What about maps in complex reflection groups?

Guillaume Chapuy (CNRS - Université Paris 7)
joint work
Christian Stump (Hannover)

Factorizations of a Coxeter element in complex reflection groups

Guillaume Chapuy (CNRS - Université Paris 7)
joint work
Christian Stump (Hannover)

Part 1: the objects

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

 there are $(n-1)!n^{n-2}$ of them

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cayley's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

Minimal factorizations of a full cycle - Cayley's formula

- In the symmetric group \mathbb{S}_{n} we consider factorizations of the full cycle $(1,2, \ldots, n)$ into a product of $(n-1)$ transpositions
- Theorem [Cavlev's formula] The number of such factorizations is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1}=(1,2, \ldots, n)\right\}=n^{n-2}
$$

 there are $(n-1)!n^{n-2}$ of them

Hurwitz numbers,(Shapiro-Shapiro-Vainshtein)

- From a topological viewpoint, we are considering two restrictions:
- planar (\sim factorizations of minimal length)
- one-face (\sim factorizations of a full cycle)

Hurwitz numbers,(Shapiro-Shapiro-Vainshtein)

Jackson

- From a topological viewpoint, we are considering two restrictions:
- planar (\sim factorizations of minimal length)
- one-face (\sim factorizations of a full cycle)
- Let us keep the one-face condition but consider an arbitrary genus $g \geq 0$

$$
h_{n, g}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1+2 g}=(1,2, \ldots, n)\right\}=?
$$

- Theorem [Shapiro-Shapiro-Vainshtein 1997] The generating function of one-face Hurwitz numbers is \longrightarrow Jackson 88

$$
F(t)=\sum_{g \geq 0} \frac{t^{n-1+2 g}}{(n-1+2 g)!} h_{n, g}=\frac{1}{n!}\left(e^{\frac{n t}{2}}-e^{-\frac{n t}{2}}\right)^{n-1}
$$

Hurwitz numbers,(Shapiro-Shapiro-Vainshtein)

Jackson

- From a topological viewpoint, we are considering two restrictions:
- planar (\sim factorizations of minimal length)
- one-face (\sim factorizations of a full cycle)
- Let us keep the one-face condition but consider an arbitrary genus $g \geq 0$

$$
h_{n, g}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n-1+2 g}=(1,2, \ldots, n)\right\}=?
$$

- Theorem [Shapiro-Shapiro-Vainshtein 1997] The generating function of one-face Hurwitz numbers is \longrightarrow Jackson 88

$$
F(t)=\sum_{g \geq 0} \frac{t^{n-1+2 g}}{(n-1+2 g)!} h_{n, g}=\underbrace{\frac{1}{n!}\left(e^{\frac{n t}{2}}-e^{-\frac{n t}{2}}\right)^{n-1}} .
$$

$$
\sim \frac{1}{n!}(t n)^{n-1}=\frac{t^{n-1}}{(n-1)!} n^{n-2}
$$

\rightarrow at order 1, this is Cayley's formula.

Reflection groups (I)

- Let V be a complex vector space, $n=\operatorname{dim}_{\mathbb{C}} V$.

A reflection is an element $\tau \in \mathrm{GL}(V)$ such that $\operatorname{ker}(\mathrm{id}-\tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \operatorname{Diag}(1,1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Reflection groups (I)

- Let V be a complex vector space, $n=\operatorname{dim}_{\mathbb{C}} V$.

A reflection is an element $\tau \in \mathrm{GL}(V)$ such that $\operatorname{ker}(\mathrm{id}-\tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \operatorname{Diag}(1,1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ generated by transpositions.

Reflection groups (I)

- Let V be a complex vector space, $n=\operatorname{dim}_{\mathbb{C}} V$.

A reflection is an element $\tau \in \mathrm{GL}(V)$ such that $\operatorname{ker}(\mathrm{id}-\tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \operatorname{Diag}(1,1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})

Reflection groups (I)

- Let V be a complex vector space, $n=\operatorname{dim}_{\mathbb{C}} V$.

