Cartes non-orientables, polynômes de Jack, et b-positivité

Guillaume Chapuy
CNRS - IRIF - Université de Paris - ERC CombiTop

joint work with
Maciej Dołęga

Polish Academy of Sciences, Kraków
https://arxiv.org/abs/2004.07824

Cartes non-orientables, polynômes de Jack, et b-positivité

Guillaume Chapuy
CNRS - IRIF - Université de Paris - ERC CombiTop

joint work with
Maciej Dołęga

Polish Academy of Sciences, Kraków

transparents en anglais
https://arxiv.org/abs/2004.07824

Symmetric functions

Symmetric functions and their bases.

- Let Λ_{n} be the vector space of formal power series in x_{1}, x_{2}, \ldots which are symmetric, and homogeneous of degree n.

Examples: $1 \in \Lambda_{0}, \sum_{i} x_{i} \in \Lambda_{1}, \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}, \sum_{i} x_{i}^{2}-2 \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}$

Symmetric functions and their bases.

- Let Λ_{n} be the vector space of formal power series in x_{1}, x_{2}, \ldots which are symmetric, and homogeneous of degree n.

Examples: $1 \in \Lambda_{0}, \sum_{i} x_{i} \in \Lambda_{1}, \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}, \sum_{i} x_{i}^{2}-2 \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}$

- Λ_{n} has a basis which is naturally indexed by partitions of n

$m_{\varnothing}=1$	$m_{[1,1]}=\sum_{i<j} x_{i} x_{j}$	$m_{[1,1,1]}=\sum_{i<j<k} x_{i} x_{j} x_{k}$
$\square \quad m_{[1]}=\sum_{i} x_{i}$	$\square m_{[2]}=\sum_{i} x_{i}^{2}$	$m_{[2,1]}=\sum_{i, j} x_{i}^{2} x_{j}$
(m_{λ} : monomial symmetric functions) (group together all monomials "of re-ordered exponents λ ")		$\square m_{[3]}=\sum_{i} x_{i}^{3}$

Symmetric functions and their bases.

- Let Λ_{n} be the vector space of formal power series in x_{1}, x_{2}, \ldots which are symmetric, and homogeneous of degree n.

Examples: $1 \in \Lambda_{0}, \sum_{i} x_{i} \in \Lambda_{1}, \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}, \sum_{i} x_{i}^{2}-2 \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}$

- Λ_{n} has a basis which is naturally indexed by partitions of n

- Λ_{n} has many other nice bases, all indexed by partitions.

Symmetric functions and their bases.

- Let Λ_{n} be the vector space of formal power series in x_{1}, x_{2}, \ldots which are symmetric, and homogeneous of degree n.

Examples: $1 \in \Lambda_{0}, \sum_{i} x_{i} \in \Lambda_{1}, \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}, \sum_{i} x_{i}^{2}-2 \sum_{i, j} x_{i} x_{j} \in \Lambda_{2}$

- Λ_{n} has a basis which is naturally indexed by partitions of n

$m_{\varnothing}=1$	$m_{[1,1]}=\sum_{i<j} x_{i} x_{j}$	$m_{[1,1,1]}=\sum_{i<j<k} x_{i} x_{j} x_{k}$
$\square \quad m_{[1]}=\sum_{i} x_{i}$	$\square m_{[2]}=\sum_{i} x_{i}^{2}$	$m_{[2,1]}=\sum_{i, j} x_{i}^{2} x_{j}$
(m_{λ} : monomial symmetric functions) (group together all monomials "of re-ordered exponents λ ")		$\square m_{[3]}=\sum_{i} x_{i}^{3}$

- Λ_{n} has many other nice bases, all indexed by partitions.

$$
\begin{aligned}
p_{k}(\mathbf{x})= & \sum_{i} x_{i}^{k} \quad \text { and } p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{\ell(\lambda)}} \\
& \left(p_{\lambda}: \text { powersums }\right)
\end{aligned}
$$

Example: $p_{[2,2,1]}=p_{2}^{2} p_{1}=\sum_{i, j, k} x_{i}^{2} x_{j}^{2} x_{k}$

$$
=\ldots
$$

Schur functions (I)

- If λ is a partition, a semistandard Young tableau of shape λ (SSYT) is a filling of λ which is \leq on rows and V on columns.

$$
\begin{aligned}
& s_{[3,1]}=\sum_{\substack{i \leq j \leq k \\
m>i}} x_{i} x_{j} x_{k} x_{m} \\
&
\end{aligned}
$$

The Schur function s_{λ} is the generating function of SSYT's of shape λ.

$$
s_{\lambda}(x)=\sum_{T: S S Y T(\lambda)} x^{T}
$$

Thm: The s_{λ} for $\lambda \vdash n$ are a basis of Λ_{n}.
(yes, in particular they are symmetric functions)

Schur functions (bis)

- Cool fact: Viewed as polynomials in the powersums $\mathbf{p}=\left(p_{k}\right)_{k \geq 1}$, Schur functions generate characters of the symmetric group

$$
\begin{array}{r}
s_{\lambda}=: s_{\lambda}(\mathbf{p})=\frac{1}{n!} \sum_{\mu \vdash n}\left|C_{\mu}\right| \chi^{\lambda}(\mu) p_{\mu} \\
\quad(\text { here } n=|\lambda|)
\end{array}
$$

$$
\chi^{\lambda}(\mu) \text { : trace of a permutation }
$$

$$
\text { of type } \mu \text { acting on the }
$$

- We use powersums to equip Λ_{n} with the Hall scalar product:

