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Abstract. A unicellular map is the embedding of a connected graph infaselin such a way that the complement
of the graph is a topological disk. In this paper we give adbiye operation that relates unicellular maps on a non-
orientable surface to unicellular maps of a lower topolabigpe, with distinguished vertices. From that we obtain a
recurrence equation that leads to (new) explicit countorgitilas for non-orientable precubic (all vertices of degre
1 or 3) unicellular maps of fixed topology. We also determine astip formulas for the number of all unicellular
maps of fixed topology, when the number of edges goes to wfiditr strategy is inspired by recent results obtained
for the orientable case [Chapuy, PTRF, to appear], butféigmit novelties are introduced: in particular we construct
an involution which, in some sense, "averages” the effetcten-orientability.

Résurre. Une carte unicellulaire est le plongement d’'un graphe comdans une surface, tel que le complémentaire
du graphe est un disque topologique. On décrit une opérbtjective qui relie les cartes unicellulaires sur undae
non-orientable aux cartes unicellulaires de type topojegiinférieur, avec des sommets marqués. On en déduit une
récurrence qui conduit a de (nouvelles) formules closésuinération pour les cartes unicellulaires précubiu
(sommets de degréou 3) de topologie fixée. On obtient aussi des formules asyngutes pour le nombre total de
cartes unicellulaires de topologie fixée, quand le nomkaeetes tend vers l'infini. Notre stratégie est motivee ge
récents résultats dans le cas orientable [Chapuy, PaRE&raitre], mais d’importantes nouveautés sont inftesiu

en particulier, on construit une involution qui, en un ciergens, "'moyenne” les effets de la non-orientabilité.

Keywords: One-face map, ribbon graph, non-orientable surface, tidjednvolution

1 Introduction

A mapis an embedding of a connected graph in a (2-dimensionalpaotnconnected) surface considered
up to homeomorphism. Bgmbeddingwe mean that the graph is drawn on the surface in such a way tha
the edges do not intersect and faees(connected components of the complementary of the gragh) ar
simply connected. Maps are sometimes referred tdakdmon graphs, fat-graphsand can be defined
combinatorially rather than topologically as is recalle®ection 2. A map ignicellularif is has a single
face. For instance, the unicellular maps on the sphere angléime trees.
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In this paper we consider the problem of counting unicetlodaps by the number of edges, when the
topology of the surface is fixed. In the orientable case, dhisstion has a respectable history. The first
formula for the numbe¢, (n) of orientable unicellular maps with edges ana + 1 — 2g vertices (hence
genusg) was given by Lehman and Walsh in [WL72], as a sum over thegert@artitions of size.
Independently, Harer and Zagier found a simple recurremicelila for the numbers, (rn) [HZ86]. Part
of their proof relied on expressing the generating functibanicellular maps as a matrix integral. Other
proofs of Harer-Zagier’s formula were given in [Las01, GjORecently, Chapuy [Cha09], extending
previous results for cubic maps [Chal0], gave a bijectivestroiction that relates unicellular maps of a
given genus to unicellular maps of a smaller genus, henclrlgdo a new recurrence equation for the
numbers,(n). In particular, the construction in[Cha09] gives a combonial interpretation of the fact
that for eachy the numbeg,(n) is the product of a polynomial in times then-th Catalan number.

For non-orientable surfaces, results are more recent. ftkepretation of matrix integrals over the
Gaussian Orthogonal Ensemble (space of real symmetridomsitin terms of maps was made explicit in
[GJ97]. Ledoux [Led09], by means of matrix integrals andiogonal polynomials, obtained for unicel-
lular maps on general surfaces a recurrence relation whisimilar to the Harer-Zagier one. As far as we
know, no direct combinatorial nor bijective technique hauecessfully been used for the enumeration of
a family of non-orientable maps until now.

