A BIJECTION FOR COVERED MAPS ON ORIENTABLE SURFACES

OLIVIER BERNARDI AND GUILLAUME CHAPUY

Abstract

Unicellular maps are a natural generalisation of plane trees to higher genus surfaces. In this article we study covered maps, which are maps together with a distinguished unicellular spanning submap. We prove that the covered maps of genus g with n edges are in bijection with pairs made of a plane tree with n edges and a bipartite unicellular map of genus g with $n+1$ edges. This generalises to any genus the bijection given in [2] between planar tree-rooted maps (maps with a distinguished spanning tree) and pairs made of a tree with n edges and a tree with $n+1$ edges. In the special case of genus 1 , a duality argument allows us to obtain a bijective proof of a formula of Lehman and Walsh [4] about the number of tree-rooted maps of genus 1 .

1. Introduction

We consider maps on orientable surfaces of arbitrary genus. A map is unicellular if it has a single face, that is, if the complement of the map is simply connected. A unicellular map on the torus is represented in Figure 4(b). A covered map is a map together with a distinguished spanning unicellular submap. A map of genus g can have spanning submaps of any genus in $\{0 \ldots, g\}$. An example of covered map is given in Figure 1. The main goal of this article is to exhibit a bijection Ψ between covered maps of genus g and size n and pairs made of a plane tree of size n and a unicellular map of genus g and size $n+1$.

Covered maps are a natural generalisation of tree-rooted maps, that is, maps together with a distinguished spanning tree. In the planar case these two notions coincide and our bijection Ψ specialise into the bijection found in [2] in order to give a bijective explanation of a result of Mullin [6]: the number of planar tree-rooted maps of size n is $T_{n}^{0}=C_{n} C_{n+1}$, where $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ is the $n^{\text {th }}$ Catalan number i.e. the number of plane trees with n edges. In the case of the torus, a duality argument shows that exactly half of the covered maps of size n are tree-rooted maps. Therefore, our bijection Ψ give a bijective explanation to the formula of Lehman and Walsh [4]: the number of tree-rooted maps of genus 1 is $T_{n}^{1}=\frac{1}{2} C_{n} B_{n+1}^{1}$, where $B_{n}^{1}=\frac{(2 n-1)!}{6 n!(n-3)!}$ is the number of bipartite unicellular maps with n edges.

We first recall some definitions. A map is a connected graph embedded in an orientable surface considered up to homeomorphism. By embedded, one means drawn on the surface in such a way the edges do not intersect and the faces (connected components of the complement of the graph) are simply connected. An example is given in Figure 1 (forget the thick lines for the time being). The genus of a map is the genus of the surface in which it is embedded and its size is the number of edges. A planar map is a map of genus 0 . A map is unicellular if it has a single face. For instance, plane trees are the unicellular planar maps. A map is bipartite if the underlying graph is. A unicellular bipartite map of genus 1 is represented in Figure 4(b).

The embedding of a map defines a cyclic order (the counterclockwise order) of the half-edges around each vertex. There is, in fact, a one-to-one correspondence between maps and connected graphs together with a cyclic order of the edges around each vertex [5]. Equivalently, a map can be defined as a triple $M=(H, \sigma, \alpha)$, where H is a finite set whose element are the half-edges, α is an involution of H without fixed point, and σ is a permutation of H such that the group generated by α and σ acts transitively on H. The cycles of the involution σ are the edges and the cycles of the permutation σ are the vertices together with the counterclockwise order of half-edges around them. For instance, the map in Figure 1 is $M=(H, \sigma, \alpha)$, where $H=$ $\left\{1,1^{\prime}, 2,2^{\prime}, \ldots, 9,9^{\prime}\right\}, \alpha=\left(1,1^{\prime}\right)\left(2,2^{\prime}\right) \cdots\left(9,9^{\prime}\right)$ and $\sigma=(1,2,6)\left(1^{\prime}, 2^{\prime}, 3,5^{\prime}\right)\left(3^{\prime}, 4^{\prime}\right)\left(5,9^{\prime}\right)\left(4,8^{\prime}, 9\right)\left(6^{\prime}, 7^{\prime}, 8,7\right)$. Observe that the faces of M are in bijection with the cycles of the permutation $\phi=\sigma \alpha$. For the map of Figure $1, \phi=\left(1,2^{\prime}, 6,7^{\prime}, 6^{\prime}\right)\left(1^{\prime}, 2,3,4^{\prime}, 8^{\prime}, 7,8,9,5\right)\left(3^{\prime}, 5^{\prime}, 9^{\prime}, 4\right)$. A map is rooted if one of the half-edges is distinguished as the root; we denote by $M=(H, r, \sigma, \alpha)$ the map (H, σ, α) having root r. In the following