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda, \mu} \quad z_{\lambda}=\frac{n!}{\left|\mathcal{C}_{\lambda}\right|}
$$

$$
p_{k}=\sum_{i} x_{i}^{k}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots \lambda_{\lambda_{\ell(\lambda)}}
$$

Schur functions (bis)

- Cool fact: Viewed as polynomials in the powersums $\mathbf{p}=\left(p_{k}\right)_{k \geq 1}$, Schur functions generate characters of the symmetric group

$$
\begin{array}{r}
s_{\lambda}=: s_{\lambda}(\mathbf{p})=\frac{1}{n!} \sum_{\mu \vdash n}\left|C_{\mu}\right| \chi^{\lambda}(\mu) p_{\mu} \\
(\text { here } n=|\lambda|)
\end{array}
$$

- We use powersums to equip Λ_{n} with the Hall scalar product:

$$
\begin{aligned}
& \left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \delta_{\lambda, \mu} \quad z_{\lambda}=\frac{n!}{\left|\mathcal{C}_{\lambda}\right|} \\
& p_{k}=\sum_{i} x_{i}^{k}, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \ldots \lambda_{\lambda_{\ell(\lambda)}}
\end{aligned}
$$

- A characterisation of Schur functions:

$$
\frac{\left\{\begin{array}{l}
\text { orthonormal for Hall: }\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda, \mu} \\
\text { triangular w.r.t. to monomials: } s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} a_{\lambda, \mu} m_{\mu}
\end{array}\right.}{\left.\qquad \text { [recall dominance order: } \mu \leq \lambda: \mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i} \forall i\right]}
$$

Jack polynomials

- Piotr Śniady: "Jack polynomials are Schur functions under steroids."
- More precisely: we deform the Hall scalar product and keep triangularity

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{\alpha}=z_{\lambda} \alpha^{\ell(\lambda)} \delta_{\lambda, \mu}
$$

- Jack polynomials:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { orthogonal for } \mathrm{Hall}_{\alpha}: \quad\left\langle J_{\lambda}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}=j_{\lambda}^{(\alpha)} \delta_{\lambda, \mu} \\
\text { triangular w.r.t. to monomials: } J_{\lambda}^{(\alpha)}=g_{\lambda}^{(\alpha)} m_{\lambda}+\sum_{\mu<\lambda} a_{\lambda, \mu}^{\prime} m_{\mu}
\end{array}\right. \\
& \text { (for us: normalization coefficients } j_{\lambda}^{(\alpha)} \text { and } g_{\lambda}^{(\alpha)} \text { chosen s.t. }\left[p_{1}^{n}\right] J_{\lambda}^{(\alpha)}=1 \text {.) }
\end{aligned}
$$

Jack polynomials

- Piotr Śniady: "Jack polynomials are Schur functions under steroids."
- More precisely: we deform the Hall scalar product and keep triangularity

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{\alpha}=z_{\lambda} \alpha^{\ell(\lambda)} \delta_{\lambda, \mu}
$$

- Jack polynomials:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { orthogonal for Hall }{ }_{\alpha}: \quad\left\langle J_{\lambda}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}=j_{\lambda}^{(\alpha)} \delta_{\lambda, \mu} \\
\text { triangular w.r.t. to monomials: } J_{\lambda}^{(\alpha)}=g_{\lambda}^{(\alpha)} m_{\lambda}+\sum_{\mu<\lambda} a_{\lambda, \mu}^{\prime} m_{\mu}
\end{array}\right. \\
& \text { (for us: normalization coefficients } \left.j_{\lambda}^{(\alpha)} \text { and } g_{\lambda}^{(\alpha)} \text { chosen s.t. }\left[p_{1}^{n}\right] J_{\lambda}^{(\alpha)}=1 .\right)
\end{aligned}
$$

- We choose to view Jacks as polynomials in the powersums

$$
\text { for example } J_{3,1}^{(\alpha)}(\mathbf{p})=p_{1}^{4}+(3 \alpha-1) p_{2} p_{1}^{2}+\left(2 \alpha^{2}-2 \alpha\right) p_{3} p_{1}-2 \alpha^{2} p_{4}-\alpha p_{2}^{2}
$$

Jack polynomials

- Piotr Śniady: "Jack polynomials are Schur functions under steroids."
- More precisely: we deform the Hall scalar product and keep triangularity

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{\alpha}=z_{\lambda} \alpha^{\ell(\lambda)} \delta_{\lambda, \mu}
$$

- Jack polynomials:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { orthogonal for Hall }{ }_{\alpha}: \quad\left\langle J_{\lambda}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}=j_{\lambda}^{(\alpha)} \delta_{\lambda, \mu} \\
\text { triangular w.r.t. to monomials: } J_{\lambda}^{(\alpha)}=g_{\lambda}^{(\alpha)} m_{\lambda}+\sum_{\mu<\lambda} a_{\lambda, \mu}^{\prime} m_{\mu}
\end{array}\right. \\
& \text { (for us: normalization coefficients } j_{\lambda}^{(\alpha)} \text { and } g_{\lambda}^{(\alpha)} \text { chosen s.t. }\left[p_{1}^{n}\right] J_{\lambda}^{(\alpha)}=1 \text {.) }
\end{aligned}
$$

- We choose to view Jacks as polynomials in the powersums

$$
\text { for example } J_{3,1}^{(\alpha)}(\mathbf{p})=p_{1}^{4}+(3 \alpha-1) p_{2} p_{1}^{2}+\left(2 \alpha^{2}-2 \alpha\right) p_{3} p_{1}-2 \alpha^{2} p_{4}-\alpha p_{2}^{2}
$$

- For $\alpha=1$, Jacks are (normalized) Schur: $J_{\lambda}^{(1)}=H_{\Delta} s_{\lambda}=: \tilde{s}_{\lambda}$

For $\alpha=2$, Jacks are zonal polynomials: $J_{\lambda}^{(2)}$ is related to representation theory of the Gelfand pair $\left(\mathfrak{S}_{2 n}, B_{n}\right)$ "in the same way as" \tilde{s}_{λ} is to representation theory of \mathfrak{S}_{n}.