A unicellular map isprecubicif it has only vertices of degreeand3: precubic unicellular maps are
a natural generalization of binary trees to general susfatrethis paper, we show that for &l € %N,
the number of precubic unicellular maps of simeon the non-orientable surface of Euler Characteristic
2 — 2h is given by an explicit formula, which has the form of a polymial in m times themth Catalan
number forh € N, and of a polynomial timeg™ if h ¢ N. These formulas, and our main results, are
presented in Section 3. Our approach, which is completatybieatorial, is based on two ingredients.
The first one, inspired from the orientable case [Chal0, @h&dto consider some special vertices called
intertwined nodeswhose deletion reduces the topological typef a map. The second ingredient is of
a different nature: we show that, among non-orientable neépsgiven topology and size, tleverage
numberof intertwined nodes per map can be determined explicithisTs done thanks to aawveraging
involution, which is described in Section 4. This enables us to find alsimgzurrence equation for the
number of precubic unicellular maps by the number of edgdstentopological type. As in the orientable
case, an important feature of our recurrence is that it isrsdgeonly on the topological type, contrarily
to equations of the Harer-Zagier type [HZ86, Led09], whdse the number of edges vary. Itis then easy
to iterate the recurrence, to obtain the promised countingtlas for precubic maps.

In the case ofeneral(not necessarily precubic) unicellular maps, our appraes not worlexactly
but it does work, in some sensasymptotically We obtain, with the same technique, the asymptotic
number of non-orientable unicellular maps of fixed topolaglyen the number of edges tends to infinity.
As far as we know, these formulas, and the ones for preculjis nmeever appeared before in the literature.

2 Topological considerations

2.1 Classical definitions of surfaces and maps

Surfaces. Our surfacesare compact, connected, 2-dimensional manifolds. We densiurfaces up to
homeomorphism. For any non-negative integewe denote bys, the g-torus, that is, the orientable
surface obtained by addinghandlesto the sphere. For any positivalf-integerh, we denote byN,
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the non-orientable surface obtained by addihgcross-capgo the sphere. Hencé&y is the spheres§;
is the torusN, /, is the projective plane and; is the Klein bottle. Theypeof the surfaces;, or Ny, is
the numbet, € {0, %, 1, %, ...} By the theorem of classification, each orientable surfateimeomor-
phic to one of th&, and each non-orientable surface is homeomorphicto onedfilisee e.g. [MTO1]).

Maps as graphs embeddingOurgraphsare finite and undirected; loops and multiple edges are atiow
A mapis an embedding (without edge-crossings) of a connectgghgrdo a surface, in such a way that
thefaces(connected components of the complement of the graph)ragdysconnected. Maps are always
considered up to homeomorphism. A mapiigcellularif it has a single face.

Each edge in a map is made of tivalf-edgesobtained by removing its middle-point. ThHegreeof a
vertex is the number of incident half-edgesleaf is a vertex of degree 1. ornerin a map is an angular
sector determined by a vertex, and two half-edges which@msecutive around it. The total number of
corners in a map equals the number of half-edges which isetthie number of edges. A maprioted
if it carries a distinguished half-edge called tioet, together with a distinguished side of this half-edge.
The vertex incident to the root is tmeot vertex The unique corner incident to the root half-edge and its
distinguished side is th@ot corner. From now on, all maps are rooted

Thetypeof a map is the type of the underlying surfacenilfis a map, we leb(m), e(m), f(m) and
h(m) be its numbers of vertices, edges, faces, and its type. Thestities satisfy th&uler formula

e(m) =v(m) + f(m) + 2 — 2h(m). Q)

Maps as graphs with rotation systems and twistsLet G be a graph. To each edgef G correspond
two half-edgeseach of them incident to an endpoint@ofthey are both incident to the same vertex if
e is a loop). Arotation systenfor GG is the choice, for each vertexof G, of a cyclic ordering of the
half-edges incident to. We now explain the relation between maps and rotation syst®©ur surfaces
are locally orientable and agrientation conventiorior a mapm is the choice of an orientation, called
counterclockwise orientatignn the vicinity of each vertex. Any orientation conventifor the mapm
induces a rotation system on the underlying graph, by tatkiagounterclockwise ordering of appearance
of the half-edges around each vertex. Given an orientatiomention, an edge = (vy, v9) of m is atwist

if the orientation conventions in the vicinity of the endpisiv, andv, are not simultaneously extendable
to an orientation of a vicinity of the edge this happens exactly when the two sides:@&ppear in the
same order when crossed clockwise aroundnd clockwise around,. Therefore a map together with
an orientation convention defines both a rotation systemeasubset of edges (the twists). Titip of a
vertexv consists in inverting the orientation convention at thatasxe This changes the rotation system
atwv by inverting the cyclic order on the half-edges incident t@and changes the set of twists by the fact
that non-loop edges incident ¢édbecome twist if and only if they were not twist (while the s&abf the
other edges remain unchanged). The next lemma is a claggicdbgical result (see e.g. [MTO01]).

