t,1), solve for F(t,x), and check
the value at z = 1.

e 21st century [Bousquet-Mélou/Jehanne|: general theorem, the
solution is an algebraic function, and there is an algorithm to find
it that you can run on (say) Maple.



An version of the algorithm [Brown, Tutte, 1960’s]

F(t,x) — F(t,1)
r— 1

F(t,x) =x+tx F(t,x)

e Write this equation P(F, f,z,t) = 0 with f = F'(¢,1) and F = F(t,x)



An version of the algorithm [Brown, Tutte, 1960’s]

F(t,x) — F(t,1)

F(t = t
(t,x) = o+ tx —

F(t,x)

e Write this equation P(F, f,z,t) = 0 with f = F'(¢,1) and F = F(t,x)

e Force x to live on a special "curve” x = x(t) by adding the equation
PL(F, f,z,t) = 0.

e Then we also have that P.(F, f,x,t) = 0.

P(F, f,x,t) =0
e Solve the system ¢ Pr(F, f,x,t) =0
P.(F, f,x,t) =0
for the 3 unknowns F' = F(t,x), f = F(t,1),x = x(t).
[Bousquet-Mélou-Jehanne 04] say that this always works

(actually a far reaching generalization of this...)



Part |l: Labelled

Dyck paths and
intervals
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Labelled Dyck paths

up steps labelled
from 1 to n and
Increasing along
rises

rise-partition {2,6} {1,4,7} {3} {5} spanning tree of
|

A labelled Dyck path K1

e Number of labelled Dyck paths = (n + 1)1

e Refinement: Let 0 € G,, be a permutation. Then the number of

labelled Dyck paths whose rise-partition is stable by o is (n 4 1)*~!
where k = #£cycles(o).



Labelled Tamari intervals: Bergeron’s conjectures

A labelled -
- Pisa

Dyck path

- is a
- P<Q

abelled Dyck path
for Tamari

"amari interval is a pair [P ()| where




Labelled Tamari intervals: Bergeron’s conjectures

A labelled -
- Pisa

Dyck path

- is a

abelled Dyck path
- P < @ for Tamari

‘amari interval is a pair [P ()| where

Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

The number of labelled Tamari intervals is 2™ (n + 1)" 2

Refinement: Let 0 € G,, be a permutation. Then the number of
labelled Tamari intervals whose rise-partition is stable by o is

(n +

1)k—2 H

i>1

21
( , ) if o has a; cycles of length ¢ for : > 1
[/

and k cycles in total




The decomposition for LABELLED intervals
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e The number of labellings of a Dyck path depends on the
lengths of the rises.

e Our recursive decomposition does not change the lengths of
rises... except for the first one!
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The decomposition for LABELLED intervals

e The number of labellings of a Dyck path depends on the
lengths of the rises.

e Our recursive decomposition does not change the lengths of
rises... except for the first one!

e \We introduce a new variable y for first rise of ().

F(t,z;y) — F(t,1;y)
r—1

(%F(t,a},y) = x +tx F(t,z;1)

. . 0 .k __ k—1
since: -y = ky

— the factor k = (kk—'l)' compensates the change of the first rise



What about LABELLED intervals (Il)

F(t,zy) — F(t,1;y)
r— 1

EF(tx,y) = o+t

e Never seen such an equation (two catalytic variables, one
“standard”, one “differential”).



What about LABELLED intervals (Il)

F(t,zy) — F(t,1;y)
r— 1

(%F(t,x,y) =z +tx F(t,z;1)

e Never seen such an equation (two catalytic variables, one
“standard”, one “differential”).

e Go back to prehistory:
guess F'(t,z,1) (“only”2 variables).
use the symmetries of the equation to eliminate F(t,1;y)

1.
2.
3. solve the differential equation
4.

reconstitute F'(¢,x,y) and check the value at y =1



Part lI:
comments



Why we are interested in all this

Theorem [Bousquet-Mélou,C., Préville-Ratelle 2011]

The number of labelled Tamari intervals is 2" (n + 1)~ ?

Refinement: Let 0 € G,, be a permutation. Then the number of
labelled Tamari intervals whose rise-partition is stable by o Is

2i\
(n + 1)k_2 H ( , ) if o has «; cycles of length 7 for i > 1
1>1 and k cycles in total

e Original motivation: algebraists believe that this formula is the character
of the trivariate coinvariant module over G,, . (very hard conjecture!)

e Our proof is extremely technical but contains ideas hidden behind piles of
details. We don't fully understand why it worked but we hope that this will
open the way to a general theory.

e There is a generalization of everything to the m-Tamari lattice and it is
harder and even more technical.
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A historical analogy with planar maps

e A planar map is a planar
graph drawn on the plane.

23"
n 2Cat(n).

[Tutte via the first catalytic equation solved with prehistorical techniques]

e 1960: the number of planar maps with n edges is

e 1960-1990's many variants discovered with similar techniques
[Tutte, Brown, Bender, Canfield.... the techniques get stronger]

» 2004 theory + algorithms for these equations.
|bousquet-IVlielou, Jehanne|

» 1998 and 2000's BIJECTIVE PROOFS of these tormulas

|9chaertfer, bouttier, D1 Francesco, Guitter|
Planar maps reveal their true structure via nice tree-decompositions
The theory of random planar maps becomes extremely rich and active
Many applications to theoretical physics and probability theory...



Merci !