A reflection is an element $\tau \in \mathrm{GL}(V)$ such that $\operatorname{ker}(\mathrm{id}-\tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \operatorname{Diag}(1,1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of GL (V) generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})
- complex reflection group $G(r, 1, n) \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ with $r, n \geq 1$

$$
\left(\begin{array}{ccc}
0 & \zeta & 0 \\
\zeta^{2} & 0 & 0 \\
0 & 0 & \zeta^{5}
\end{array}\right) \quad \begin{aligned}
& \text { take an } n \times n \text { permutation matrix } \\
& \text { replace entries by } r \text {-th roots of unity }
\end{aligned}
$$

Reflection groups (I)

- Let V be a complex vector space, $n=\operatorname{dim}_{\mathbb{C}} V$.

A reflection is an element $\tau \in \mathrm{GL}(V)$ such that $\operatorname{ker}(\mathrm{id}-\tau)$ is a hyperplane and τ has finite order. In other words $\tau \approx \operatorname{Diag}(1,1, \ldots, 1, \zeta)$ for ζ a root of unity.

- A complex reflection group is a finite subgroup of GL (V) generated by reflections. We can always assume $W \subset U(V)$ for some inner product.

Examples

- permutation matrices: $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ generated by transpositions.
- finite Coxeter groups (same definition, but over \mathbb{R})
- complex reflection group $G(r, p, n) \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ with $r, p, n \geq 1$ and $p \mid r$

$$
\left(\begin{array}{ccc}
0 & \zeta & 0 \\
\zeta^{2} & 0 & 0 \\
0 & 0 & \zeta^{5}
\end{array}\right) \quad \begin{aligned}
& \text { take an } n \times n \text { permutation matrix } \\
& \text { replace entries by } r \text {-th roots of unity } \\
& \text { product of all entries is an } r / p \text {-th root of unity. }
\end{aligned}
$$

Reflection groups (II)

- If $W \subset \mathrm{GL}(V)$ is irreducible (=no stable subspace) then $\operatorname{dim} V$ is called its rank. If W is irreducible and is generated by $\operatorname{dim} V$ reflections then it is well-generated.
- $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ is not irreducible since $V_{0}=\left\{\sum_{i} x_{i}=0\right\}$ is stable.
- $\mathbb{S}_{n} \subset \mathrm{GL}\left(V_{0}\right)$ is irreducible. It has rank $(n-1)$. It is well-generated, take $s_{i}=(i i+1)$ for $1 \leq i<n$.

Reflection groups (II)

- If $W \subset \mathrm{GL}(V)$ is irreducible (=no stable subspace) then $\operatorname{dim} V$ is called its rank. If W is irreducible and is generated by $\operatorname{dim} V$ reflections then it is well-generated.
- $\mathbb{S}_{n} \subset \mathrm{GL}\left(\mathbb{C}^{n}\right)$ is not irreducible since $V_{0}=\left\{\sum_{i} x_{i}=0\right\}$ is stable.
- $\mathbb{S}_{n} \subset \mathrm{GL}\left(V_{0}\right)$ is irreducible. It has rank $(n-1)$. It is well-generated, take $s_{i}=(i i+1)$ for $1 \leq i<n$.
- If W is irreducible and well-generated there is a notion of Coxeter element that plays the same role as the full cycle for the symmetric group. In general: it is an element having an eigenvalue ζ a primitive d-th root of unity with d as large as possible.

For real groups, it is the product (in any order) of the ($n-1$) generators.
The Coxeter number, h, is the order of the Coxeter element.