Lemma 1 A map (and the underlying surface) is entirely determinetheytriple consisting of its (con-
nected) graph, its rotation system, and the subset of ite®ddnich are twists. Conversely, two triples
define the same map if and only if one can be obtained from tre by flipping some vertices.

By the lemma above, we can represent maps of positive typasstreet of paper as follows: we draw
the graph (with possible edge crossings) in such a way teaitiation system at each vertex is given by
the counterclockwise order of the half-edges, and we inéite twists by marking them by a cross (see
e.g. Figure 1). The faces of the map are in bijection withitbrlersof that drawing, which are obtained
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by walking along the edge-sides of the graph, and using theses in the middle of twisted edges as
"crosswalks” that change the side of the edge along whichi@melking (Figure 1). Observe that the
number of faces of the map gives the type of the underlyinfasarusing Euler formula.

(@) o< (D) ><«
border of tour

the face

Fig. 1: A representation of a map on the Klein bottle with threeFig. 2: (a) atwist; (b) a left corner; (c) a right
faces. The border of one of them is distinguished in dotteekli corner.

2.2 Unicellular maps, tours, and canonical rotation system

Tours of unicellular maps. Let m be a unicellular map. By definitiom has a unique face. Theur of

the mapm is done by following the edges af starting from the root corner along the distinguished side
of the root half-edge, until returning to the root-cornénc®m is unicellular, every corner is visited once
during the tour. An edge is satd/o-waysif it is followed in two different directions during the towf

the map (this is always the case on orientable surfacesjsasaidone-wayotherwise. The tour induces
anorder of appearancen the set of corners, for which the root corner is the leasheht. We denote by

¢ < d if the cornerc appears before the cornéalong the tour. Lastly, given an orientation convention,
a corner is saiteft if it lies on the left of the walker during the tour of map, amght otherwise (Figure 2).

Canonical rotation-system. As explained above, the rotation system associated to a snagfined up
to the choice of an orientation convention. We now explaiw kmchoose a particular convention which
will be well-suited for our purposes. A map is sgitecubicif all its vertices have degrekeor 3, and its
root-vertex has degree 1. Letbe a precubic unicellular map. Since the verticesmddll have an odd
degree, there exists a unique orientation convention &t eatex such that the number of left corners is
more than the number of right corners (indeed, by flippingréexave exchange its left and right corners).
We callcanonicalthis orientation convention. From now ome will always use the canonical orientation
convention This defines canonically a rotation system, a setwi$ts and a set ofeft/right corners
Observe that the root corner is a left corner (as is any cancatent to a leaf) and that vertices of degree
3 are incident to eithet or 3 left corners. We have the following additional property.

Lemma 2 In a (canonically oriented) precubic unicellular map, twma@ys edges are incident to left cor-
ners only and are not twists.

Proof: Let e be a two-ways edge, and let, co be two corners incident to the same vertex and separated
by e (c¢; andes coincide ifv has degree 1). Sineds two-ways, the corners, ¢ are either simultaneously
left or simultaneously right. By definition of the canonicalentation, they have to be simultaneously
left. Thus two-way edges are only incident to left cornentserefore two-ways edges are not twists since
following a twisted edge always leads from a left corner t@htrcorner or the converse. O
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2.3 Intertwined nodes.

We now define a notion afitertwined nodevhich generalizes the definition given in [Chal10] for precub
maps on orientable surfaces.