[^0]maps are rooted and are considered up to isomorphism (relabelling of the half-edges).
Given a subset S of H, the restriction of π to S, denoted by $\pi_{\mid S}$ is the permutation of S whose cycles are obtained from the cycles of π by erasing the elements not in S. For instance, if $\pi=(a, b, c)(d, e)(f, g, h, i)$ and $S=\{b, c, f, g, i\}$, then $\pi_{\mid S}=(b, c)(f, g, i)$. A submap of a map $M=(H, \sigma, \alpha)$ is a map of the form $N=\left(S, \alpha_{\mid S}, \sigma_{\mid S}\right)$, where $S \subseteq H$. It is spanning if every cycle of σ contains an element of S. A submap of a map of genus g has genus less or equal to g. For instance, the map M in Figure 1 has genus 1 while the spanning submap $T=\left(S, \alpha_{\mid S}, \sigma_{\mid S}\right)$ induced by the set $S=\left\{1,1^{\prime}, 3,3^{\prime}, 6,6^{\prime}, 8,8^{\prime}, 9,9^{\prime}\right\}$ (thick lines) has genus 0. A pair (M, T) made of a map M and a unicellular spanning submap T is a covered map. A covered $\operatorname{map}(M, T)$ is represented in Figure 1. Given a covered map (M, T), a half-edge is called internal if it belongs to the submap T and external otherwise. An orientation of a map $M=(H, \sigma, \alpha)$ is a partition $H=I \uplus O$ such that the involution α maps the set I on the set O; the half-edges in I and O are respectively called ingoing and outgoing. The orientation $I=\left\{1^{\prime}, 2^{\prime}, \ldots, 9^{\prime}\right\}$ and $O=\{1,2, \ldots, 9\}$ of the map M is represented in Figure 2(a).

2. Bijection

We now define the mapping Ψ which associates to a covered map (M, T) a pair made of a (rooted plane) tree $\Psi_{1}(M, T)$ and a bipartite unicellular map $\Psi_{2}(M, T)$. The mapping Ψ has two steps. At the first step, one defines an orientation $(I, O)=\delta_{M}(T)$ of the map M which is closely related to the order in which half-edges of M appear around the submap T. At the second step, the map is broken into two parts: a plane tree $\Psi_{1}(M, T)$ containing every edge of M and a bipartite unicellular map $\Psi_{2}(M, T)$ which roughly speaking describes how to fold the tree $\Psi_{1}(M, T)$ in order to obtain the map M (and the orientation (I, O)).

Step 1: orientation. Consider a map $M=(H, r, \alpha, \sigma)$. We denote by $\phi=\sigma \alpha$ the permutation corresponding to the faces of M. For any unicellular spanning submap T of M, we call the motion function around T the mapping θ on H defined by $\theta(h)=\sigma(h)$ if h is external and $\theta(h)=\phi(h)$ otherwise. It can be shown that the motion function θ is a cyclic permutation of H if and only if T is a unicellular map. In this case, the motion function θ induces a total order on the set of half-edges H by setting $r<_{T} \theta(r)<_{T} \theta^{2}(r) \cdots<_{T} \theta^{|H|-1}(r)$. For instance, the order induced by the spanning submap T in Figure 1 is $1<2^{\prime}<3<4^{\prime}<3^{\prime}<5^{\prime}<1^{\prime}<2<6<7^{\prime}<8<9<5<9^{\prime}<4<8^{\prime}<7<6^{\prime}$. We are now ready to define the orientation $\delta_{M}(T)$ which is represented in Figure 2.
Definition 2.1. Let M be a map. The mapping δ_{M} associates to a unicellular submap T of M the orientation $\delta_{M}(T)=(I, O)$, where the set of ingoing half-edges I contains the internal half-edges such that $\alpha(h)<_{T} h$ and the external half-edges such that $h<_{T} \alpha(h)$ (and $\left.O=H-I\right)$.