Maps and factorizations

Maps on orientable surfaces

- Bipartite map: bipartite (\circ / \bullet) graph embedded on an oriented surface with edges labelled $\{1,2, \ldots, n\}$, with simply connected faces, considered up to homeomorphism.

cycles of σ 。

cycles of σ 。

$$
\begin{aligned}
& \sigma_{\circ}=(1,4)(2,3)(5,6,7) \\
& \sigma_{\bullet}=(1,6,7,3,4)(2,5) \\
& \sigma_{\diamond}^{-1}=\sigma_{\bullet} \sigma_{\circ}=(1)(2,4,6,3,5,7)
\end{aligned}
$$

\rightarrow the same as a triple of permutations $\left(\sigma_{\circ}, \sigma_{\bullet}, \sigma_{\diamond}\right)$ such that $\sigma_{\circ} \sigma_{\bullet} \sigma_{\diamond}=i d$.
cf. [Cori-Machí 80s]

Maps on orientable surfaces

－Bipartite map：bipartite（ \circ / \bullet ）graph embedded on an oriented surface with edges labelled $\{1,2, \ldots, n\}$ ，with simply connected faces，considered up to homeomorphism．

cycles of σ 。

cycles of σ 。

cycles of $\sigma_{\bullet} \sigma_{\text {。 }}$

$$
\begin{aligned}
& \sigma_{\circ}=(1,4)(2,3)(5,6,7) \\
& \sigma_{\bullet}=(1,6,7,3,4)(2,5) \\
& \sigma_{\diamond}^{-1}=\sigma_{\bullet} \sigma_{\circ}=(1)(2,4,6,3,5,7)
\end{aligned}
$$

\rightarrow the same as a triple of permutations $\left(\sigma_{\circ}, \sigma_{\bullet}, \sigma_{\diamond}\right)$ such that $\sigma_{\circ} \sigma_{\bullet} \sigma_{\diamond}=i d$ ．
cf．［Cori－Machí 80s］
－Cool fact（Frobenius）．The number of factorizations of the identity in a finite group into factors of given conjugacy classes，can be expressed in terms of irreducible characters of the group．As a consequence we have：

Maps on orientable surfaces

- Bipartite map: bipartite (\circ / \bullet) graph embedded on an oriented surface with edges labelled $\{1,2, \ldots, n\}$, with simply connected faces, considered up to homeomorphism.

cycles of σ 。

cycles of σ •

cycles of $\sigma_{\bullet} \sigma_{\circ}$

$$
\begin{aligned}
& \sigma_{\circ}=(1,4)(2,3)(5,6,7) \\
& \sigma_{\bullet}=(1,6,7,3,4)(2,5) \\
& \sigma_{\diamond}^{-1}=\sigma_{\bullet} \sigma_{\circ}=(1)(2,4,6,3,5,7)
\end{aligned}
$$

\rightarrow the same as a triple of permutations $\left(\sigma_{\circ}, \sigma_{\bullet}, \sigma_{\diamond}\right)$ such that $\sigma_{\circ} \sigma_{\bullet} \sigma_{\diamond}=i d$.
cf. [Cori-Machí 80s]

- Cool fact (Frobenius). The number of factorizations of the identity in a finite group into factors of given conjugacy classes, can be expressed in terms of irreducible characters of the group. As a consequence we have:
"Character formula" for map generating function
$\sum_{\substack{\mathbf{m}: \\ b i p, \text { map }}} \frac{t^{n}}{n!} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \cdot(\mathbf{m}) r_{\lambda^{\circ}(\mathbf{m})}=\sum_{\lambda \in \mathcal{P}} t^{|\lambda|} H_{\lambda} s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q}) s_{\lambda}(\mathbf{r})$
$\operatorname{deg} p_{i} q_{j}{ }_{\operatorname{deg} j} r_{k} \oint_{0}^{0} \operatorname{deg} 2 k$

Variant: rooted maps

- We only remember the position of the label 1 ("root edge"). We ask the surface to be connected.

Variant: rooted maps

- We only remember the position of the label 1 ("root edge"). We ask the surface to be connected.

Variant: rooted maps

- We only remember the position of the label 1 ("root edge"). We ask the surface to be connected.
"Character formula" for rooted maps

$$
\sum_{\substack{\mathbf{m}: \\ e d \\ \text { bip. map }}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \bullet(\mathbf{m}) r_{\lambda^{\diamond}(\mathbf{m})}=t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} H_{\lambda} s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q}) s_{\lambda}(\mathbf{r})
$$

Note: we now have coefficients in \mathbb{N} (no more labels, usual g.f. instead of exponential g.f.) (this is not obvious from the RHS!)

Maps on non (necessarily) orientable surfaces

- We now want to look at bipartite maps on non-necessarily orientable surfaces.

