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Abstrat

Iterated morphisms of the free monoid are very simple ombinatorial objets whih

produe in�nite sequenes by replaing iteratively letters by words. The aim of

this paper is to introdue a formalism for a notion of two-dimensional morphisms;

we show that they an be iterated by using loal rules, and that they generate

two-dimensional patterns related to disrete approximations of irrational planes

with algebrai parameters. We assoiate suh a two-dimensional morphism with

any usual Pisot unimodular one-dimensional iterated morphism over a three-letter

alphabet.

Key words: disrete plane, multidimensional ombinatoris on words, iterated

morphism, Z

2

-ation, tiling.

1 Introdution

Iterated morphisms (also alled substitutions or ination rules) are very simple

ombinatorial objets whih produe in�nite sequenes by iteration: roughly

speaking, a morphism replaes a letter by a word. They an be seen as one

of the mathematial translations of a maro in omputer siene (replaem-

ent of the name of the maro by its de�nition). These morphisms are widely

studied and have a rih struture, shown by their natural interations with
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ombinatoris on words, ergodi theory, linear algebra, spetral theory, ge-

ometry of tilings, theoretial omputer siene, Diophantine approximation,

transendene, graph theory, and so on (see [Que87℄ and the referenes in

[PF02,AS03℄).

This paper aims at introduing a formalism and some examples for a notion

of two-dimensional morphism that an be iterated, either by means of global

plaing rules, or by loal rules. One of the purposes of the introdution of suh

a devie is to make possible the iteration of the two-dimensional morphism to

get in spei� ases an expliit onstrution of a disrete approximation of a

plane.

Sine we will in the rest of the paper try to extend the theory to higher

dimension, let us point here a \trivial" fat in dimension 1 whih beomes

muh more ompliated in higher dimension: letters in �nite words are natu-

rally ordered by their rank of apparition. As a onsequene, the set of �nite

words has a struture of monoid, that is, two �nite words W

1

;W

2

an be

naturally \ombined" to give the word W

1

W

2

by putting the two words side

by side. This allows a simple de�nition of iterated morphisms using the rule

�(W

1

W

2

) = �(W

1

)�(W

2

). This de�nition is obviously onsistent, and an be

extended in a natural way to �nite and in�nite one-dimensional sequenes.

Two-dimensional patterns

It is a mathematial reex to try to extend a one-dimensional theory to several

dimensions. But the theory of words seems so strongly one-dimensional that

the tentative might seem arti�ial in this ase, although it is quite fun to

work on. However, a number of reent advanes in mathematis and physis

(tilings, quasi-rystals, Z

d

-ations and higher-dimensional symboli dynamis,

see for instane [Sen95,Rob96,BM00,LP02℄) point to the need of a good theory

of higher-dimensional words. The basi setting is not yet ompletely lear. In

partiular, many results in tilings seem to depend on Delone sets or similar

sets, whih have weaker strutures than latties. The theory seems diÆult

in this ase, and we will restrit in this paper to the �rst nontrivial ase:

two-dimensional in�nite sequenes, seen as sequenes (U

i;j

) indexed by Z

2

.

Following the de�nition of one-dimensional words, it is natural to de�ne two-

dimensional words as geometrial patterns that ontain no information on the

loation of the pattern inside Z

2

. More preisely, a two-dimensional nonpointed

pattern is a map from a �nite subset of Z

2

to the alphabet up to a translation.

A three-letter example is given by a 1, put on the left handside of a 3 and

below a 2 (See Fig. 1.1).

The main problem is that unlike the one-dimensional ase, there is here no

natural monoid struture: there is no privileged way to put two �nite non-

pointed patterns side by side. It is also very unlear whether a given olletion
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2

3 1

Fig. 1.1. A nonpointed pattern (with no loation information).

of nonpointed patterns an tile the plane, while in the ase of one-dimensional

words, this is obviously always possible. Remark however that, in the parti-

ular ase of retangular patterns of the same size, it is possible to de�ne two

anonial operations (putting one retangle on the side, or on the top, of the

other) [GA97℄.

Two-dimensional substitution rules

We want to de�ne in this setting two-dimensional morphisms. Following the

one-dimensional de�nition, we all a two-dimensional substitution rule a map

that assoiates with eah letter a �nite (two-dimensional) nonpointed pattern.

To be alled a morphism, we need to be able to apply this substitution rule,

not only to letters, but also to patterns and sequenes.