Definition 1 Letm be a (canonically oriented) precubic unicellular map, {ebe a vertex of degree 3,
and letcy, co, c3 be the incident corners in counterclockwise order aroundith the convention that;
is the first of these corners to appear during the toumof

e The vertex is anintertwined nodef c3 appears before; during the tour ofn.

e Moreover, we say that has flavorA if it is incident to three left corners. Otherwisejs incident to
exactly one right corner, and we say thais of flavorB, C, or D respectively, according to whether
the right corner iscy, ¢; Or c3.

Observe that the definition of the canonical orientation svpserequisite to define intertwined nodes. We
will now show that intertwined nodes are exactly the onesseieletion decreases the type of the map
without disconnecting it.

Theopeningof an intertwined node of a map is the operation consisting in splitting this vertex into
three (marked) vertices of degrégas in Figure 3. That is, we define a rotation system and setistst
of the embedded graphobtained in this way (we refrain from calling it a map yet,cgrit is unclear that
it is connected) as the rotation system and set of twistii@gefrom the original mam.

from ws -

from wq ./ 4t0 wy
./ /. t0 wy Sy
a d.'
opening to w3 C ’ d2 d
S TIE 3. from 113/. ‘1..‘
0 wa NJrom ws . e,
v _—— from w; to wo
.\ from wy
map m map n
w(mM)=w1 ¢ WwaCzws3Caly w(n)=wid;Wzdawadzw,
Fig. 3: Opening an intertwined node. Fig. 4: The tours ofm andn, in the case of flavoB.

Proposition 1 Let n be a positive integer and let be in {1,3/2,2,5/2,...}. For each flavorF in
{A,B, C,D}, the opening operation gives a bijection between the seteaiubic unicellular maps with
n edges, typé, and a distinguished intertwined node of flavarand the set of precubic unicellular maps
with » edges, typ@é — 1 and three distinguished vertices of degte@ he converse bijection is called the
gluing of flavor F'.

Moreover, if a precubic unicellular mag is obtained from a precubic unicellular mapof lower type
by a gluing of flavorF', thenm is orientable if and only ifi is orientable andt” = A.

We omit the proof of the Proposition. However, let us give &tire” of what happens, in the case of
flavorB. If m is a unicellular map, andis an intertwined node af, then the sequence of corners appear-
ing during the tour ofn has the formw(m) = w;ciwacswscows, Whereey, co, c3 are as in Definition 1,
andwy, we, w3, wy are sequences of corners. Now, debe the map obtained by openingatv. If v

has flavorB, then by following the edges of the mapstarting from the root, one gets the sequence of
cornersw(n) = wydiwsdawadzw,s, Wherews is themirror word of ws, as can be seen from Figure 4
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(we used three new letteds, d2, ds for the three corners of degréeappearing after the opening). Since
this sequence contains all the corners ofve know that is a unicellular map, and since it has two more
vertices thamm, its type ish(n) = h(m) — 1 (by Euler’s formula).

Conversely, given a unicellular mapwith three distinguished leaves, ds, ds, the gluing of flavor
B can be defined by identifying these three vertices to a swgieexv, and then choosing the rotation
system and the twisted edgesappropriately to ensure that the resulting majs unicellular, and that
v is an intertwined node of flavd in m.

The last statement of the Proposition is a consequence datthehat a precubic unicellular map is
orientable if and only if it has left-corners only in its carical orientation.

3 Main results.

3.1 The number of precubic unicellular maps.

In this section, we present our main results, which rely omficts. The first one is Proposition 1, which
enables us to express the number of precubic unicellulasmabtypeh carrying a distinguished inter-
twined node in terms of the number of maps of a smaller typee Sdtond one is the fact that, among
maps of typeh and fixed size, the average number of intertwined nodes inm@isth — 1. This last
fact, which is technically the most difficult part of this maprelies on the existence of an ” averaging
involution”, which will be described in Section 4.

Leth > 1bean elementogN, and letm > 1 be aninteger. Givem andh, we letn = 2m+1 ¢y, and
we letOy,(m) and A}, (m), respectively, be the sets of orientable and non-orieatat@cubic unicellular
maps of typeh with n edges. We leg;, (m) andn,(m), respectively, be the cardinality 63, (m) and
Np(m).