An encoding by permutations still works but everything is defined up to change of local orientation around each vertex.... so it's more complicated
\rightarrow still works but now bipartite maps have to do with factorisations in the double coset algebra $B_{n} \backslash \mathfrak{S}_{2 n} / B_{n}$.

Maps on non (necessarily) orientable surfaces

- We now want to look at bipartite maps on non-necessarily orientable surfaces.

An encoding by permutations still works but everything is defined up to change of local orientation around each vertex.... so it's more complicated
\rightarrow still works but now bipartite maps have to do with factorisations in the double coset algebra $B_{n} \backslash \mathfrak{S}_{2 n} / B_{n}$.

"'Non-orientable character formula"[Hanlon, Stanley, Stembridge '92, Goulden, Jackson '9f]

$$
\sum_{\substack{\mathrm{m}: \\ \mathrm{m}_{\mathrm{bip} . \operatorname{map}}}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \bullet(\mathbf{m}) r_{\lambda^{\circ}(\mathbf{m})}=2 t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(2)}(\mathbf{p}) J_{\lambda}^{(2)}(\mathbf{q}) J_{\lambda}^{(2)}(\mathbf{r})}{j_{\lambda}^{(2)}}
$$

Maps on non (necessarily) orientable surfaces

- We now want to look at bipartite maps on non-necessarily orientable surfaces.

An encoding by permutations still works but everything is defined up to change of local orientation around each vertex.... so it's more complicated
\rightarrow still works but now bipartite maps have to do with factorisations in the double coset algebra $B_{n} \backslash \mathfrak{S}_{2 n} / B_{n}$.

"Non-orientable character formula"'[Hanlon, Stanley, Stembridge '92, Goulden, Jackson '9f]

$$
\sum_{\substack{\mathbf{m} i \\ \text { bip. map }}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \cdot(\mathbf{m}) r_{\lambda^{\circ}(\mathbf{m})}=2 t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(2)}(\mathbf{p}) J_{\lambda}^{(2)}(\mathbf{q}) J_{\lambda}^{(2)}(\mathbf{r})}{j_{\lambda}^{(2)}}
$$

rooted bip. map
orientable or not
"Orientable character formula" (rewritten in Jack notation)

$$
\sum_{\substack{\mathbf{m}: \\ \text { ooted bip. map }}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \bullet(\mathbf{m}) r_{\lambda} \diamond(\mathbf{m})=t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1)}(\mathbf{p}) J_{\lambda}^{(1)}(\mathbf{q}) J_{\lambda}^{(1)}(\mathbf{r})}{j_{\lambda}^{(1)}}
$$

orientable
q_{j}
r_{k}

Maps on non (necessarily) orientable surfaces

- We now want to look at bipartite maps on non-necessarily orientable surfaces.

An encoding by permutations still works but everything is defined up to change of local orientation around each vertex.... so it's more complicated
\rightarrow still works but now bipartite maps have to do with factorisations in the double coset algebra $B_{n} \backslash \mathfrak{S}_{2 n} / B_{n}$.

Zonal
$\alpha=2$
$\alpha=1$
Schur
"Non-orientable character formula" $[$ Hanlon, Stanley, Stembridge '92, Goulden, Jackson '9e

$$
\sum_{\substack{\mathbf{m}_{i} \\ \text { rooted map. map }}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda \bullet(\mathbf{m})} r_{\lambda^{\diamond}(\mathbf{m})}=2 t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(2)}(\mathbf{p}) J_{\lambda}^{(2)}(\mathbf{q}) J_{\lambda}^{(2)}(\mathbf{r})}{j_{\lambda}^{(2)}}
$$

"Orientable character formula" (rewritten in Jack notation)

$$
\sum_{\substack{\mathbf{m}: \\ \text { ooted bip. map }}} t^{n} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \bullet(\mathbf{m}) r_{\lambda} \diamond(\mathbf{m})=t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1)}(\mathbf{p}) J_{\lambda}^{(1)}(\mathbf{q}) J_{\lambda}^{(1)}(\mathbf{r})}{j_{\lambda}^{(1)}}
$$

orientable

$$
q_{j}
$$

b-positivity

The Goulden-Jackson b-conjecture (1996)

- Conjecture: The generating function

$$
(1+b) t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}(\mathbf{r})}{j_{\lambda}^{(1+b)}}
$$

is b-positive, with integer coefficients!! It counts bipartite maps!!!

The Goulden-Jackson b-conjecture (1996)

- Conjecture: We have

$$
(1+b) t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}(\mathbf{r})}{j_{\lambda}^{(1+b)}}=\sum_{\substack{\mathbf{m}: \\ \text { bip. } \\ \text { orientabled map or not }}} t^{|\mathbf{m}|} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda \bullet(\mathbf{m})} r_{\lambda^{\diamond}(\mathbf{m})} b^{\nu(\mathbf{m})}
$$

The coefficients count non-orientable bipartite maps with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable,

The Goulden-Jackson b-conjecture (1996)

- Conjecture: We have

$$
(1+b) t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}(\mathbf{r})}{j_{\lambda}^{(1+b)}}=\sum_{\substack{\mathbf{m}: \\ \text { bip. } \\ \text { orientabled map or not }}} t^{|\mathbf{m}|} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda \bullet(\mathbf{m})} r_{\lambda \diamond(\mathbf{m})} b^{\nu(\mathbf{m})}
$$

The coefficients count non-orientable bipartite maps with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable,
$\rightarrow b=0$: (Schur) character formula for orientable maps
$\rightarrow b=1$: (Zonal) character formula for non-(necessarily)-orientable maps

