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Planar graph = (connected) graph on V = {1, 2, . . . , n} that can be drawn in the
plane without edge crossing.

•

Planar map = planar graph + planar drawing of this graph (up to continuous
deformation)

•

= 6=

• Note: the number of embeddings depends on the graph...

same graph
different maps

Uniform random planar map 6= Uniform random planar graph!



Some known results for maps (stated approximately)
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Some known results for maps (stated approximately)

Thm [Chassaing-Schaeffer ’04], [Marckert, Miermont ’06], [Ambjörn-Budd ’13]•
In a uniform random map Mn of size n, distances are of order n1/4.

For example one has
Diam(Mn)

n1/4
→ some real random variable

A lot of (very strong) things are known – very active field of research since
2004 [Bouttier, Di Francesco, Guitter, Le Gall, Miermont, Paulin,
Addario-Berry, Albenque...]

n1/4 c©J.-F. Marckert



Our main result: diameter of random planar GRAPHS

•Thm [C, Fusy, Giménez, Noy 2010+]

Let Gn be the uniform random planar graph with n vertices.

Then Diam(Gn) = n1/4+o(1) w.h.p.

More precisely P
(
Diam(Gn) 6∈

[
n1/4−ε, n1/4+ε

] )
= O(e−n

Θ(ε)

).



Our main result: diameter of random planar GRAPHS

•Thm [C, Fusy, Giménez, Noy 2010+]

Let Gn be the uniform random planar graph with n vertices.

Then Diam(Gn) = n1/4+o(1) w.h.p.

More precisely P
(
Diam(Gn) 6∈

[
n1/4−ε, n1/4+ε

] )
= O(e−n

Θ(ε)

).

This is some kind of large deviation result. We also conjecture convergence in law:•
Diam(Gn)

n1/4
→ some real random variable

Note: for random trees,•
Diam(Tn)

n1/2
→ some real random variable

P
(
Diam(Tn) 6∈

[
n1/2−ε, n1/2+ε

] )
= O(e−n

Θ(ε)

)

[Flajolet et al ’93]
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3-Connected

[Tutte’66]: - a connected graph decomposes into 2-connected components

- a 2-connected graph decomposes into 3-connected components

[Whitney]: A 3-connected planar graph has a UNIQUE embedding

A graph is k-connected if one
needs to remove at least k
vertices to disconnect it.

(1-connected) maps

2-conn.
maps

3-conn.
maps

graphs

2-conn.
graphs

3-conn.
graphs

same thing

[Tutte 60s], [Bender,Gao,Wormald’02], [Giménez, Noy’05] followed this path carrying
counting results along the scheme → exact counting of planar graphs!
Here we follow the same path and carry deviations statements for the diameter.
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To simplify the exposition we consider a quadrangular planar map (faces have degree 4)
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graph-distance to some root vertex

2. Observe that there are only
two types of faces (since bipartite)
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If one remembers the labels the construction is bijective!
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A well-labelled tree is a plane tree together with
a mapping l : V → Z>0 such that
•

- if v ∼ v′ then |l(v)− l(v′)| ≤ 1

- minv l(v) = 1
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Thm

[Banderier, Flajolet, Schaeffer, Soria ’01][Gao, Wormald’99]

The largest 2-connected component has size
n

3
+n2/3A where A converges to an explicit law.

The second-largest component has size O(n2/3).

tools to prove this: (very) fine singularity
analysis of generating functions. In particular exact
expressions for counting functions are mandatory!

“Corollary”:

Diam(Bn/3) ∼ Diam(Mn) = n1/4+o(1)

indeed: Diam(Xn) ≤ Diam(Mn) ≤ Diam(Xn) + 2maxiDiam(Hi)

n

3
+O(n2/3)

O(n2/3)

Xn

H1

H2H3

≤
(
n2/3

)1/4+ε
w.h.p.

and Xn is essentially a random 2-conn. map of size n/3.

random 2-conn. map of size n/3
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(3) Decomposition into 3-connected components

TT

T

M

R

R

R

T = 3-connected component

R = series composition

M = parallel composition

Again one can write everything in terms
of generating functions.

→ deduce the g.f. of 2-conn. graphs from the one
of 3-connected graphs [Bender, Gao, Wormald’02].

→ deduce the g.f. of 3-conn. maps from the
one of 2-connected maps. [Tutte 60’s].

2-connected
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(3) Decomposition into 3-connected components

Prop A random 2-connected planar graph with n edges
has diameter n1/4+o(1) with high probability.

TT

T

M

R

R

R

- there exists a T -component Yn of linear size w.h.p.

a 2-conn. graph Bn

RMT tree

Same idea:

- The extra-length due the edge substitution is also no(1)
- the diameter of the RMT-tree is no(1) w.h.p.



Conclusion (I)

•Thm [C, Fusy, Giménez, Noy 2010+]

Let Gn be the uniform random planar graph with n vertices.

Then Diam(Gn) = n1/4+o(1) w.h.p.

More precisely P
(
Diam(Gn) 6∈

[
n1/4−ε, n1/4+ε

] )
= O(e−n

Θ(ε)

).

•The proof relies both on exact generating functions and magical bijections: we
couldn’t do anything without this (or maybe something much weaker like O(

√
n) ?)

•The general picture is quite clear but the analysis is a bit tedious... (need to work
with bivariate generating functions and prove estimates with enough uniformity)

•No way to obtain the convergence of Diam(Gn)
n1/4 - even for planar maps this is very

difficult!

• Same result for the uniform random graph with n vertices and bµnc edges for
1 < µ < 3.



Conclusion (II)

•We generalized the Giménez-Noy enumeration result to graphs embeddable on a
surface of genus g ≥ 0

#{n-vertex genus g graphs} ∼ cg · n! · γn · n
5
2 g−7/2 γ ≈ 27. . . .

Thm [C, Fusy, Giménez, Mohar, Noy 2011]

maps

2-conn.
maps

3-conn.
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graphs

2-conn.
graphs

3-conn.
graphs

Same kind of proof but Whitney’s
theorem (uniqueness of embedding)
now requires that there is no short
non-contractible cycle.
(but we could prove that)

The result on the diameter should
be the same but this is not (and
won’t be) written.

The fact that non-contractible cycles are small imply the following:

Thm [C, Fusy, Giménez, Mohar, Noy 2011]

Fix g ≥ 1. The random graph of genus g and size n has chromatic
number in {4, 5} and list chromatic number 5 w.h.p.

[Bender-Gao 2011]



Thank you!


