On the diameter of random planar graphs

Guillaume Chapuy, CNRS \& LIAFA, Paris
joint work with
Éric Fusy, Paris, Omer Giménez, ex-Barcelona, Marc Noy, Barcelona.

Planar graphs and maps

- Planar graph $=($ connected $)$ graph on $V=\{1,2, \ldots, n\}$ that can be drawn in the plane without edge crossing.

Planar graphs and maps

- Planar graph $=$ (connected) graph on $V=\{1,2, \ldots, n\}$ that can be drawn in the plane without edge crossing.

- Planar map $=$ planar graph + planar drawing of this graph (up to continuous deformation)

same graph different maps

Planar graphs and maps

- Planar graph $=($ connected $)$ graph on $V=\{1,2, \ldots, n\}$ that can be drawn in the plane without edge crossing.

- Planar map $=$ planar graph + planar drawing of this graph (up to continuous deformation)

same graph different maps
- Note: the number of embeddings depends on the graph...

Uniform random planar map \neq Uniform random planar graph!

Some known results for maps (stated approximately)

- Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13]

In a uniform random map M_{n} of size n, distances are of order $n^{1 / 4}$.
For example one has $\frac{\operatorname{Diam}\left(M_{n}\right)}{n^{1 / 4}} \rightarrow$ some real random variable

Some known results for maps (stated approximately)

- Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13]

In a uniform random map M_{n} of size n, distances are of order $n^{1 / 4}$.
For example one has $\frac{\operatorname{Diam}\left(M_{n}\right)}{n^{1 / 4}} \rightarrow$ some real random variable

Some known results for maps (stated approximately)

- Thm [Chassaing-Schaeffer '04], [Marckert, Miermont '06], [Ambjörn-Budd '13]

In a uniform random map M_{n} of size n, distances are of order $n^{1 / 4}$.
For example one has $\frac{\operatorname{Diam}\left(M_{n}\right)}{n^{1 / 4}} \rightarrow$ some real random variable

A lot of (very strong) things are known - very active field of research since 2004 [Bouttier, Di Francesco, Guitter, Le Gall, Miermont, Paulin, Addario-Berry, Albenque...]

Our main result: diameter of random planar GRAPHS

- Thm [C, Fusy, Giménez, Noy 2010+]

Let G_{n} be the uniform random planar graph with n vertices.

$$
\text { Then } \operatorname{Diam}\left(G_{n}\right)=n^{1 / 4+o(1)} \text { w.h.p. }
$$

More precisely $\mathbb{P}\left(\operatorname{Diam}\left(G_{n}\right) \notin\left[n^{1 / 4-\epsilon}, n^{1 / 4+\epsilon}\right]\right)=O\left(e^{-n^{\Theta(\epsilon)}}\right)$.

Our main result: diameter of random planar GRAPHS

- Thm [C, Fusy, Giménez, Noy 2010+]

Let G_{n} be the uniform random planar graph with n vertices.

$$
\text { Then } \operatorname{Diam}\left(G_{n}\right)=n^{1 / 4+o(1)} \text { w.h.p. }
$$

More precisely $\mathbb{P}\left(\operatorname{Diam}\left(G_{n}\right) \notin\left[n^{1 / 4-\epsilon}, n^{1 / 4+\epsilon}\right]\right)=O\left(e^{-n^{\ominus(\epsilon)}}\right)$.

- This is some kind of large deviation result. We also conjecture convergence in law:

$$
\frac{\operatorname{Diam}\left(G_{n}\right)}{n^{1 / 4}} \rightarrow \text { some real random variable }
$$

- Note: for random trees,

$$
\begin{aligned}
& \frac{\operatorname{Diam}\left(T_{n}\right)}{n^{1 / 2}} \rightarrow \text { some real random variable } \\
& \mathbb{P}\left(\operatorname{Diam}\left(T_{n}\right) \notin\left[n^{1 / 2-\epsilon}, n^{1 / 2+\epsilon}\right]\right)=O\left(e^{-n^{\Theta(\epsilon)}}\right)
\end{aligned}
$$

[Flajolet et al '93]

(0) Connectivity in graphs

General

2-Connected

3-Connected

A graph is k-connected if one needs to remove at least k vertices to disconnect it.

(0) Connectivity in graphs

General

A graph is k-connected if one needs to remove at least k vertices to disconnect it.