The Goulden-Jackson b-conjecture (1996)

- Conjecture: We have

$$
(1+b) t \frac{\partial}{\partial t} \log \sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}(\mathbf{r})}{j_{\lambda}^{(1+b)}}=\sum_{\substack{\mathbf{m}: \\ \text { bip. rooted map } \\ \text { orientable or not }}} t^{|\mathbf{m}|} p_{\lambda^{\circ}(\mathbf{m})} q_{\lambda} \bullet(\mathbf{m}) r_{\lambda^{\diamond}(\mathbf{m})} b^{\nu(\mathbf{m})}
$$

The coefficients count non-orientable bipartite maps with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable,
$\rightarrow b=0$: (Schur) character formula for orientable maps
$\rightarrow b=1$: (Zonal) character formula for non-(necessarily)-orientable maps

- Why is it so interesting? Because we have (had?) NO tools to attack it!
for $b \notin\{0,1\}$ there is no "character" technology. Progress is rare.
[Lacroix '10]
\rightarrow OK if we keep ONE full set of variables ("times"):

$$
\mathbf{p}=\left(p_{i}\right)_{i>1}, \mathbf{q}=\left(\delta_{i, 2}\right)_{i \geq 1}, \mathbf{r}=\underline{u}=(u, u, \ldots)
$$

Uses [Okounkov'97] about (linear) expectations of Jacks under β-ensembles.
Other cases proved for some particular coefficients [Kanunnikov, Promyslov, Vassilieva '18] [Dołęga '17] That coefficients are in $\mathbb{Q}[b]$ (not $\mathbb{Q}(b)$) is proved in [Dołęga-Féray '17]

- One of our results: \rightarrow OK if we keep TWO sets of times.

$$
\mathbf{p}=\left(p_{i}\right)_{i \geq 1}, \mathbf{q}=\left(q_{i}\right)_{i \geq 1}, \mathbf{r}=\underline{u}=(u, u, \ldots)
$$

Even better: constellations and the tau-function

- Factorisations of the form $\sigma_{\circ} \sigma_{\bullet} \sigma_{1} \sigma_{2} \ldots \sigma_{k}=i d$ in \mathfrak{S}_{n} are in bijection with generalizations of bipartite maps called k-constellations.
The character approach is still valid to count them.

Even better: constellations and the tau-function

- Factorisations of the form $\sigma_{\circ} \sigma_{\bullet} \sigma_{1} \sigma_{2} \ldots \sigma_{k}=i d$ in \mathfrak{S}_{n} are in bijection with generalizations of bipartite maps called k-constellations.
The character approach is still valid to count them.
- Fact: The coolest object in the orientable $(b=0)$ literature is

$$
\begin{aligned}
\tau^{(k)}\left(t ; \mathbf{p}, \mathbf{q}, u_{1}, \ldots, u_{k}\right) & =\sum_{\lambda} t^{|\lambda|} \frac{\tilde{s}_{\lambda}(\mathbf{p}) \tilde{s}_{\lambda}(\mathbf{q}) \tilde{s}_{\lambda}\left(\underline{u_{1}}\right) \tilde{s}_{\lambda}\left(\underline{u_{2}}\right) \ldots \tilde{s}_{\lambda}\left(\underline{u_{k}}\right)}{j_{\lambda}^{(1)}} \\
& =\sum_{\mathfrak{m}} \frac{t^{n}}{n!} p_{\sigma_{\circ}} q_{\sigma_{\bullet}} u_{1}^{\ell\left(\sigma_{1}\right)} \ldots u_{k}^{\ell\left(\sigma_{k}\right)}
\end{aligned}
$$

This is a tau-function of the 2 -Toda (and KP) hierarchy.

[Goulden-Jackson'09,Okounkov'00]
${ }_{0}^{\circ}$: This is a central object in enumerative
-s geometry (it counts branched coverings of the sphere).

Our main result

- Theorem[Chapuy-Dołęga'20] Consider the b-deformed tau-function

$$
\tau_{b}^{(k)}\left(t ; \mathbf{p}, \mathbf{q}, u_{1}, \ldots, u_{k}\right)=\sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}\left(\underline{u_{1}}\right) \ldots J_{\lambda}^{(1+b)}\left(\underline{u_{k}}\right)}{j_{\lambda}^{(1+b)}}
$$

Then $(1+b) t \frac{\partial}{\partial t} \log \tau_{b}^{(k)} \quad$ is b-positive.
Its coefficients count (properly defined) k-constellations on nonorientable surfaces with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable.

- our result has three sets of parameters $\mathbf{p}=\left(p_{i}\right)_{i \geq 1}, \mathbf{q}=\left(q_{i}\right)_{i \geq 1}, \mathbf{u}=\left(u_{i}\right)_{i \leq k}$
- the case $k=1$ or our result is the case $\mathbf{r}=\underline{u_{1}}$ of the b-conjecture.

Our main result

- Theorem[Chapuy-Dołęga'20] Consider the b-deformed tau-function

$$
\tau_{b}^{(k)}\left(t ; \mathbf{p}, \mathbf{q}, u_{1}, \ldots, u_{k}\right)=\sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}\left(\underline{u_{1}}\right) \ldots J_{\lambda}^{(1+b)}\left(\underline{u_{k}}\right)}{j_{\lambda}^{(1+b)}}
$$

Then $(1+b) t \frac{\partial}{\partial t} \log \tau_{b}^{(k)} \quad$ is b-positive.
Its coefficients count (properly defined) k-constellations on nonorientable surfaces with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable.