Assoiating with eah letter a nonpointed pattern is not enough to realize

this: we �rst need more information to know where to plae the image of the

letter at the origin (there is an obvious solution in the one-dimensional ase:

it is natural to plae at the origin the �rst letter of the word image of the

initial letter); then, we need to know the relative loations of the patterns

substituted to adjaent letters, and a onsisteny problem arises. Indeed, it is

not lear that there is a good way to apply the morphism to a �nite pattern

or to a two-dimensional sequene: there might be overlaps. Furthermore, if

this is possible, do we obtain in this way a �xed point? Can we obtain all of

a two-dimensional sequene?

Note that there is one ase where the existene of the two-dimensional iterated

morphism is not problemati, and the theory is quite easy: if we assoiate to

eah letter a retangular pattern of �xed size, it is lear that the image of any

pattern or sequene is well de�ned; one an onsider that suh a morphism

naturally splits into one-dimensional iterated morphisms [AS03,Han00℄.

Our motivation in this paper is to show, on a nontrivial example (that is, not

retangular), that the obstrutions above an be overome. The answer to the

iteration problem itself is not easy to prove, and requires some additional geo-

metri onstrutions. Indeed, in the rest of the paper, we study a very simple

example of a two-dimensional substitution rule on the three-letter alphabet

f1; 2; 3g:

�

0

: 1 7!

2

1

2 7! 3 3 7! 1:

It is lear on the �rst letter that this formula is not a usual one-dimensional

morphism. However, the way to extend the de�nition from letters to �nite

nonpointed patterns and sequenes is unlear: for example, should the image
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of 12 be

2 3

1

or

2

3 1

; or some other possibility?

We will give two solutions to this problem: we endow a two-dimensional mor-

phism �

0

�rst with global rules v, seond with a set of loal rules S and an

initial rule I. Loal rules are more onvenient to iterate, but it is easier to

prove onsisteny for global rules; we will prove onsisteny for (�

0

;v) on a

partiular sequene U , and then prove that (�

0

;v) and (�

0

; I;S) at in the

same way on U ; this will prove onsisteny of the loal rules on this partiular

sequene whih is a �xed point of both morphisms.

Global plaing rules

A �rst step to solve the problem of iterating suh a two-dimensional sub-

stitution rule is to extend its de�nition to pointed patterns: let us de�ne a

two-dimensional pointed pattern as a map from a �nite subset of Z

2

to the al-

phabet (so that two pointed patterns represent the same nonpointed pattern if

and only if they are translate of eah other; the di�erene between nonpointed

and pointed patterns is the same as the di�erene between a �nite word, and

its ourrenes in a sequene). The set of pointed patterns is denoted by L

�

,

that is, the set of �nite words on the alphabet L = Z

2

� f1; 2; 3g with some

ombinatorial restritions (the pointed letters have di�erent loations, see Se-

tion 2).

An example of a pointed pattern is given by a 1 loated at the index (0; 0),

a 2 at the index (0; 1) and a 3 at the index (�1; 0). This pointed pattern an

be written as the word ((0; 0); 1)((0; 1); 2)((�1; 0); 3). The underlying non-

pointed pattern is shown in Fig. (1.2). The interest of pointed patterns is that

a natural struture lies on L

�

, that is, the onatenation.

2 (0,1)

3 (-1,0) 1 (0,0)

A pointed pattern

(letters are preisely loated)

2

3 1

The assoiated nonpointed pattern

(with no loation information)

Fig. 1.2. The pointed pattern ((0;0); 1)((0;1); 2)((�1;0); 3) and its nonpointed pat-

tern.

A two-dimensional substitution rule � assoiates with eah letter a nonpointed

pattern. To extend its de�nition to pointed patterns, we add a global plaing

rule v: for eah nonpointed pattern �(i), hoose a speial pointed pattern

that represents it; to a letter i in position (m;n), the global rule assoiates a

pointed pattern �(i)+v((m;n); i) whih is a translate of the speial represen-

tative of �(i) by a translation vetor v((m;n); i). We will de�ne suh global

plaing rules preisely in Setion 2. For example, global plaing rules for the
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substitution rule �

0

are given by v((m;n); i) = (1� n;m� n� r(m;n)),

where r is an expliit funtion.