In order to use Proposition 1, we first need the following easysequence of Euler’s formula:

Lemma 3 Letl %N and letm be a precubic unicellular map of typevith n = 2m + 1,cy edges. Then
m hasm + (—1)% — 3[{] non-root leaves, wherd| = [ — 11,4y denotes the integer part of

From the lemma and Proposition 1, the numkigi°*(m) of non-orientableunicellular precubic maps
of type h with n edges carrying a distinguished intertwined node equals:

e (m) = 4<ml - 33Lh - 1J>77h1(m) +3 <ml - 33% - 1J)fh1(m)’ 2

wherem’ = m + (—1)2". Here, the first term accounts for intertwined nodes obthimegluing three
leaves in anon-orientablanap of typeh — 1 (in which case the flavor of the gluing can be eitheB, C
or D), and the second term corresponds to the case where thiegtagp of typeh — 1 is orientable(in
which case the gluing has to be of flawyC or D to destroy the orientability).

The keystone of this paper, which will be discussed in the segtion, is the following result:

Proposition 2 There exists and involutio® of A/, (m) such that for all mapsn € A, (m), the total
number of intertwined nodes in the mapsand ®(m) is 4h — 2. In particular, the average number of
intertwined nodes of elements&f, (m) is (2k — 1), and one hag"“*(m) = (2h — 1)y, (m).

It is interesting to compare Proposition 2 with the analagmasult in [Chal0]: in the orientable case,
eachmap of genus has exactlhy2h intertwined nodes, whereas here the quar(tity — 1) is only an
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average valueFor example, Figure 5 shows two maps on the Klein bottle-(1) which are related by
the involution®: they have respectiveland0 intertwined nodes.
As a direct corollary of Proposition 2 and Equation (2), wa state our main result:

Theorem 1 The numbersy, (m) of non-orientable precubic unicellular maps of typ&vith 2m + 1,,cn
edges obey the following recursion:

=1 emm) =" T e s(M T T aam. @

wherem’ = m+(—1)2", and where;, (m) is the number of orientable precubic unicellular maps ofuggen
h with 2m + 1,¢n edges, which i if & ¢ N, and is given by the following formula otherwise [Cha09]:

o m+1 B (2m)!
Sn(m) = G <3,3, 3 mAl— 3h> Catlm) = o mi(m + 1= 3m)1” “)

The theorem implies explicit formulas for the numbggém ), as shown by the two next corollaries:
Corollary 1 (the caseh € N) Leth € Nandm € N, m > 3h — 1. Then the number of non-orientable
precubic unicellular maps of typewith 2m + 1 edges equals:

B m+1 B ¢ - (2m)!
mn(1m) = e (3,3, 3 mAl— 3h) Catlm) = Gt +1 — 30! ®)

wherec), = 3 - 23h*2i hf 2 16~
2! &=\ 1 '

Corollary 2 (the caseh ¢ N) Leth € %+N andm € N, m > 3| h|. Then the number of non-orientable
precubic unicellular maps of typewith 2m edges equals:

4lLh] m—1
mm) = (2h—1)(2h—3)...2(3,3,...,3,m—1—3th>Xm/Q(m)
gmtlh]l=1(m — 1)1
61hI (2h — )lI(m — 1 — 3[A))!

Proof of Corollary 1: | follows by induction and Equations (3) and (4) that theesta¢nt of Equation (5)
holds, with the constant, defined by the recurreneg = 0 andcy, = ap—1 + bp_1¢ch—1, Withap_1 =

m andb,_1 = 5. The solution of this recurrenceds = Zlhgol aibii1biio .. bp_1.