- our result has three sets of parameters $\mathbf{p}=\left(p_{i}\right)_{i \geq 1}, \mathbf{q}=\left(q_{i}\right)_{i \geq 1}, \mathbf{u}=\left(u_{i}\right)_{i \leq k}$
- the case $k=1$ or our result is the case $\mathbf{r}=\underline{u_{1}}$ of the b-conjecture.
- The case $b=0$ is the classical tau function.

Our main result

- Theorem[Chapuy-Dołęga'20] Consider the b-deformed tau-function

$$
\tau_{b}^{(k)}\left(t ; \mathbf{p}, \mathbf{q}, u_{1}, \ldots, u_{k}\right)=\sum_{\lambda \in \mathcal{P}} t^{|\lambda|} \frac{J_{\lambda}^{(1+b)}(\mathbf{p}) J_{\lambda}^{(1+b)}(\mathbf{q}) J_{\lambda}^{(1+b)}\left(\underline{u_{1}}\right) \ldots J_{\lambda}^{(1+b)}\left(\underline{u_{k}}\right)}{j_{\lambda}^{(1+b)}}
$$

Then $(1+b) t \frac{\partial}{\partial t} \log \tau_{b}^{(k)} \quad$ is b-positive.
Its coefficients count (properly defined) k-constellations on nonorientable surfaces with a weight $b^{\nu(\mathbf{m})}$ where $\nu(\mathbf{m})=0$ iff \mathbf{m} is orientable.

- our result has three sets of parameters $\mathbf{p}=\left(p_{i}\right)_{i \geq 1}, \mathbf{q}=\left(q_{i}\right)_{i \geq 1}, \mathbf{u}=\left(u_{i}\right)_{i \leq k}$
- the case $k=1$ or our result is the case $\mathbf{r}=\underline{u_{1}}$ of the b-conjecture.
- The case $b=0$ is the classical tau function.
- By letting $k \rightarrow \infty$ we can do b-analogues of Hurwitz numbers (factorisations in transpositions) and in fact, general weighted Hurwitz numbers $(k=\infty)$.

Elements of proof (?)

Proof structure

- Our proof has three halves:
$1 / 2$ - If you are a map expert, you can, in principle, write some sort of linear PDE for the g.f. of constellations that reflects a "root-edge" decomposition. You can hope to do it by controlling the variables \mathbf{p} and \mathbf{q} and $\left(u_{i}\right)$.
- do it. And do it also for the non-orientable case.
- there is (seems to be) a natural way to put the b-parameter in these PDEs.

Proof structure

- Our proof has three halves:
$1 / 2$ - If you are a map expert, you can, in principle, write some sort of linear PDE for the g.f. of constellations that reflects a "root-edge" decomposition. You can hope to do it by controlling the variables \mathbf{p} and \mathbf{q} and $\left(u_{i}\right)$.
- do it. And do it also for the non-orientable case.
- there is (seems to be) a natural way to put the b-parameter in these PDEs.
$2 / 2$ - If you are a Jack polynomial expert, you know that there are nice rules, such as the Pieri rule, or the α-hook-content formula in [Stanley'89]. Also the Laplace Beltrami operator acts nicely on Jack polynomials.
Use your creativity + commutator magic (applying these rules in all sort of orders) to construct by induction a set of PDEs that cancel the function $\tau_{b}^{(k)}$.

Proof structure

- Our proof has three halves:
$1 / 2$ - If you are a map expert, you can, in principle, write some sort of linear PDE for the g.f. of constellations that reflects a "root-edge" decomposition. You can hope to do it by controlling the variables \mathbf{p} and \mathbf{q} and $\left(u_{i}\right)$.
- do it. And do it also for the non-orientable case.
- there is (seems to be) a natural way to put the b-parameter in these PDEs.
$2 / 2$ - If you are a Jack polynomial expert, you know that there are nice rules, such as the Pieri rule, or the α-hook-content formula in [Stanley'89]. Also the Laplace Beltrami operator acts nicely on Jack polynomials.
Use your creativity + commutator magic (applying these rules in all sort of orders) to construct by induction a set of PDEs that cancel the function $\tau_{b}^{(k)}$.
$3 / 2$ - Suffer proving that the combinatorial (explicit) PDEs and the recursively defined (Lax type) PDEs are in fact the same.

This part of the proof is long and difficult, at least in the way to do it. For $b \in\{0,1\}$ we have a combinatorial proof. We develop some sort of operator calculus that "lifts the combinatorial proof" to the world of differential operators, and the lifted proof works for general b.

The combinatorial equations for $k=1$ (bipartite maps) -I

The combinatorial equations for $k=1$ (bipartite maps) -I

- Given a rooted bipartite (say) map, perform a root-edge decomposition:
- remove the root
- iterate on each remaining connected component

The combinatorial equations for $k=1$ (bipartite maps) -I

- Given a rooted bipartite (say) map, perform a root-edge decomposition:
- remove the root
- iterate on each remaining connected component
- When you remove an edge there are several topological situations:

The combinatorial equations for $k=1$ (bipartite maps) -I

- Given a rooted bipartite (say) map, perform a root-edge decomposition:
- remove the root
- iterate on each remaining connected component
- When you remove an edge there are several topological situations:

- Claim: the following operator takes all these cases into account:

$$
\Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F .
$$

mark a
vertex of
degree m

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
\Lambda_{Y} & :=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
Y_{+} & :=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F \dot{=}
$$

mark a
vertex of
degree m
build a "fake" root face of degree 0 (track
$\frac{y_{0}}{1+b}$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F \underbrace{\text { inside the root face }}_{\text {build a } k \text {-hyperedge }} \begin{aligned}
& \text { take a smaller } \\
& \text { of map }
\end{aligned}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F \underbrace{\text { inside the root face }}_{\text {build a } k \text {-hyperedge }} \begin{aligned}
& \text { take a smaller } \\
& \text { of map }
\end{aligned}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F . \text { take a smaller }_{\text {build a } k \text {-hyperedge }}^{\text {inside the root face }} \begin{aligned}
& \text { map } \\
& \text { of } \\
& \text { build a "fake" root } \\
& \text { face of degree } 0 \text { (track } \\
& \text { root-face degree with } \\
& \text { variables } y_{i} \text {) }
\end{aligned}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F . \text { take a smaller }_{\text {build a } k \text {-hyperedge }}^{\text {inside the root face }} \begin{aligned}
& \text { map } \\
& \text { of } \\
& \text { build a "fake" root } \\
& \text { face of degree } 0 \text { (track } \\
& \text { root-face degree with } \\
& \text { variables } y_{i} \text {) }
\end{aligned}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

$$
m \frac{\partial}{q_{m}} F=t^{m} \cdot \Theta_{Y}\left(Y_{+} \prod_{i=1}^{k}\left(\Lambda_{Y}+u_{i}\right)\right)^{m} \frac{y_{0}}{1+b} F . \text { take a smaller }_{\text {build a } k \text {-hyperedge }}^{\text {inside the root face }} \begin{aligned}
& \text { map } \\
& \text { of } \\
& \text { build a "fake" root } \\
& \text { face of degree } 0 \text { (track } \\
& \text { root-face degree with } \\
& \text { variables } y_{i} \text {) }
\end{aligned}
$$

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

vertex of
degree m

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

The combinatorial equations for $k=1$ (bipartite maps) - II

$$
\begin{aligned}
& \Lambda_{Y}:=(1+b) \sum_{i, j \geq 1} y_{i+j-1} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+\sum_{i, j \geq 1} y_{i-1} p_{j} \frac{\partial}{\partial y_{i+j-1}}+b \cdot \sum_{i \geq 0} y_{i} \frac{i \partial}{\partial y_{i}}, \\
& Y_{+}:=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}, \quad \Theta_{Y}:=\sum_{i \geq 0} p_{i} \frac{\partial}{\partial y_{i}},
\end{aligned}
$$

- Let $F\left(\mathbf{p}, \mathbf{q}, u_{1}\right)$ be the g.f. of labelled bipartite maps. Then:

Note: this corresponds to a randomized decomposition and proves only rational weights. One can be more precise and do a deterministic rooted decomposition instead.

How do the "Lax pair" equations look like?

- Define the Laplace-Beltrami operator:

$$
D_{\alpha}=\frac{1}{2}\left((1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}+\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}\right)
$$

Fact: it acts diagonally on Jacks (multiplies by the sum of α-contents).

How do the "Lax pair" equations look like?

- Define the Laplace-Beltrami operator:

$$
D_{\alpha}=\frac{1}{2}\left((1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}+\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}\right)
$$

Fact: it acts diagonally on Jacks (multiplies by the sum of α-contents).

- Define the operators:

$$
\begin{aligned}
& A_{1}=p_{1} /(1+b) \quad, \quad A_{j+1}=\left[D_{\alpha}, A_{j}\right], \text { for } j \geq 1 \\
& \Omega_{Y}^{(k)}=\sum_{1 \leq i \leq k+1} A_{i+1} e_{k+1-i}\left(u_{1}, \ldots, u_{k}\right) \\
& B_{1}^{(k)}=\sum_{1 \leq i \leq k+1} A_{i} e_{k+1-i}\left(u_{1}, \ldots, u_{k}\right) \quad, \quad B_{m+1}^{(k)}=\left[\Omega_{Y}^{(k)}, B_{m}^{(k)}\right], \text { for } m \geq 1
\end{aligned}
$$

- Then one has the equation, for $m \geq 1$:

$$
m!\frac{\partial}{\partial q_{m}} \tau_{b}^{(k)}=t^{m} B_{m}^{(k)} \tau_{b}^{(k)}
$$

How do the "Lax pair" equations look like?

- Define the Laplace-Beltrami operator:

$$
D_{\alpha}=\frac{1}{2}\left((1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}+\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}\right)
$$

Fact: it acts diagonally on Jacks (multiplies by the sum of α-contents).

- Define the operators:

$$
\begin{aligned}
& A_{1}=p_{1} /(1+b) \quad, \quad A_{j+1}=\left[D_{\alpha}, A_{j}\right], \text { for } j \geq 1 \\
& \Omega_{Y}^{(k)}=\sum_{1 \leq i \leq k+1} A_{i+1} e_{k+1-i}\left(u_{1}, \ldots, u_{k}\right) \\
& B_{1}^{(k)}=\sum_{1<i<k+1} A_{i} e_{k+1-i}\left(u_{1}, \ldots, u_{k}\right), \quad B_{m+1}^{(k)}=\left[\Omega_{Y}^{(k)}, B_{m}^{(k)}\right], \text { for } m \geq 1
\end{aligned}
$$

- Then one has the equation, for $m \geq 1$:

$$
m!\frac{\partial}{\partial q_{m}} \tau_{b}^{(k)}=t^{m} B_{m}^{(k)} \tau_{b}^{(k)}
$$

(proof uses α-Pieri rule $+\alpha$-hook content rule + Laplace-Beltrami rule + commutator magic)

How to construct PDE's for $\tau_{b}^{(k)} ?(m=1, k=1$, Schur case).