Deligne's formula

- Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a Coxeter element into a product of n reflections is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n}=\text { cox. element }\right\}=\frac{n!}{|W|} h^{n}
$$

Deligne's formula

- Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a Coxeter element into a product of n reflections is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n}=\text { cox. element }\right\}=\frac{n!}{|W|} h^{n}
$$

Deligne's formula

- Theorem [Deligne-Tits-Zagier 74, Bessis 07] Let W be an irreducible well-generated complex reflection group of rank n. Then the number of factorizations of a Coxeter element into a product of n reflections is

$$
\#\left\{\tau_{1} \tau_{2} \ldots \tau_{n}=\text { cox. element }\right\}=\frac{n!}{|W|} h^{n}
$$

- Translation for the symmetric group \mathbb{S}_{m}.
- cox. element $=$ full cycle; its order $h=m$
- reflection $=$ transposition
- rank $n=m$ - 1

$$
\rightarrow \frac{(m-1)!}{m!} m^{m-1}=m^{m-2} \quad \text { Cayley's formula! }
$$

Our result - "higher genus" factorizations in w.g.c.r.g.

- Theorem [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$
h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \text { are reflections }\right\}
$$

Then the generating function is nice:

$$
F(t)=\sum_{\ell \geq 0} \frac{t^{\ell}}{\ell!} h_{\ell}=\frac{1}{|W|}\left(e^{\frac{h^{\prime}}{2} t}-e^{-\frac{h^{\prime \prime}}{2} t}\right)^{n} .
$$

- Parameters: $\frac{h^{\prime}}{2}=\frac{\# \text { reflections }}{n}$ and $\frac{h^{\prime \prime}}{2}=\frac{\# \text { reflection hyperplanes }}{n}$

Our result - "higher genus" factorizations in w.g.c.r.g.

- Theorem [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$
h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \text { are reflections }\right\}
$$

Then the generating function is nice:

$$
F(t)=\sum_{\ell \geq 0} \frac{t^{\ell}}{\ell!} h_{\ell}=\frac{1}{|W|}\left(e^{\frac{h^{\prime}}{2} t}-e^{-\frac{h^{\prime \prime}}{2} t}\right)^{n}
$$

- Parameters: $\frac{h^{\prime}}{2}=\frac{\# \text { reflections }}{n}$ and $\frac{h^{\prime \prime}}{2}=\frac{\# \text { reflection hyperplanes }}{n}$

Our result - "higher genus" factorizations in w.g.c.r.g.

- Theorem [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$
h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \text { are reflections }\right\}
$$

Then the generating function is nice:

$$
F(t)=\sum_{\ell \geq 0} \frac{t^{\ell}}{\ell!} h_{\ell}=\frac{1}{|W|}\left(e^{\frac{h^{\prime}}{2} t}-e^{-\frac{h^{\prime \prime}}{2} t}\right)^{n}
$$

- Parameters: $\frac{h^{\prime}}{2}=\frac{\text { \#reflections }}{n}$ and $\frac{h^{\prime \prime}}{2}=\frac{\text { \#reflection hyperplanes }}{n}$
- Known that $\frac{h^{\prime}}{2}+\frac{h^{\prime \prime}}{2}=h$ Coxeter number \rightarrow Deligne's formula at $t \sim 0$

Our result - "higher genus" factorizations in w.g.c.r.g.

- Theorem [C.-Stump] Let W be an irreducible well-generated complex reflection group of rank n. Consider factorizations of a Coxeter element c into reflections and let

$$
h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \text { are reflections }\right\}
$$

Then the generating function is nice:

$$
F(t)=\sum_{\ell \geq 0} \frac{t^{\ell}}{\ell!} h_{\ell}=\frac{1}{|W|}\left(e^{\frac{h^{\prime}}{2} t}-e^{-\frac{h^{\prime \prime}}{2} t}\right)^{n}
$$

- Parameters: $\frac{h^{\prime}}{2}=\frac{\text { \#reflections }}{n}$ and $\frac{h^{\prime \prime}}{2}=\frac{\text { \#reflection hyperplanes }}{n}$
- Known that $\frac{h^{\prime}}{2}+\frac{h^{\prime \prime}}{2}=h$ Coxeter number \rightarrow Deligne's formula at $t \sim 0$
- For real groups $h^{\prime}=h^{\prime \prime}=h$ (e.g. Shapiro-Shapiro-Vainshtein for \mathbb{S}_{m}).

