On the diameter of random planar graphs

Guillaume Chapuy, CNRS & LIAFA, Paris

joint work with

Éric Fusy, Paris, Omer Giménez, ex-Barcelona, Marc Noy, Barcelona.

Probability and Graphs, Eurandom, Eindhoven, 2014.

Planar graphs and maps

• Planar graph = (connected) graph on $V = \{1, 2, ..., n\}$ that can be drawn in the plane without edge crossing.

Planar graphs and maps

• Planar graph = (connected) graph on $V = \{1, 2, ..., n\}$ that can be drawn in the plane without edge crossing.

Planar map = planar graph + planar drawing of this graph (up to continuous deformation)

Planar graphs and maps

• Planar graph = (connected) graph on $V = \{1, 2, ..., n\}$ that can be drawn in the plane without edge crossing.

Planar map = planar graph + planar drawing of this graph (up to continuous deformation)

• Note: the number of embeddings depends on the graph...

Uniform random planar map \neq Uniform random planar graph!

Some known results for maps (stated approximately)

• Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13] In a uniform random map M_n of size n, distances are of order $n^{1/4}$. For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \rightarrow$ some real random variable

Some known results for maps (stated approximately)

• Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13] In a uniform random map M_n of size n, distances are of order $n^{1/4}$. For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \rightarrow$ some real random variable

Some known results for maps (stated approximately)

• Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13] In a uniform random map M_n of size n, distances are of order $n^{1/4}$. For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \rightarrow$ some real random variable

A lot of (very strong) things are known – very active field of research since 2004 [Bouttier, Di Francesco, Guitter, Le Gall, Miermont, Paulin, Addario-Berry, Albenque...]

Our main result: diameter of random planar GRAPHS

• Thm [C, Fusy, Giménez, Noy 2010+]

Let G_n be the uniform random planar graph with n vertices.

Then $Diam(G_n) = n^{1/4 + o(1)}$ w.h.p.

More precisely
$$\mathbb{P}\left(\operatorname{Diam}(G_n) \notin \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}}).$$

Our main result: diameter of random planar GRAPHS

• Thm [C, Fusy, Giménez, Noy 2010+]

Let G_n be the uniform random planar graph with n vertices.

Then $Diam(G_n) = n^{1/4 + o(1)}$ w.h.p.

More precisely
$$\mathbb{P}\left(\operatorname{Diam}(G_n) \notin \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}}).$$

- This is some kind of large deviation result. We also conjecture convergence in law: $\frac{\text{Diam}(G_n)}{n^{1/4}} \to \text{some real random variable}$
- Note: for random trees,

$$\frac{\operatorname{Diam}(T_n)}{n^{1/2}} \to \text{ some real random variable}$$
$$\mathbb{P}\left(\operatorname{Diam}(T_n) \notin \left[n^{1/2-\epsilon}, n^{1/2+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}})$$
[Flajolet et al '93]

(0) Connectivity in graphs

A graph is k-connected if one needs to remove at least kvertices to disconnect it.

- a 2-connected graph decomposes into 3-connected components

[Whitney]: A 3-connected planar graph has a UNIQUE embedding

[Tutte'66]: - a connected graph decomposes into 2-connected components

- a 2-connected graph decomposes into 3-connected components

[Whitney]: A 3-connected planar graph has a UNIQUE embedding

[Tutte 60s], [Bender,Gao,Wormald'02], [Giménez, Noy'05] followed this path carrying counting results along the scheme \rightarrow exact counting of planar graphs! Here we follow the same path and carry deviations statements for the diameter.

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
 - 1. Label vertices by their graph-distance to some root vertex
 - 2. Observe that there are onlytwo types of faces (since bipartite)
 - 3. Apply Schaeffer rules:

Fact: the blue map is a tree.

If one remembers the labels the construction is bijective!

- \bullet A well-labelled tree is a plane tree together with a mapping $l:V\to \mathbb{Z}_{>0}$ such that
 - if $v \sim v'$ then $|l(v) l(v')| \leq 1$
 - $-\min_v l(v) = 1$

- A well-labelled tree is a plane tree together with a mapping $l: V \to \mathbb{Z}_{>0}$ such that
 - if $v \sim v'$ then $|l(v) l(v')| \leq 1$
 - $\min_{v} l(v) = 1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and n+1 vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

- A well-labelled tree is a plane tree together with a mapping $l: V \to \mathbb{Z}_{>0}$ such that
 - if $v \sim v'$ then $|l(v) l(v')| \leq 1$
 - $\min_v l(v) = 1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and n+1 vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $Diam(M_n) = n^{1/4 + o(1)}$

indeed: - the height of a random tree is $= n^{1/2+o(1)}$ w.h.p

- A well-labelled tree is a plane tree together with a mapping $l: V \to \mathbb{Z}_{>0}$ such that
 - if $v \sim v'$ then $|l(v) l(v')| \leq 1$
 - $\min_v l(v) = 1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and n+1 vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $Diam(M_n) = n^{1/4 + o(1)}$

indeed: - the height of a random tree is $= n^{1/2+o(1)}$ w.h.p

- the labelling function behaves as a random walk along branches of the tree so $l(v) \approx \sqrt{n^{1/2+o(1)}} = n^{1/4+o(1)}$

- A well-labelled tree is a plane tree together with a mapping $l: V \to \mathbb{Z}_{>0}$ such that
 - if $v \sim v'$ then $|l(v) l(v')| \leq 1$
 - $\min_{v} l(v) = 1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and n+1 vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $Diam(M_n) = n^{1/4 + o(1)}$

indeed: - the height of a random tree is $= n^{1/2+o(1)}$ w.h.p

- the labelling function behaves as a random walk along branches of the tree so $l(v) \approx \sqrt{n^{1/2+o(1)}} = n^{1/4+o(1)}$

[Chassaing-Schaeffer'04]

One can write this in terms of generating functions.