- Hook content formula:

$$
\begin{aligned}
& \tilde{s}_{\lambda}(\underline{u})=\prod_{\square \in \lambda}(u+c(\square)) \\
& \longrightarrow B(\mathbf{p}, \mathbf{q}, u)=\sum_{\lambda}\left(\prod_{\square \in \lambda}(u+c(\square))\right) s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q})
\end{aligned}
$$

How to construct PDE's for $\tau_{b}^{(k)} ?(m=1, k=1$, Schur case).

- Hook content formula:

$$
\begin{aligned}
& \tilde{s}_{\lambda}(\underline{u})=\prod_{\square \in \lambda}(u+c(\square)) \quad \\
& \longrightarrow B(\mathbf{p}, \mathbf{q}, u)=\sum_{\lambda}\left(\prod_{\square \in \lambda}(u+c(\square))\right) s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q})
\end{aligned}
$$

- Pieri rule: multiply by p_{1} adds a box to a Schur function: $p_{1} s_{\lambda}(\mathbf{p})=\sum s_{\lambda \uplus \square}(\mathbf{p})$. $\partial / \partial p_{1}$ removes a box.

How to construct PDE's for $\tau_{b}^{(k)} ?(m=1, k=1$, Schur case).

- Hook content formula:

$$
\begin{aligned}
& \tilde{s}_{\lambda}(\underline{u})=\prod_{\square \in \lambda}(u+c(\square)) \\
& \longrightarrow B(\mathbf{p}, \mathbf{q}, u)=\sum_{\lambda}\left(\prod_{\square \in \lambda}(u+c(\square))\right) s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q})
\end{aligned}
$$

- Pieri rule: multiply by p_{1} adds a box to a Schur function: $p_{1} s_{\lambda}(\mathbf{p})=\sum s_{\lambda \uplus \square}(\mathbf{p})$. $\partial / \partial p_{1}$ removes a box.
- Another rule $D_{\alpha} s_{\lambda}=\left(\sum_{\square \in \lambda} c(\square)\right) s_{\lambda}$

$$
\longrightarrow\left[D_{\alpha}, p_{1}\right] s_{\lambda}=\sum_{\square} c(\square) s_{\lambda \uplus \square}(\mathbf{p})
$$

How to construct PDE's for $\tau_{b}^{(k)} ?(m=1, k=1$, Schur case).

- Hook content formula:

$$
\begin{aligned}
& \tilde{s}_{\lambda}(\underline{u})=\prod_{\square \in \lambda}(u+c(\square)) \\
& \longrightarrow B(\mathbf{p}, \mathbf{q}, u)=\sum_{\lambda}\left(\prod_{\square \in \lambda}(u+c(\square))\right) s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q})
\end{aligned}
$$

- Pieri rule: multiply by p_{1} adds a box to a Schur function: $p_{1} s_{\lambda}(\mathbf{p})=\sum s_{\lambda \uplus \square}(\mathbf{p})$. $\partial / \partial p_{1}$ removes a box.
- Another rule $D_{\alpha} s_{\lambda}=\left(\sum_{\square \in \lambda} c(\square)\right) s_{\lambda}$

$$
\longrightarrow\left[D_{\alpha}, p_{1}\right] s_{\lambda}=\sum_{\square} c(\square) s_{\lambda \uplus \square}(\mathbf{p})
$$

- From this we obtain a differential equation for our function!!!

$$
\frac{\partial}{\partial q_{1}} B(\mathbf{p}, \mathbf{q}, u)=\left(u p_{1}+\left[D_{\alpha}, p_{1}\right]\right) B(\mathbf{p}, \mathbf{q}, u)
$$

How to construct PDE's for $\tau_{b}^{(k)} \boldsymbol{?}$ ($m=1, k=1$, Schur case).

- Hook content formula:

$$
\begin{aligned}
& \tilde{s}_{\lambda}(\underline{u})=\prod_{\square \in \lambda}(u+c(\square)) \\
& \longrightarrow B(\mathbf{p}, \mathbf{q}, u)=\sum_{\lambda}\left(\prod_{\square \in \lambda}(u+c(\square))\right) s_{\lambda}(\mathbf{p}) s_{\lambda}(\mathbf{q})
\end{aligned}
$$

- Pieri rule: multiply by p_{1} adds a box to a Schur function: $p_{1} s_{\lambda}(\mathbf{p})=\sum s_{\lambda \uplus \square}(\mathbf{p})$. $\partial / \partial p_{1}$ removes a box.
- Another rule $D_{\alpha} s_{\lambda}=\left(\sum_{\square \in \lambda} c(\square)\right) s_{\lambda}$

$$
\longrightarrow\left[D_{\alpha}, p_{1}\right] s_{\lambda}=\sum_{\square} c(\square) s_{\lambda \uplus \square}(\mathbf{p})
$$

- From this we obtain a differential equation for our function!!!

$$
\frac{\partial}{\partial q_{1}} B(\mathbf{p}, \mathbf{q}, u)=\left(u p_{1}+\left[D_{\alpha}, p_{1}\right]\right) B(\mathbf{p}, \mathbf{q}, u)
$$

The miracle is that (by computing the commutator explicitly) this is the same equation as the one we wrote for maps in the prevous slides!

La preuve que le miracle a lieu et que les opérateurs sont les mêmes pour tout k et m est une partie de l'histoire que j'omets...

Merci!