Part 2: group characters

Counting factorizations in groups (1)

- Let $\mathcal{R}=\{$ reflections $\}$ and $c=$ Coxeter element.

$$
\text { Let } h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \in \mathcal{R}\right\}
$$

- Lemma [the Frobenius formula] Let $\chi_{\lambda}, \lambda \in \Lambda$ be the list of all irreducible characters of W. Then one has:

$$
h_{\ell}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda)\left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda}\right)^{\ell} \chi_{\lambda}\left(c^{-1}\right) . \quad \begin{aligned}
& \text { where } \\
& \chi_{\lambda}(R):=\sum_{\tau \in \mathcal{R}} \chi_{\lambda}(\tau) .
\end{aligned}
$$

Counting factorizations in groups (I)

- Let $\mathcal{R}=\{$ reflections $\}$ and $c=$ Coxeter element.

$$
\text { Let } h_{\ell}=\#\left\{\tau_{1} \tau_{2} \ldots \tau_{\ell}=c \text { where } \tau_{i} \in \mathcal{R}\right\}
$$

- Lemma [the Frobenius formula] Let $\chi_{\lambda}, \lambda \in \Lambda$ be the list of all irreducible characters of W. Then one has:

$$
h_{\ell}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda)\left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda}\right)^{\ell} \chi_{\lambda}\left(c^{-1}\right) . \quad \begin{aligned}
& \text { where } \\
& \chi_{\lambda}(R):=\sum_{\tau \in \mathcal{R}} \chi_{\lambda}(\tau) .
\end{aligned}
$$

- Sketch of a proof: Consider the group algebra $\mathbb{C}[W]$.

Then $h_{\ell}=$ coeff. of 1 in $\left(R^{\ell} c^{-1}\right)$ where $R=\sum_{\tau \in \mathcal{R}} \tau$

$$
=\frac{1}{|W|} \operatorname{Tr}\left(R^{\ell} c^{-1}\right) \quad \text { since if } \sigma \in W, \text { then } \operatorname{Tr}_{\mathbb{C}[W]} \sigma=\left\{\begin{array}{l}
|W| \text { if } \sigma=1 \\
0 \text { if } \sigma \neq 1
\end{array}\right.
$$

Now use: - the (classical) decomposition of $\mathbb{C}[W]$ as $C[W]=\bigoplus_{\lambda \in \Lambda}\left(\operatorname{dim} V^{\lambda}\right) V^{\lambda}$

- the fact that R is central and therefore acts as a scalar on each V^{λ}.

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W=W\left(\mathcal{E}_{8}\right)$.

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W=W\left(\mathcal{E}_{8}\right)$.
- plug your computer in

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W=W\left(\mathcal{E}_{8}\right)$.
- plug your computer in
- ask for the character table of E_{8}

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W=W\left(\mathcal{E}_{8}\right)$.
- plug your computer in
- ask for the character table of E_{8}
- compute the sum (many terms...)

$$
F_{E_{8}}(t)=\frac{1}{\left|E_{8}\right|}\left(e^{102 t}+28 e^{-1680 t}+\ldots \ldots\right)
$$

Counting factorizations in groups (II)

Immediate consequence of the Frobenius formula:

- Proposition For a given group W, our generating function is a finite sum:

$$
F_{W}(t):=\sum_{\ell \geq 0} \frac{h_{\ell}}{\ell!}=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)
$$

- Now you can prove the main theorem for your favorite fixed group, e.g. the group $W=W\left(\mathcal{E}_{8}\right)$.
- plug your computer in
- ask for the character table of E_{8}
- compute the sum (many terms...)