(�

0

;v) : ((m;n); 1) 7! ((1� n;�1 +m� n� r); 1)((1� n;m� n� r); 2)

((m;n); 2) 7! ((1� n;m� n� r); 3)

((m;n); 3) 7! ((1� n;m� n� r); 1):

We prove in Setion 6 that these global rules an be iterated, sine, at least on

some partiular sequene obtained by iterating an original letter, two disjoint

pointed patterns map to disjoint patterns. Hene, a two-dimensional substitu-

tion rule endowed with a global rule appears to be a �rst appropriate de�nition

for a two-dimensional morphism. To di�erentiate this from what will follow,

we an all this a two-dimensional morphism de�ned by a global rule.

Suh a de�nition is however inonvenient for expliit omputation, sine one

needs at eah step global information. In partiular it is diÆult to iterate it

in order to generate an in�nite two-dimensional sequene. Moreover, this an

work expliitly only for very partiular sequenes, as an be seen from the one-

dimensional ase. Indeed, one-dimensional in�nite sequenes have a natural

referene point: their initial letter. Giving suh a plaing rule in dimension one

means that we know that a letter i in position n maps to a word starting in a

position v(n; i) whih depends on n. But, by onstrution, this position v(n; i)

depends on the whole pre�x of length n, so that for iterated morphisms of

nononstant length, there annot be a rule that is valid for all one-dimensional

in�nite sequenes. This does not prevent, of ourse, of giving a rule that is

valid, for example, only for one of the �xed points of the iterated morphism:

this is what we do in Setion 6.

Loal rules

It is muh more onvenient to be able to use a loal information: a two-

dimensional substitution rule de�nes the images of letters as nonpointed pat-

terns; in addition, the initial rule de�nes the image of a partiular pointed

letter, thus giving a starting point for the iteration, and loal rules will de�ne

the images of a �nite number of well-hosen nonpointed patterns, so that the

morphism an be iterated, using paths made of nonpointed patterns. This is

exatly what is done when omputing one-dimensional iterated morphisms:

one does not ompute the exat position of a given letter, but one only uses

the fat that letters follow eah other. Roughly speaking, a loal rule says how

to plae the image of a letter with respet to the images of the neighbouring

letters. If we know where to loate the image of the initial letter, we an om-

pute the values of adjaent letters by using a �nite number of patterns, and

in this way, ompute the image of the omplete sequene.

For example, we will see that the loal rules shown in Fig. 1.3, in addition to
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a natural initial rule for the pointed letter ((1; 0); 1), an be used to de�ne a

two-dimensional morphism (�

0

; I;S) with loal rules in a onsistent way; it

turns out that (�

0

; I;S) and (�

0

;v) have the same �xed point.

There are however signi�ant problems in this approah also; we an raise four

questions:

� One must hoose a good set of patterns, suÆient to allow iteration, and

minimal if possible, for simpliity. One heks in our ase that one an

restrit to some two-letter patterns.

� There is then a problem of onsisteny: if two points, of oordinates, say,

(0; 0) and (i; j) of a �nite pointed pattern an be joined by two di�erent

paths of nonpointed patterns orresponding to loal rules, then this gives

two independent ways to plae the pattern orresponding to letter in posi-

tion (i; j) with respet to the pattern image of (0; 0). For onsisteny, these

two plaement rules must be the same.

� Furthermore, the images of di�erent letters must not overlap.

� The image of an in�nite sequene must not have \holes": all positions in the

image must be inluded in one (and exatly one) pattern image of a letter.

A onsequene of these problems is that, in general, the two-dimensional mor-

phism will only be de�ned on a subset of all possible �nite patterns and in�nite

sequenes.

2

1

7!

2

3 1

3 1

7!

2

1

1

1

1

7!

2

2 1

1

2 1

7!

2

1

3

1

3

7!

2 1

1

Fig. 1.3. A set of loal rules for the substitution rule �

0

.

The main result of this paper is that the problems above an be solved for the

substitution rule �

0

:

Theorem. The two-dimensional substitution rule �

0

endowed with the set

S of �ve loal rules given in Fig. 1.3 and the initial rule I : ((1; 0); 1) 7!

((1; 0); 1)((1; 1); 2) (see Fig. 2.1) de�nes a two-dimensional morphism with

loal rules (�

0

; I;S). The rules are onsistent and an be iterated on the pat-

terns (�

0

; I;S)

n

((1; 0); 1). The suessive images of ((1; 0); 1) appear to be

subpatterns of eah others; they generate an in�nite two-dimensional sequene

denoted (U(m;n))

Z

2

and alled the �xed point of (�

0

; I;S).