- 3. 4h-1-1 .
Now, by definition, we have;b;11b;412...b,—1 = T DR+ 3@+ 5) . 2h=1) Using the
expression L = 2"hl(20)! and reporting it in the sum yields the expression
P 2T D2 13)...2h—1)  (2h)2ul porting y P
of ¢, given in the lemma. O

Proof of Corollary 2: Since for non-integeh we have¢,_1(m) = 0, the first equality is a direct
consequence of an iteration of the theorem. Therefore thetbimg to prove is thaty,,(m) = 4™~ 1.
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This can be done easily by induction via an adaptation of R&iijection [Rém85], as follows. For
m = 1, we haven,,(m) = 1, since the only precubic projective unicellular map wittotedges is "the
twisted loop with a hanging leaf”. For the induction stepsetve that precubic projective unicellular
maps with one distinguished non-root leaf are in bijectidgtiywrecubic projective unicellular maps with
one leaf less and a distinguished edge-side: too see tHatedhe distinguished leaf, transform the
remaining vertex of degrekinto an edge, and remember the side of that edge on which idjealreaf
was attached. Since a projective precubic unicellular migp2¥ edges hag — 1 non-root leaves angk
edge-sides, we obtain for all > 1 thatm n,,(m + 1) = 4mn,,(m), and the result follows. O

opening

“left-to-right m n

(a) B _right-to-left (b)

Fig. 5: Two maps on the Klein Bottle. (d).r(m) = 1, Tre(m) = 1; (b)  Fig. 6: The opening, in the case of
Tir(m) = 2, Tre(m) = 0. dominant unicellular maps.

3.2 The asymptotic number of rooted unicellular maps.

Though our results do not apply to the general casalafnicellular maps of given type (i.e., not neces-
sarily precubic), they do hold, in some sersgymptotically This is what we explain in this section.

If mis a unicellular map, itsoreis the map obtained by deleting recursively all the leaves aintil
having only vertices of degrexor more left. Therefore the core is a unicellular map formgdhmains of
vertices of degre® attached together at vertices of degree at [@asheschemef m is the map obtained
by replacing each of these chains by an edge. Hence, in tkesgtall vertices have degree at léasiVe
say that a unicellular map gominantif all the vertices of its scheme have degfeeThis terminology,
borrowed from [Chal0], comes from the next proposition.

Proposition 3 ([CMS09, BR09]) Leth € $N. Then, among non-orientable unicellular maps of type
with n edges, the proportion of maps which are dominant tendswbenn tends to infinity.

The idea behind that proposition is the following. Given bhesnes, one can easily compute the generat-
ing series of all unicellular maps of schemeby observing that these maps are obtained by substituting
each edge of the scheme with a "branch of tree”. From thatllivi’s that this generating series has a
unique principal singularity at = i, with dominating term(1 — 4z)—¢(¥)/2=1 up to a multiplicative
constant. Therefore, the schemes with the greatest catitiibare those which have the maximal number
of edges, which for a given type, is achieved by schemes wdilbgertices have degrex

Now, most of the combinatorics defined in this paper stilllgpp dominant unicellular maps. Given
a dominant mamn of type h and schemea, andv an intertwined node of, we can define the opening
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operation ofm atv by splitting the vertex in three, and deciding on a convention on the redistribution
of the three "subtrees” attached to the scheme at this peigti(e 6): one obtains a dominant majof
type h — 1 with three distinguished vertices. These vertices areangthree vertices: they have to be
in "general position” inn (i.e., they cannot be part of the core, and none can lie ontafpath one to
another), but again, in the asymptotic case this does notradig difference: when tends to infinity,
the proportion of triples of vertices which are in "generatjtion” tends tol. We do not state here the
asymptotic estimates that can make the previous claimssgrébey can be copied almost verbatim from
the orientable case [Chal0]), but rather we state now oumpitic theorem:

Theorem 2 Let x,(n) be the number of non-orientable rooted unicellular maps/pét with n edges.
Then one has, whentends to infinity:

nB TL3
(2h — 1)kp(n) ~ 4§/€h,1(n) + 3§eh,1(n)
wheree, (n) denotes the number of orientable rooted unicellular mapggméh with n edges.

Using thate,(n) = 0if ¢ N, thatey, (n) ~ 3h=3 otherwise, and that,,(n) ~ 14" [BCR88],
we obtain:

1
o hyE

Corollary 3 Leth € %N. Then one has, whentends to infinity:

4lh]
T2 el 2n— 1)

Ch

kn(n) ~ N n?h=34m if h & N.

i ifheN | Kn(n)

where the constant, is defined in Corollary 1.