$$
F_{E_{8}}(t)=\frac{1}{\left|E_{8}\right|}\left(e^{102 t}+28 e^{-1680 t}+\ldots \ldots\right)
$$

- ask your computer to factor it... it works!

$$
F_{E_{8}}(t)=\frac{1}{\left|E_{8}\right|}\left(e^{15 t}-e^{-15 t}\right)^{8} .
$$

Part 3: Classification
 ...and case-by-case proof

Classification and proof strategy

- Theorem[Sheppard, Todd, 54] Let W be an irreducible complex reflection group. Then W is (isomorphic to) either:
- the symmetric group $\mathbb{S}_{n} \subset \mathrm{GL}\left(V_{0}\right)$
- $G(r, p, n)$ for some integer $r \geq 2, p, n \geq 1$ with $p \mid r$.
- one of 34 exceptional groups
- Well-generated: $\mathbb{S}_{n}, G(r, 1, n)$ and $G(r, r, n)+26$ exceptional groups.

Classification and proof strategy

- Theorem[Sheppard, Todd, 54] Let W be an irreducible complex reflection group. Then W is (isomorphic to) either:
- the symmetric group $\mathbb{S}_{n} \subset \mathrm{GL}\left(V_{0}\right)$
- $G(r, p, n)$ for some integer $r \geq 2, p, n \geq 1$ with $p \mid r$.
- one of 34 exceptional groups
- Well-generated: $\mathbb{S}_{n}, G(r, 1, n)$ and $G(r, r, n)+26$ exceptional groups.

Classification and proof strategy

- Theorem[Sheppard, Todd, 54] Let W be an irreducible complex reflection group. Then W is (isomorphic to) either:
- the symmetric group $\mathbb{S}_{n} \subset \mathrm{GL}\left(V_{0}\right)$
- $G(r, p, n)$ for some integer $r \geq 2, p, n \geq 1$ with $p \mid r$.
- one of 34 exceptional groups
- Well-generated $\mathbb{S}_{n}, G(r, 1, n)$ and $G(r, r, n)+26$ exceptional groups.

INfinitely
many groups
MATHS!

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?)

- We start from $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

Here $\Lambda=\{$ partitions of n$\}$ and $c^{-1}=$ full cycle.

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?)

- We start from $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda}\left(\operatorname{dim} \lambda \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)\right.$ Here $\Lambda=\{$ partitions of n$\}$ and $c^{-1}=$ full cycle.
- Crucial fact: There are very few partitions λ such that $\chi_{\lambda}\left(c^{-1}\right) \neq 0$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?)

- We start from $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda}\left(\operatorname{dim} \lambda \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)\right.$ Here $\Lambda=\{$ partitions of n$\}$ and $c^{-1}=$ full cycle.
- Crucial fact: There are very few partitions λ such that $\chi_{\lambda}\left(c^{-1}\right) \neq 0$

Murnaghan-Nakayama rule

$\lambda=[3,3,2,1]$ and $\sigma=(1,3,4)(2,8,9)(5,7)(6)$

$$
\chi_{\lambda}(\sigma)=\quad(-1) \quad+\quad(-1) \quad=(-2)
$$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?)

- We start from $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda}\left(\operatorname{dim} \lambda \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)\right.$ Here $\Lambda=\{$ partitions of n$\}$ and $c^{-1}=$ full cycle.
- Crucial fact: There are very few partitions λ such that $\chi_{\lambda}\left(c^{-1}\right) \neq 0$