Unfortunately, although this theorem appears to be a purely ombinatorial

result, we do not know any ombinatorial proof of it, and we would be very

interested in suh a proof. To prove this ombinatorial result, we need to
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use a quite devious path, giving to the two-dimensional morphism (�

0

; I;S)

a geometri interpretation in terms of disrete approximation of a plane, as

we explain below. Indeed, the lass of two-dimensional morphisms with loal

rules introdued in this paper an be seen as a symboli translation of a ge-

ometri formalism inspired by Rauzy's onstrution of its well-known fratal

[Rau82℄ and studied in [IO93,AI01,AIS01℄. A �rst example of a family of suh

two-dimensional morphisms with loal rules has been introdued in [ABI02℄

assoiated with the Jaobi-Perron ontinued fration algorithm. For more de-

tails, see also Chap. 8 in [PF02℄.

Disrete planes

Our approah is the following: we lift Z

2

into R

3

by introduing the transpose

t

M of the matrix M of inidene of the substitution rule �

0

. The ation of

this matrix is stritly ontrating on a plane determined by the eigenvalues of

modulus stritly less than 1. We introdue the disrete plane approximation

P of the ontrating plane following [IO93,Vui98,BV00b,AI01℄ as the upper

boundary of the union of all unit ubes with integral verties that interset

the ontrating plane. This onstrution is inspired by the ut-and-projet

formalism in quasirystals [Sen95℄.

We then introdue generalized substitutions from [AI01℄; these are rules �

P

that at on faes of the disrete plane and map them onto �nite unions of

faes.

There exists a bijetion � between the points of the disrete plane and a

lattie in the diagonal plane x + y + z = 0, given by the projetion on the

diagonal plane along the diretion (1; 1; 1). We use the bijetion � to express

the formalism of generalized substitution �

P

as a two-dimensional morphism

with global rules (�;v) ating on two-dimensional patterns. This morphism

(�;v) appears to be our example (�

0

;v).

There is no problem to generalize suh a onstrution. Indeed, a generalized

substitution �

P

is attahed to a one-dimensional iterated morphism that sat-

is�es the so-alled Pisot unimodular property. For example, the generalized

substitution whih produes �

0

is attahed to �

0

: 1 7! 13; 2 7! 1; 3 7! 2.

Observe that the inidene matrix of �

0

is the transpose of that of �

0

; this

duality property is the ore of the de�nition of the generalized substitutions

[AI01,AIS01℄.

The deep relationship between �

0

and the underlying geometry is expressed

in the following result.

Theorem. The �xed point (U(m;n))

Z

2

of the two-dimensional morphism with

global rules (�

0

;v) turns out to be a bijetive oding for the disrete plane

assoiated with the one-dimensional iterated morphism �

0

: 1 7! 13; 2 7!

1; 3 7! 2.

Sketh of the paper
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We �rst introdue in Setion 2 the example �

0

and disuss its ombinatorial

properties. Global rules and loal rules are de�ned for this substitution rule.

The remaining of this paper is then devoted to the proof of onsisteny of

these rules.

More preisely, we introdue in Setion 3 the notion of a disrete plane as-

soiated with a plane in R

3

. We prove that the verties in the disrete plane

projet onto a regular lattie � in the main diagonal plane x+ y+ z = 0. This

allows to ode the disrete plane by an in�nite two-dimensional sequene U ,

that ontains all the information neessary to rebuild the disrete plane. Let us

emphazise that it is quite unexpeted that a disrete plane an be reoded by

using a regular lattie. We study this two-dimensional sequene in Setion 4.

We then reall in Setion 5 the notion of generalized substitution from [AI01℄,

that is, of a morphism whih ats on faes of the disrete plane. We extend

this de�nition to Z

2

in Setion 6 via the projetion of the disrete plane onto

the regular lattie �. Hene we obtain a two-dimensional morphism endowed

with global rules and we prove that it an be iterated. We dedue loal rules

and prove that they are onsistent in Setion 6.2.

For the sake of larity, some tehnial results are proved in the appendix.

Observe that everything done in the present paper works in the n-dimensional

ase. We restrit ourselves to the two-dimensional ase in order to be able to

give pitures of our objets.