4 The average number of intertwined nodes

In this section we prove Proposition 2, and in particularkbg result that the average number of inter-
twined nodes per map, among precubic unicellular maps &f/iyand sizen is (2h — 1):

't (m) = (2h — 1) (m). (6)

Let us emphasize the fact that the number of intertwined sigleot a constant over the set of unicel-
lular precubic maps of given type and number of edges. Foariice among the six maps with 5 edges
on the Klein bottleN,, three maps have 2 intertwined nodes, and three maps haeesemnFigure 7. As
stated in Proposition 2, our strategy to prove Equationg®) iexhibit a bijectionb from the set\V}, (m)
to itself, such that for any given map, the total number of intertwined nodes in the mapsd(m) is
4h(m) — 2. Observe from Figure 7 that the involutidncannot be a simple re-rooting of the map

Before defining the mapping, we relate the number of intertwined nodes of a map to ceptaiperties
of its twists. Letm be a (canonically oriented) precubic map, and leé an an edge aft which is a twist.
Let ¢ be the corner incident towhich appears first in the tour af. We say that is left-to-rightif cis a
left-corner, and that it isght-to-left otherwise (see Figure 5). In other words, the twist left-to-right if
it changes the side of the corners from left, to right, whes @rossed for the first time in the tour of the
map (and the converse is true for right-to-left twists). Wgitdhe proof of the next lemma:
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o0 Qo -Go «(H HP AP

Fig. 7: The precubic unicellular maps with 5 edges on the Klein bdttie root in the unique leaf corner). Intertwined
nodes are indicated as white vertices.

Lemma 4 Letm be a precubic unicellular map of typgm), considered in its canonical orientation.
Then its numbers(m) of intertwined nodesT, s (m) of left-to-right twists, andl’,(m) of right-to-left
twists are related by the formula:

2h(m) = 7(m) + Trr(m) — Tre(m). 7

We now define the promised mappifrcaveraging the number of intertwined nodes. e a unicel-
lular precubic map on a non-orientable surface. We conglidecanonical orientation convention for the
mapm, which defines a rotation system and set of twists. The setisfs is non-empty since the map
lives on a non-orientable surface. By cutting every twistnodit their middle point, one obtains a graph
together with a rotation system and sodengling half-edgethat we callbuds The resulting embedded
graph with buds, which we denote lay, can have several connected components and each component
(which is a map with buds) can have several faces; see FiguMe&et a convention for the direction in
which oneturns around a facef m: the edges are followed in such a way that every corner igttaft is
possible sincé has no twist). For any buidof m, we leto(b) be the bud following when turning around
the face ofm containingb. Clearly, the mapping is a permutation on the set of buds. We now define
®(m) to be the graph with rotation system and twists obtained fitolry gluing together into a twist the
budsco(b) anda(b') for every pair of bud$, b’ forming a twist ofm. The mappingp is represented in
Figure 8.

Before proving that(m) is a unicellular map, we set some additional notations. Wmetebyk the
number of twists ofn and we denote byw(m) = wyws - - - wer41 the sequence of corners encountered
during the tour ofm, where the subsequences andw,; are separated by the traversal of a twist for
i = 1...2k. Observe that corners im; are left corners ofn if i is odd, and right corners ifis even
(since following a twist leads from a left to a right cornertbe converse). Hence, the sequence of
corners encountered between two buds around a fage ae one of the sequence§, ws, ..., w),,
wherew] = wap4+1w1, and fori > 1, w} = w; if 7 is odd andw; = w; otherwise (wherev; is themirror
sequence ofy; obtained by reading); backwards). We identify the buds &f (i.e. the half-twists ofn
or m) with the integers in(1, ..., 2k} by calling: the bud following the sequence of cornersaround
the faces ofi. The permutatiom can then be considered as a permutatiofilof . . , 2k} and we denote
r = o~ 1(1). The map in Figure 8 gives = (1,8,13,2,9, 14, 3,10)(4,11,6,5)(7,12) andr = 10.

