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Unicellular maps (a.k.a. “one-face” maps)

e Start with a (rooted) 2n-gon, and paste the edges pairwise in order to form
an orientable surface.
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e One obtains an n-edge graph drawn on the surface. The number of handles
(=genus) of the surface is given combinatorially by Euler's formula:
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e One obtains an n-edge graph drawn on the surface. The number of handles
(=genus) of the surface is given combinatorially by Euler's formula:

#vertices=n + 1 — 2¢g

e The number of unicellular maps of size n is (2n — 1)!!

e What if we fix the genus ? For example, on the
sphere (genus 0), unicellular maps = plane trees...
so there are Cat(n) of them.



Unicellular maps: counting]!

e Let ¢,(n) be the number of unicellular maps with n edges and genus g¢.

e Are these numbers interesting 7 Yes!
eo(n) = Cat(n)
€1 (n) — (n—|—1)1’n,2(n—1) Cat(n)

e2(n) = (n+1)n(n—1)(1%423)(71—3)(5”—2) Cat(n)

e These numbers are connection coefficients in the group algebra C|G,, ]
(all map numbers are - but this is not really the point of this talk).



Unicellular maps: some chosen formulas

[Lehman-Walsh 72]

(n+ 1 —29)20(y)+1
€g(n) = Z 255 T il (2 + 1) Cat(n)

no bijective proof!

[Harer-Zagier 86| nl-—2g . n Y
— —1\Nn ¢
(summation form) Z €g(n)y (2n — DI Z 2 i—1/\
g=>0 1>1
nice bijective proof [Bernardil0| building on [Lass 01, Goulden Nica 05]

g

[Harer-Zagier 86] (recurrence form)
(n+1)eg(n) =2(2n—1)eg(n — 1) + (n—1)(2n—1)(2n—3)e4—1(n — 2)
no bijective proof! (except g = 0 Rémy's bijection)

... and many others! [Jackson 88, Goulden-Jackson 92, Goupil-Schaeffer 98, Schaeffer-Vassilieva 08,
Morales-Vassilieva 09, Ch. 09, Bernardi-Ch. 10, ...].
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|Goupil-Schaeffer 98] for A+ 2n, A = 1™m22™2 .

. (l + 29 — 1)' 1 A, — 1\ no bijective
Gg(n,j\) = 521 HZ o Z H 27 + 1 proof!

vertex degrees iAoty =g i 274
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There is a 2" !-to-1-jection between unicellular maps of size n and C-decorated
trees with n edges. It preserves both the genus and the underlying graph.
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Our result, in short

e A C-permutation of a set S: - all cycles have odd length
- each cycle carries a sign in {+, —}
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e C-decorated tree = a rooted plane tree equipped with a C-permutation of its

vertices:
¥\ / the underlying graph is

tree of genus 2|\ | /1\‘ — vertices In each cycle
Into a big vertex

e Theorem [C., Féray, Fusy]| (our main result!)

There is a 2" !-to-1-jection between unicellular maps of size n and C-decorated

trees with n edges. It preserves both the genus and the underlying graph.
FROM THERE ALL KNOWN FORMULAS FOLLOW ON, BIJECTIVELY!
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A bijection from FPSAC’09 (1)

Let Sg(k) (n) = unicellular maps, genus g, n edges, k marked vertices.

e Theorem [Ch.09] There is an explicit 2g-to-1-jection that realizes:
2 £y(n) = £ (n) + £ (n) + - + £ (n)

e Sketch: Take (2k + 1) vertices in a map of genus g — k and glue them
together preserving the “one-face” condition:

genus 3

genus 1, 5 marked vertices

- the genus increases by k (Euler's formula)



A bijection from FPSAC’09 (2)

Let Eggk) (n) = unicellular maps, genus g, n edges, k marked vertices.

e Theorem [Ch.09] There is an explicit 2g-to-1-jection that realizes:
29 - E,(n) = €D (n) + €



A bijection from FPSAC’09 (2)

Let 85‘“) (n) = unicellular maps, genus g, n edges, k marked vertices.

e Theorem [Ch.09] There is an explicit 2g-to-1-jection that realizes:
2g - €4(n) = £ (n) + €2 (n) + -+ £V ()

e Corollary: €,(n) = P,(n) x Cat(n) where the polynomial P, is defined
recursively:

29 - P,(n) = (”“;)_29)139_1(71) + <n+55_2g)Pg_2(n) TR (27;_:11>P0(n)

...but now we can say more |
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29 Cy(n) = C\V () + €y (n) + - + €5 (n)

where Cék) (n) = C-permutations, size n, genus g, k marked cycles.
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Counting ('-decorated trees is straightforward

e Theorem [C., Féray, Fusy]
The number of unicellular maps of genus g with n edges satisfies:
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The number of unicellular maps of genus g with n edges satisfies:
2" tle (n) = Cy(n + 1)Cat(n)

where C;(n + 1) is the number of C-perm. of genus g on n + 1 elements.

e but C,(n + 1) = easy numbers!
~ Co(n+1) = 20+ @& & (01 cycles)
e (TL 4 1) . (n—l—l)n(n 1) gn—1 QQ Q Q Q (n — 1 cycles)

- Cy(n+1) = (41(n+1) _|_4O(’n—|—1))2n 3 (either O QQ

Z (n+1- 29)2@(’7)+1\ on-+1—2g
[, mi!(2¢ + 1)™ )
sum is over the cyle type

of the C-permutation: v/ Lehman-Walsh formula !
(27; + 1) = cycle lengths.

e In general: C’g(n+ 1) =
kg




Conclusion

e |t is a series of exercises to recover ALL the known formulas concerning
unicellular maps, bijectively with C-decorated trees. You just need to know
your classics (count permutations, count trees...). Take a look at the paper!

e For example the beautiful Harer-Zagier recurrence formula has been waiting
for a combinatorial interpretation since 1986...



Harer-Zagier recurrence formula (1986)

e Classic: for g = 0, Rémy'’s bijection [Rémy 85]
(n+1)Cat(n) = 2x(2n—1)Cat(n—1)
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Harer-Zagier recurrence formula (1986)

e Classic: for g = 0, Rémy'’s bijection [Rémy 85]

(n+1)Cat(n) = 2x(2n—1)Cat(n—1)
| %
rooted tree, n edges, case a: vertex is case b: vertex is not a leaf. Contract the
one marked vertex a leaf. Delete it. leftmost outgoing edge.

e Then for general g:

(mn+1)eg(n) = 22n—1)eg(n—1) + (n—1)(2n—1)(2n—3)e;—1(n — 2)
© ">
) ) \@ iY
C-decorated tree, n edges, case 1: vertex is a fixed point: case 2: vertex is in a (2k + 1)—cycle.
genus ¢, one marked vertex apply Rémy’s bijection Apply Rémy'’s bijection twice (two vertices

(one vertex disappears) disappear, cycle length decreases by 2)



Conclusion

e |t is a series of exercises to recover ALL the known formulas concerning
unicellular maps, bijectively with C-decorated trees. You just need to know
your classics (count permutations, count trees...). Take a look at the paper!

e The bijection also applies to Féray's expression of characters in terms of
unicellular maps (we obtain a new expression - is it useful?)

o Next ?

— unicellular constellations? ([Poulalhon-Schaeffer 02, Bernardi-Morales 11])
(problem: FPSAC'09 bijection does not work well)

(very partial results in the full version - take a look!)

— many-face maps? (KP hierarchy?)
(problem: seems much harder!)

— non-orientable surfaces?
(problem: FPSAC'09 bijection only exists in asymptotic version - [Bernardi-Ch., FPSAC'10])