2 An example of a two-dimensional morphism

Before introduing the notion of two-dimensional morphisms, we need a preise

formalism to desribe the objets on whih the two-dimensional morphism will

at, namely, patterns.

2.1 Patterns

Roughly speaking, we want a two-dimensional pattern to be a bounded planar

shape made of letters of a �nite alphabet. We have already restrited ourselves

to the alphabet f1; 2; 3g.

Two-dimensional pointed letters

Let us �rst de�ne the basi omponent of a pattern, that is, a letter loated

at a given position: a two-dimensional pointed letter denotes any pair (x; i),

where x 2 Z

2

is the loation of the pointed letter in the plane, and i 2 f1; 2; 3g

the letter itself. The set of two-dimensional pointed letters is denoted L:

L = Z

2

� f1; 2; 3g:
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Two-dimensional pointed patterns

A pointed patternW is a �nite set of pointed letters with distint loation. It is

represented as a word on the alphabet L, and denoted W = (x

1

; i

1

) : : : (x

j

; i

j

),

where j is the number of pointed letters in this pattern. Suh a de�nition is

onsistent and does not depend on the order of the pointed letters as soon as

all x

k

's are di�erent. Hene, we de�ne the set L

�

of pointed patterns, alled

two-dimensional language as follows:

L

�

= f(x

1

; i

1

) : : : (x

j

; i

j

); j 2 N ;

8 1 � k � j; (x

k

; i

k

) 2 L; x

k

6= x

k

0

if k 6= k

0

g:

For instane, the pattern ((0; 0); 1 )((0; 1); 3)((0; 2); 2)((0; 3); 2) denotes the

pattern

1 3 2 2

, where the itali harater 1 is at position (0; 0).

Both ((0; 0); 2)((0;�1); 1 )((�1;�1); 3) and ((�1;�1); 3)((0; 0); 2)((0;�1);

1 ) denote the following pattern, where the 1 is at position (0;�1):

2 (0,0)

3 (-1,-1) 1 (0,-1)

The size of a pattern W = (x

1

; i

1

) : : : (x

j

; i

j

) is equal to j. Its support is the

set (x

1

; : : : ;x

j

) 2 Z

2

.

Observe that in the theory of one-dimensional words, there is no need for suh

a formalism sine there is no onfusion when one writes w = w

1

w

2

: : : w

n

, but

this is no more true if the pattern is not onneted.

It will be onvenient below to onsider pointed patterns whose support on-

tain a given point, for instane the point (1; 0); in that ase, a short way to

represent this pattern is to draw them as nonpointed patterns, with the letter

at (1; 0) written in bold fae, see the �gure below.

2 (1,1)

3 (0,0) 1 (1,0)

A pointed pattern whose

support ontains (1; 0)

2

3 1

Its short representation,

with the letter

at (1; 0) emphasized

Nonpointed patterns

The lattie Z

2

ats by translation on pointed patterns: if W = (x

1

; i

1

) : : :

(x

j

; i

j

) 2 L

�

is a pointed pattern and y 2 Z

2

is a vetor, let W + y =

(x

1

+ y; i

1

) : : : (x

j

+ y; i

j

). We de�ne a nonpointed pattern as a pointed pat-

tern up to a translation; it is thus a pattern onsidered without a preise

9



loation in Z

2

.

Eah pointed pattern represents a unique nonpointed pattern, alled its un-

derlying nonpointed pattern. Conversely, a pointed pattern whih represents a

nonpointed pattern is alled a representative.

De�nition 2.1 (Substitution rule) A two-dimensional substitution rule �

on three letters is a map from f1; 2; 3g on the set of �nite two-dimensional

nonpointed patterns on f1; 2; 3g.

An example is given by �

0

: 1 7!

2

1

, 2 7! 3, 3 7! 1.

This is what we represent usually as a 2-dimensional morphism; note however

that this de�nition is not omplete: it tells us by what we must replae eah

letter, but not how to plae the patterns we obtain. In dimension 1, (and if

we onsider only patterns whose support is an interval of N , that is, usual

words!) this problem does not our, beause it has an obvious solution, using

the natural order on N , or the monoid struture on the set of words.

We must now explain how to obtain the image, not of a letter, but of a pattern,

an then iterate the morphism. Note that the morphism we obtain will only be

de�ned in a meaningful way on some patterns, not all in general. Espeially, we

will need to extend the de�nition as a morphism on patterns. Let us introdue

the most natural operation on pointed patterns, that is, union.