Lemma5 The embedded graph(m) is a unicellular map. Moreover, the rotation system and det o
twists of®(m) inherited fromm correspond to the canonical orientation conventiorgfn). Lastly, the
sequence of corners encountered during the toub@f) readsv;vs . . . vo+1, Where the subsequences
v; separated twist traversals are given by = w,(, 41—y fori = 1,...,r, v; = Wo(2n4rr1-4) fOr
i=7r+1,...,2k, and vag41 = wak41-
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Fig. 8: A unicellular mapm and its image by the mappin§y. The twists are indicated by (partially) dotted lines,
while the mapn is represented in solid lines.

Lemma 6 Letm be a positive integer and be in{1/2,1,3/2,...}. The mappingp is a bijection from
the set\V;,(m) to itself. Moreover, for every map in NV, (m), the total number of intertwined nodes in
the mapsn and®(m) is 4h — 2.

Proof of Lemma 6: Clearly, the maps: and®(m) have the same number of edges and vertices. Hence,
they have the same type by Euler formula. Moreover, they hattek > 0 twists (for their canonical
convention) hence are non-orientable. Thhisnaps the sed}, (m) to itself. To prove the bijectivity (i.e.

—

injectivity) of ®, observe that for any map, the embedded grapksand®(m) are equal; this is because
the canonical rotation system and set of twistsnadind®(m) coincide. In particular, the permutation
on the half-twists ofn can be read fron®(m). Hence, the twists oh are easily recovered from those of
®(m): the buds andj form a twist ofm if o (i) ando(5) form a twist of®(m).

We now proceed to prove that the total number of intertwinedes inm and ®(m) is 4h — 2. By
Lemma 4, this amounts to proving tHBf: (m) — Tr(m) + Tor (P(m)) — T (P(m)) = 2. Sincem and
®(m) both havek twists, T; r (m) — Try(m) + Tor (P(m)) — Tre (P(m)) = 2(Tir(m) + T (P(m)) — k).
Hence, we have to provg x (m) + Tix(®(m)) = k + 1.

Let i be a bud ofm, let ¢ be the twist ofm containingi, and letc, ¢’ be the corners preceding and
following 7 in counterclockwise order around the vertex incident.t®y definition, the twist of m is
left-to-right if and only ifc appears beforé during the tour ofn. Given that the cornersandc’ belong
respectively to the subsequenegsandw, ;) (exceptifi = r in which caser (i) = 1 andc’ is inwag 1),
the twistt is left-to right if and only ifi < o(¢) ori = r.

Before going on, let us introduce a notation: for an integere denote byi the representative of
i modulo 2k belonging to{1,...,2k}. Let us now examine under which circumstances the d¢
is part of a left-to-right twist ofb(m). The corners! andd’ preceding and following the bud(¢) in
counterclockwise order around the vertex incident tg belong respectively ta, ;) andw,, ;) (except
if (i) = r, in which casero(i) = 1 andc’ belongs towsx11). By Lemma 5w, = v, for
i = 1...2k. Therefore, the twist’ of ®(m) containingo (i) is left-to-right if and only ifr +1 — ¢ <
r+1—o(i)oro(i)=r.

The two preceding points gives the numbigg (m) + 71 (®(m)) of left-to right twists as

Ton(m) + Ton(®(m)) = 14+ 1 37 5(3),
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whered (i) = 1,5 T T iem is the sum of two indicator functions (the factiof2 accounts for
the fact that a twist has two halves). The contributi¢i) is equalto 2 ifi < r < o (i), 0ifo(i) < r < i,
and 1 otherwise. Finally, there are as many integesach thati < r < o(i) as integers such that
o(i) <r <i(true for each cycle of). Thus,zfi1 0(i) = 2k, andT x(m) + T1 o (®(m)) =k +1. O

The last lemma is sufficient to establish Equation (6), aedethumerative results of Section 3. How-
ever, Proposition 2 was saying a little bit more, namely thatijection® can be chosen as @volution

Proof of Proposition 2: Observe that, as we defined it, the bijecti®ris not an involution. But one
can easily define an involution frod, as the mapping acting @ on elementsn of A, (m) such that
7(m) > 2h — 1, acting asb~! if 7(m) < 2h — 1, and as the identity if (m) = 2h — 1. O
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