Step 2: unfolding. Let us first describe the unfolding step informally. At this step, each vertex of the map M is broken according to the rule described in Figure 3(a). The rule is the following: given a vertex, that is, a cycle $v=\left(h_{1}, \ldots, h_{k}\right)$ of σ we consider the indices $1 \leq i_{1}<i_{2}<\cdots<i_{l}=k$ of the ingoing half-edges incident to v. At the unfolding step, the vertex v is decomposed into l vertices $v_{1}=\left(h_{1}, \ldots h_{i_{1}}\right), v_{2}=\left(h_{i_{1}+1}, \ldots, h_{i_{2}}\right), \ldots, v_{l}=\left(h_{i_{l-1}+1}, \ldots, h_{i_{l}}\right)$. Note that the decomposition of v can be written as: $v=v_{1} v_{2} \cdots v_{l} \pi_{\bullet}$, where $\pi_{\bullet}(h)=h$ if $h \in O$ and $\pi_{\bullet}\left(h_{i_{j}}\right)=h_{i_{j+1}}$ for $j=1, \ldots, l$. Figure 3(a) shows the topological representation of the decomposition of a vertex incident to 3 ingoing half-edges. After unfolding, one gets the vertices v_{1}, v_{2}, v_{3} (they will be vertices of the plane tree $\Psi_{1}(M, T)$) and a big black vertex corresponding to the permutation π_{\bullet} (it will be a vertex of the unicellular bipartite map $\Psi_{2}(M, T)$).

We now describe the unfolding step in more details. Let $(I, O)=\delta_{M}(T)$ be the orientation of M associated to the unicellular map T. Let i and o be two new elements not in H. We define σ^{\prime} (resp. ϕ^{\prime}) as the permutation of $I^{\prime}=I \cup\{i\}$ (resp. $O^{\prime}=O \cup\{o\}$) obtained from σ by inserting the new half-edge i (resp. o) just before the root r in the cycle of σ (resp. ϕ) containing r. We also consider the restrictions $\pi_{\bullet}=\sigma_{\mid I^{\prime}}^{\prime}$ and $\pi_{\circ}=\phi_{\mid O^{\prime}}^{\prime}$. In our favourite example, we get $\pi_{\bullet}=(i)\left(1^{\prime}, 2^{\prime}, 5^{\prime}\right)\left(3^{\prime}, 4^{\prime}\right)\left(6^{\prime}, 7^{\prime}\right)\left(8^{\prime}\right)\left(9^{\prime}\right)$ and $\pi_{\circ}=(o, 1,6)(2,3,7,8,9)(4)$. We now define $\pi=\pi_{\bullet} \pi_{\circ}^{-1}$ and $\tau^{\prime}=\sigma^{\prime} \pi_{\bullet}^{-1}$ (here we make a slight abuse of notation by considering that $\pi_{\bullet}=\sigma_{\mid I^{\prime}}^{\prime}$ acts as the identity on O^{\prime} and that $\pi_{\circ}=\phi_{\mid O^{\prime}}^{\prime}$ acts as the identity on I^{\prime}). We are now ready to define the mapping Ψ.

Figure 1. A map M (rooted on the half-edge 1) and a unicellular spanning submap T (thick lines).

Figure 2. (a) Orientation $(O, I)=\delta_{M}(T)$.(b) Unfolding

Figure 3. Topological representation of the unfolding around a vertex (a) and around a face (b).

Figure 4. (a) The tree $\Psi_{1}(M, T)$. (b) The unicellular map $\Psi_{2}(M, T)$.

Definition 2.2. Let $M=(H, r, \sigma, \alpha)$ be a map and let T be a unicellular spanning submap. The mapping Ψ associates to the covered map (M, T) the pair $\left(\Psi_{1}(M, T), \Psi_{2}(M, T)\right)$ defined by: $\Psi_{1}(M, T)=(H, t, \tau, \alpha)$ and $\Psi_{2}(M, T)=\left(H^{\prime}, i, \pi, \alpha\right)$ where $\tau=\tau_{\mid H}^{\prime}$ and $t=\tau^{\prime}(i)$.