Connected (1-connected)

2-Connected

3-Connected

[Tutte'66]: - a connected graph decomposes into 2-connected components

- a 2-connected graph decomposes into 3-connected components
[Whitney]: A 3-connected planar graph has a UNIQUE embedding

(0) Connectivity in graphs

General

Connected (1-connected)

2-Connected

3-Connected

A graph is k-connected if one needs to remove at least k vertices to disconnect it.

[Tutte'66]: - a connected graph decomposes into 2-connected components

- a 2-connected graph decomposes into 3-connected components
[Whitney]: A 3-connected planar graph has a UNIQUE embedding
[Tutte 60s], [Bender,Gao,Wormald'02], [Giménez, Noy’05] followed this path carrying counting results along the scheme \rightarrow exact counting of planar graphs!
Here we follow the same path and carry deviations statements for the diameter.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

Fact: the blue map is a tree.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

Fact: the blue map is a tree.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

Fact: the blue map is a tree.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

Fact: the blue map is a tree.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

Fact: the blue map is a tree.

If one remembers the labels the construction is bijective!

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- A well-labelled tree is a plane tree together with a mapping $l: V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v^{\prime}$ then $\left|l(v)-l\left(v^{\prime}\right)\right| \leq 1$
$-\min _{v} l(v)=1$

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- A well-labelled tree is a plane tree together with a mapping $l: V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v^{\prime}$ then $\left|l(v)-l\left(v^{\prime}\right)\right| \leq 1$
$-\min _{v} l(v)=1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and $n+1$ vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the
 map.

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- A well-labelled tree is a plane tree together with a mapping $l: V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v^{\prime}$ then $\left|l(v)-l\left(v^{\prime}\right)\right| \leq 1$
$-\min _{v} l(v)=1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and $n+1$ vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $\operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}$
indeed: - the height of a random tree is $=n^{1 / 2+o(1)}$ w.h.p

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- A well-labelled tree is a plane tree together with a mapping $l: V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v^{\prime}$ then $\left|l(v)-l\left(v^{\prime}\right)\right| \leq 1$
$-\min _{v} l(v)=1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and $n+1$ vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $\operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}$
indeed: - the height of a random tree is $=n^{1 / 2+o(1)}$ w.h.p

- the labelling function behaves as a random walk along branches of the tree so $l(v) \approx \sqrt{n^{1 / 2+o(1)}}=n^{1 / 4+o(1)}$

(1) Maps: the Cori-Vauquelin-Schaeffer bijection (1981-1999-2008+)

- A well-labelled tree is a plane tree together with a mapping $l: V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v^{\prime}$ then $\left|l(v)-l\left(v^{\prime}\right)\right| \leq 1$
$-\min _{v} l(v)=1$
- Thm [Cori-Vauquelin'81;Schaeffer'99]

There is a bijection between quadrangular planar maps with a pointed vertex and $n+1$ vertices and well-labelled trees with n vertices. The labels in the tree correspond to distances to the root in the map.

Corollary: $\operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}$
indeed: - the height of a random tree is $=n^{1 / 2+o(1)}$ w.h.p

- the labelling function behaves as a random walk along branches of the tree so $l(v) \approx \sqrt{n^{1 / 2+o(1)}}=n^{1 / 4+o(1)}$
[Chassaing-Schaeffer'04]

(2) Decomposition into 2-connected components

(2) Decomposition into 2-connected components

One can write this in terms of generating functions.

(2) Decomposition into 2-connected components

One can write this in terms of generating functions.
The generating function of connected maps is explicitly known (e.g. using bijections)
\rightarrow deduce the g.f. of 2-connected maps from the one of connected maps.
[Tutte 60's].

(2) Decomposition into 2-connected components

One can write this in terms of generating functions.
The generating function of connected maps is explicitly known (e.g. using bijections)
\rightarrow deduce the g.f. of 2-connected maps from the one of connected maps.
[Tutte 60's].

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law. The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01]

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law. The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01] tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law. The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01] tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$\operatorname{Diam}\left(B_{n / 3}\right) \sim \operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}$

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law. The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01] tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$
\operatorname{Diam}\left(B_{n / 3}\right) \sim \operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}
$$

random 2-conn. map of size $n / 3$

indeed: $\operatorname{Diam}\left(X_{n}\right) \leq \operatorname{Diam}\left(M_{n}\right) \leq \operatorname{Diam}\left(X_{n}\right)+2 \max _{i} \operatorname{Diam}\left(H_{i}\right)$