One can write this in terms of generating functions.

The generating function of connected maps is explicitly known (e.g. using bijections)

 \rightarrow deduce the g.f. of 2-connected maps from the one of connected maps. [Tutte 60's].

One can write this in terms of generating functions.

The generating function of connected maps is explicitly known (e.g. using bijections)

 \rightarrow deduce the g.f. of 2-connected maps from the one of connected maps. [Tutte 60's].

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$Diam(B_{n/3}) \sim Diam(M_n) = n^{1/4 + o(1)}$$

 \searrow random 2-conn. map of size n/3

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$Diam(B_{n/3}) \sim Diam(M_n) = n^{1/4 + o(1)}$$

 $O(n^{2/3})$ 3 H_3

 \searrow random 2-conn. map of size n/3

indeed: $\operatorname{Diam}(X_n) \leq \operatorname{Diam}(M_n) \leq \operatorname{Diam}(X_n) + 2 \max_i \operatorname{Diam}(H_i)$

 $+ O(n^{2/3})$

 $\leq \left(n^{2/3}\right)^{1/4+\epsilon}$

 $O(n^{2/3})$

3

 H_3

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$Diam(B_{n/3}) \sim Diam(M_n) = n^{1/4 + o(1)}$$

 \sim random 2-conn. map of size n/3

indeed: $\operatorname{Diam}(X_n) \leq \operatorname{Diam}(M_n) \leq \operatorname{Diam}(X_n) + 2 \max_i \operatorname{Diam}(H_i)$

 $+ O(n^{2/3})$

 $\leq \left(n^{2/3}\right)^{1/4+\epsilon}$

 $O(n^{2/3})$

3

 H_3

Thm

The largest 2-connected component has size $\frac{n}{3} + n^{2/3}A$ where A converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$Diam(B_{n/3}) \sim Diam(M_n) = n^{1/4 + o(1)}$$

 \sim random 2-conn. map of size n/3

indeed: $\operatorname{Diam}(X_n) \leq \operatorname{Diam}(M_n) \leq \operatorname{Diam}(X_n) + 2 \max_i \operatorname{Diam}(H_i)$

and X_n is essentially a random 2-conn. map of size n/3.

Again one can write everything in terms of generating functions.

 \rightarrow deduce the g.f. of 3-conn. maps from the one of 2-connected maps. [Tutte 60's].

 \rightarrow deduce the g.f. of 2-conn. graphs from the one of 3-connected graphs [Bender, Gao, Wormald'02].

T = 3-connected component

(R) = series composition

M = parallel composition

Same idea:

- there exists a T-component Y_n of linear size w.h.p.

Prop A random 2-connected planar graph with n edges has diameter $n^{1/4+o(1)}$ with high probability.

Same idea:

- there exists a T-component Y_n of linear size w.h.p.
- the diameter of the RMT-tree is $n^{o(1)}$ w.h.p.
- The extra-length due the edge substitution is also $n^{o(1)}$

Conclusion (I)

Thm [C, Fusy, Giménez, Noy 2010+]
Let G_n be the uniform random planar graph with n vertices.

Then $Diam(G_n) = n^{1/4 + o(1)}$ w.h.p.

More precisely $\mathbb{P}\left(\operatorname{Diam}(G_n) \notin \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}}).$

- The proof relies both on exact generating functions and magical bijections: we couldn't do anything without this (or maybe something much weaker like $O(\sqrt{n})$?)
- The general picture is quite clear but the analysis is a bit tedious... (need to work with bivariate generating functions and prove estimates with enough uniformity)
- No way to obtain the convergence of $\frac{\text{Diam}(G_n)}{n^{1/4}}$ even for planar maps this is very difficult!
- Same result for the uniform random graph with n vertices and $\lfloor \mu n \rfloor$ edges for $1 < \mu < 3.$

Conclusion (II)

 \bullet We generalized the Giménez-Noy enumeration result to graphs embeddable on a surface of genus $g \geq 0$

Thm [C, Fusy, Giménez, Mohar, Noy 2011] [Bender-Gao 2011] #{*n*-vertex genus *g* graphs} $\sim c_g \cdot n! \cdot \gamma^n \cdot n^{\frac{5}{2}g-7/2} \qquad \gamma \approx 27....$

Same kind of proof but Whitney's theorem (uniqueness of embedding) now requires that there is no short non-contractible cycle.

(but we could prove that)

The result on the diameter should be the same but this is not (and won't be) written.

The fact that non-contractible cycles are small imply the following:

Thm [C, Fusy, Giménez, Mohar, Noy 2011] Fix $g \ge 1$. The random graph of genus g and size n has chromatic number in $\{4, 5\}$ and list chromatic number 5 w.h.p.

Thank you!