The image of the covered map in Figure 1 by Ψ_{1} and Ψ_{2} are represented respectively in Figure 4 (a) and (b). Our main result is the following:

Theorem 2.3. The mapping $\Psi:(M, T) \mapsto\left(\Psi_{1}(M, T), \Psi_{2}(M, T)\right)$ is a bijection between covered maps of size n and genus g and pairs made of a tree of size n and a bipartite unicellular map of size $n+1$ and genus g.

3. Enumerative corrolaries.

The immediate enumerative corrolary of Theorem 2.3 is the following.
Corollary 3.1. The number of covered maps of size n and genus g is $S_{n}^{g}=C_{n} B_{n+1}^{g}$, where $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ is the $n^{\text {th }}$ Catalan number and B_{n}^{g} is the number of bipartite unicellular maps with n edges.

In [3], an expression is given for the number B_{n}^{g} of bipartite unicellular maps. In particular, it is shown there that for a given genus g the asymptotic of B_{n}^{g} is

$$
B_{n}^{g} \sim_{n \rightarrow \infty} \frac{1}{\sqrt{\pi} g!48^{g}} \cdot n^{3 g-3 / 2} 4^{n}
$$

Using this formula, we obtain the following asymptotic result.
Proposition 3.2. Let g be a non-negative integer. The asymptotic number of covered maps of genus g and size n is

$$
\begin{equation*}
S_{n}^{g} \sim \frac{4}{\pi g!96^{g}} \cdot n^{3 g-3} 16^{n} \tag{1}
\end{equation*}
$$

Covered maps vs tree-rooted maps. As mentioned in the introduction, the notion of covered map generalise the well studied notion of tree-rooted map. In the planar case (genus 0), the two notions coincide. In the toroidal case (genus 1), a duality argument shows that exactly half of the covered maps of size n are tree-rooted maps. This property, together with the expression of B_{n}^{1} given in [3] allows one to recover a result obtained by Lehman and Walsh:
Proposition 3.3. [4] The number T_{n}^{1} of tree-rooted maps of size n on the torus is

$$
T_{n}^{1}=\frac{1}{2} A_{n}^{1}=\frac{1}{2} C_{n} B_{n}^{1}=\frac{(2 n)!(2 n+1)!}{12(n-2)!n!((n+1)!)^{2}}
$$

For genus g greater than 1, no nice relation seems to hold between the number S_{n}^{g} of covered maps of size n and the number T_{n}^{g} of tree-rooted maps of size n. However, it is proved in [1] that the asymptotic number of tree-rooted maps of genus g is

$$
\begin{equation*}
T_{n}^{g} \sim \frac{4}{\pi g!48^{g}} \cdot n^{3 g-3} 16^{n} \tag{2}
\end{equation*}
$$

Comparing this result with (1) shows that $S_{n}^{g} \sim 2^{g} T_{n}^{g}$. In other words, the probability that a covered map of genus g is a tree-rooted map tends to $1 / 2^{g}$. As an algorithmic consequence of this fact, our bijection could be used to provide an optimal coding of tree-rooted maps of genus g, using only $4+o(1)$ bits per edge.

References

[1] Edward A. Bender, E. Rodney Canfield, and Robert W. Robinson. The asymptotic number of tree-rooted maps on a surface. J. Combin. Theory Ser. A, 48(2):156-164, 1988.
[2] Olivier Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron. J. Combin., 14(1):Research Paper 9, 36 pp . (electronic), 2007.
[3] Alain Goupil and Gilles Schaeffer. Factoring n-cycles and counting maps of given genus. European J. Combin., 19(7):819-834, 1998.
[4] A.B. Lehman and T.R.S. Walsh. Counting rooted maps by genus II. J. Combin. Theory Ser. B, 13:122-141, 1972.
[5] B. Mohar and C. Thomassen. Graphs on surfaces. J. Hopkins Univ. Press, 2001.
[6] R.C. Mullin. On the enumeration of tree-rooted maps. Canad. J. Math., 19:174-183, 1967.

[^0]: Date: December 31, 2007.