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law. The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01] tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$
\operatorname{Diam}\left(B_{n / 3}\right) \sim \operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}
$$

random 2-conn. map of size $n / 3$

indeed: $\operatorname{Diam}\left(X_{n}\right) \leq \operatorname{Diam}\left(M_{n}\right) \leq \operatorname{Diam}\left(X_{n}\right)+2 \operatorname{mam}\left(H_{i}\right)$

$$
\leq\left(n^{2 / 3}\right)^{1 / 4+\epsilon} \text { w.h.p. }
$$

(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size $\frac{n}{3}+n^{2 / 3} A$ where A converges to an explicit law.
The second-largest component has size $O\left(n^{2 / 3}\right)$.
[Gao, Wormald'99] [Banderier, Flajolet, Schaeffer, Soria '01] tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

"Corollary":

$$
\operatorname{Diam}\left(B_{n / 3}\right) \sim \operatorname{Diam}\left(M_{n}\right)=n^{1 / 4+o(1)}
$$

random 2-conn. map of size $n / 3$

indeed: $\operatorname{Diam}\left(X_{n}\right) \leq \operatorname{Diam}\left(M_{n}\right) \leq \operatorname{Diam}\left(X_{n}\right)+2 \operatorname{mam}\left(H_{i}\right)$ and X_{n} is essentially a random 2-conn. map of size $n / 3$.

(3) Decomposition into 3-connected components

2-connected

Again one can write everything in terms of generating functions.
\rightarrow deduce the g.f. of 3 -conn. maps from the one of 2 -connected maps. [Tutte 60's].
\rightarrow deduce the g.f. of 2-conn. graphs from the one
(M) = parallel composition
T) 3-connected component
(R) = series composition of 3-connected graphs [Bender, Gao, Wormald'02].

(3) Decomposition into 3-connected components

Prop A random 2-connected planar graph with n edges has diameter $n^{1 / 4+o(1)}$ with high probability.

a 2-conn. graph B_{n}

(3) Decomposition into 3-connected components

Prop A random 2-connected planar graph with n edges has diameter $n^{1 / 4+o(1)}$ with high probability.

a 2 -conn. graph B_{n}

Same idea:

- there exists a T-component Y_{n} of linear size w.h.p.

(3) Decomposition into 3-connected components

Prop A random 2-connected planar graph with n edges has diameter $n^{1 / 4+o(1)}$ with high probability.

a 2 -conn. graph B_{n}

Same idea:

- there exists a T-component Y_{n} of linear size w.h.p.
- the diameter of the RMT-tree is $n^{o(1)}$ w.h.p.
- The extra-length due the edge substitution is also $n^{o(1)}$

Conclusion (I)

- Thm [C, Fusy, Giménez, Noy 2010+]

Let G_{n} be the uniform random planar graph with n vertices.
Then $\operatorname{Diam}\left(G_{n}\right)=n^{1 / 4+o(1)}$ w.h.p.
More precisely $\mathbb{P}\left(\operatorname{Diam}\left(G_{n}\right) \notin\left[n^{1 / 4-\epsilon}, n^{1 / 4+\epsilon}\right]\right)=O\left(e^{-n^{\Theta(\epsilon)}}\right)$.

- The proof relies both on exact generating functions and magical bijections: we couldn't do anything without this (or maybe something much weaker like $O(\sqrt{n})$?)
- The general picture is quite clear but the analysis is a bit tedious... (need to work with bivariate generating functions and prove estimates with enough uniformity)
- No way to obtain the convergence of $\frac{\operatorname{Diam}\left(G_{n}\right)}{n^{1 / 4}}$ - even for planar maps this is very difficult!
- Same result for the uniform random graph with n vertices and $\lfloor\mu n\rfloor$ edges for $1<\mu<3$.

Conclusion (II)

- We generalized the Giménez-Noy enumeration result to graphs embeddable on a surface of genus $g \geq 0$

Thm [C, Fusy, Giménez, Mohar, Noy 2011] [Bender-Gao 2011] $\#\{n$-vertex genus g graphs $\} \sim c_{g} \cdot n!\cdot \gamma^{n} \cdot n^{\frac{5}{2} g-7 / 2} \quad \gamma \approx 27 \ldots$

Same kind of proof but Whitney's theorem (uniqueness of embedding) now requires that there is no short non-contractible cycle. (but we could prove that)
The result on the diameter should be the same but this is not (and won't be) written.

The fact that non-contractible cycles are small imply the following:
Thm [C, Fusy, Giménez, Mohar, Noy 2011]
Fix $g \geq 1$. The random graph of genus g and size n has chromatic number in $\{4,5\}$ and list chromatic number 5 w.h.p.

Thank you!