Murnaghan-Nakayama rule

$\lambda=[3,3,2,1]$ and $\sigma=(1,3,4)(2,8,9)(5,7)(6)$

$$
\chi_{\lambda}(\sigma)=\quad(-1) \quad+\quad(-1) \quad=(-2)
$$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element ?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\top}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element ?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\top}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element ?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\top}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\top}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

$$
\begin{aligned}
& =\frac{1}{|W|} \sum_{k=0}^{n-1}\left(\operatorname{dim} \mathfrak{h}_{k}\right) \chi_{\mathfrak{h}_{k}}\left(c^{-1}\right) \exp \left(\begin{array}{c}
\chi_{\mathfrak{h}_{k}}(R) \\
\text { \# S.Y.T. } \\
\begin{array}{c}
\text { Murnaghan } \\
\text { Nakayama. }
\end{array} \\
=\frac{1}{|W|} \sum_{k=0}^{n-1} \begin{array}{c}
\text { Use combinatorial rules } \\
\text { (e.g. Jucys Murphy or } \\
\text { Murnaghan-Nakayama }
\end{array} \\
\left.\begin{array}{c}
n-1 \\
k
\end{array}\right)(-1)^{k}
\end{array} \quad \exp \left(\frac{n(n-2 k-2)}{2} \cdot t\right)\right.
\end{aligned}
$$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\prime}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

$$
=\frac{1}{|W|} \sum_{k=0}^{n-1}\left(\operatorname{dim} \mathfrak{h}_{k}\right) \chi_{\mathfrak{h}_{k}}\left(c^{-1}\right) \exp \left(\frac{\chi_{\mathfrak{h}_{k}}(R)}{\operatorname{dim} \mathfrak{h}_{k}} \cdot t\right)
$$

Murnaghan
Nakayama.

$$
=\frac{1}{|W|} \sum_{k=0}^{n-1}\binom{n-1}{k}(-1)^{k} \quad \exp \left(\frac{n(n-2 k-2)}{2} \cdot t\right)
$$

(Newton's binom formula)

$$
=\frac{1}{|W|}\left(e^{\frac{n}{2} t}-e^{-\frac{n}{2} t}\right)^{n-1}
$$

Example of \mathbb{S}_{n} (what is so special about the Coxeter element?) - 2

- We have $F(t)=\frac{1}{|W|} \sum_{\lambda \in \Lambda^{\prime}}(\operatorname{dim} \lambda) \chi_{\lambda}\left(c^{-1}\right) \exp \left(\frac{\chi_{\lambda}(R)}{\operatorname{dim} \lambda} \cdot t\right)$

$$
=\frac{1}{|W|} \sum_{k=0}^{n-1}\left(\operatorname{dim} \mathfrak{h}_{k}\right) \chi_{\mathfrak{h}_{k}}\left(c^{-1}\right) \exp \left(\frac{\chi_{\mathfrak{h}_{k}}(R)}{\operatorname{dim} \mathfrak{h}_{k}} \cdot t\right)
$$

Murnaghan
Nakayama.

$$
=\frac{1}{|W|} \sum_{k=0}^{n-1}\binom{n-1}{k}(-1)^{k} \exp \left(\frac{n(n-2 k-2)}{2} \cdot t\right)
$$

Use combinatorial rules
(e.g. Jucys Murphy or Murnaghan-Nakayama)
$\underset{\substack{\text { PURE LUCK } \\ \text { PURE }}}{ }=\frac{1}{|W|} \sum_{k=0}^{n-1}\binom{n-1}{k}(-1)^{k} \exp \left(\frac{n(n-2 k-2)}{2} \cdot t\right)$

$$
=\frac{1}{|W|}\left(e^{\frac{n}{2} t}-e^{-\frac{n}{2} t}\right)^{n-1} .
$$

(Newton's binom formula)

Other infinite families - $G(r, 1, n)$ and $G(r, r, n)$

- We need some combinatorial representation theory for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]
$\square \square \square \square \varnothing \square \varnothing \square$-tuples of partitions of total size n

Other infinite families - $G(r, 1, n)$ and $G(r, r, n)$

- We need some combinatorial representation theory for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]

- $G(r, r, n) \rightarrow$ algebraically: "easy" exercise in representation theory combinatorially: a bit messy so not really done anywhere... r-cycles of partitions of total size n

Other infinite families - $G(r, 1, n)$ and $G(r, r, n)$

- We need some combinatorial representation theory for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]

- $G(r, r, n) \rightarrow$ algebraically: "easy" exercise in representation theory
 combinatorially: a bit messy so not really done anywhere... r-cycles of partitions of total size n
- In both cases: - there are only $O\left(r^{2} n\right)$ characters to consider
- we can (meticulously...) compute all the pieces
- at the end, Newton's formula collects the pieces!

Other infinite families - $G(r, 1, n)$ and $G(r, r, n)$

- We need some combinatorial representation theory for these groups
- $G(r, 1, n) \rightarrow$ standard [MacDonald, Serre...]

- $G(r, r, n) \rightarrow$ algebraically: "easy" exercise in representation theory
 combinatorially: a bit messy so not really done anywhere...
- In both cases: - there are only $O\left(r^{2} n\right)$ characters to consider
- we can (meticulously...) compute all the pieces
- at the end, Newton's formula collects the pieces!
- Conclusion: The formulas are nice but we don't UNDERSTAND them!

Bimodal conclusion

- Map viewpoint:

Bimodal conclusion

- Map viewpoint:
- there exist many formulas in map enumeration, that correspond to different factorization problems in \mathbb{S}_{n}. Which ones can be generalized to reflection groups ?
- Topological interpretation of factorizations in reflection groups?

Bimodal conclusion

- Map viewpoint:
- there exist many formulas in map enumeration, that correspond to different factorization problems in \mathbb{S}_{n}. Which ones can be generalized to reflection groups ?
- Topological interpretation of factorizations in reflection groups?
-Algebraic combinatorics viewpoint: We end up with a nice formula but a classification dependent proof...
This is a general phenomenon in this context!
- Deligne's formula still has no classification-free proof
- vast litterature in algebraic combinatorics on non-crossing partitions
[Armstong, Bessis-Reiner, Krattenthaler-Muller...]
These results deal with refinements of the planar case $\left(=\right.$ trees for $\left.\mathbb{S}_{n}\right)$ None of them has a classification-free proof

Bimodal conclusion

- Map viewpoint:
- there exist many formulas in map enumeration, that correspond to different factorization problems in \mathbb{S}_{n}. Which ones can be generalized to reflection groups ?
- Topological interpretation of factorizations in reflection groups?
-Algebraic combinatorics viewpoint: We end up with a nice formula but a classification dependent proof...
This is a general phenomenon in this context!
- Deligne's formula still has no classification-free proof
- vast litterature in algebraic combinatorics on non-crossing partitions
[Armstong, Bessis-Reiner, Krattenthaler-Muller...]
These results deal with refinements of the planar case $\left(=\right.$ trees for $\left.\mathbb{S}_{n}\right)$ None of them has a classification-free proof
- Hope: the rep-theoretic approach could lead to classification-free proofs
- Why? because I hope that the non-vanishing characters have a nice geometric description... we just have to find it!

Bimodal conclusion

- Map viewpoint:
- there exist many formulas in map enumeration, that correspond to different factorization problems in \mathbb{S}_{n}. Which ones can be generalized to reflection groups ?
- Topological interpretation of factorizations in reflection groups?
-Algebraic combinatorics viewpoint: We end up with a nice formula but a classification dependent proof...
This is a general phenomenon in this context!
- Deligne's formula still has no classification-free proof
- vast litterature in algebraic combinatorics on non-crossing partitions
[Armstong, Bessis-Reiner, Krattenthaler-Muller...]
These results deal with refinements of the planar case $\left(=\right.$ trees for $\left.\mathbb{S}_{n}\right)$ None of them has a classification-free proof
- Hone: the ren-theoretic annroach could lead to classification-free proofs
- Why? because I hope that the non-vanishing characters have a nice geometric description... we just have to find it!

Thank you!