Union of pattern

One de�nes as follows an algebrai operation on pointed patterns whih or-

responds to the union. If W = (x

1

; i

1

) : : : (x

j

1

; i

j

1

) and V = (y

1

; k

1

) : : :

(y

j

2

; k

j

2

) 2 L

�

satisfy x

l

6= y

m

for every l; m, let

W:V = (x

1

; i

1

) : : : (x

j

1

; i

j

1

)(y

1

; k

1

) : : : (y

j

2

; k

j

2

):

Notie that this operation provides a pointed pattern if and only if x

l

6= y

m

for

every l; m. Suh a pair of pointed patterns is alled disjoint pointed patterns.

If W

1

, W

2

, : : : , W

k

are pointed patterns, their union W

1

: : : : :W

k

is also de-

noted �

j�k

W

j

. Let us oberve that the set L

�

is not stable under this operation.

Let L

�

w

denote the set of weighted pointed patterns, that is, the set of all pat-

terns on Z

2

�A with no ondition about the support: a letter (x; i) may appear

twie (or more) in a suh a weighted pattern, as well as both the letters (x; 1)

and (x; 2). Geometrially, weighted patterns have no real meaning but L

�

w

endowed with the union beomes a monoid.
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2.2 Two-dimensional morphisms with loal rules

An example of a substitution rule is given by �

0

: 1 7!

2

1

, 2 7! 3, 3 7! 1. The

aim of this setion is to illustrate what we mean by de�nining a 2-dimensional

morphism from the substitution rule �

0

.

Suppose one wants to iterate �

0

starting from 1 at the position (1; 0). A �rst

problem ours at the beginning: where will we plae the nonpointed pattern

�

0

(1)? We de�ne an initial rule to solve this problem.

De�nition 2.2 (Initial rule) Let � be a two-dimensional substitution rule.

An initial rule for � is given by a map I whih sends a given pointed letter

((m;n); a) to a pointed pattern whose support ontains ((m;n); a) and whih

represents the pattern �(a). The letter ((m;n); a) is alled the initial pointed

letter of the initial rule I.

For example, Fig. 2.1 shows the initial rule I : ((1; 0); 1) 7! ((1; 0); 1)((1; 1); 2)

for the two-dimensional substitution rule �

0

; the initial letter ((1; 0); 1) has

been written in bold fae.

1 (1,0)

7!

2 (1,1)

1 (1,0)

Fig. 2.1. An initial rule for the substitution rule �

0

A seond problem ours at the seond iteration: what is the plae of the image

of 2 with respet to that of 1? Hene we need more information to iterate the

proess.

De�nition 2.3 (Loal rules) Let � be a two-dimensional substitution rule.

A loal rule is given by a map W 7! �(W ), where W is a nonpointed pattern

of size 2 (that underlies a pointed pattern denoted (x; a)(y; b)) and �(W ) is a

nonpointed pattern that underlies the disjoint union of a pointed pattern that

represents �(a) and a pointed pattern that represents �(b). The nonpointed

pattern W is alled the initial pattern of the loal rule.

The intuitive meaning of the rule will be that, if we know how to plae the

image of a, we will know how to plae the image of b when it is in a partiular

position with respet to a.

As an example, let us thus introdue the following set S of 5 loal rules given

in Fig. 2.2: if we know the plae of the image of a given letter, we know the

plae of the images of the adjaent letters by using our 5 loal rules. We use

11



bold haraters in Fig. 2.2 in the image of

1

1

to indiate the plae of the

respetive images. One an note that the image of the letter 1 whih is in the

lowest position is loated above the image of the other 1. In fat this produes

a spiral movement whih will allow one to over all Z

2

when iterating �

0

.

2

1

7!

2

3 1

3 1

7!

2

1

1

1

1

7!

2

2 1

1

2 1

7!

2

1

3

1

3

7!

2 1

1

Fig. 2.2. Loal rules for the substitution rule �

0

.

De�nition 2.4 (Covered pattern) A pointed pattern W is overed by a set

of loal rules if for every pair (x; a) and (x

0

; b) of pointed letters in W there

exists a path of loal rules from one letter to the other, that is, there ex-

ists (y

1

; j

1

); � � � ; (y

n

; j

n

) pointed letters of the pattern suh that (y

1

; j

1

) =

(x; a); (y

n

; j

n

) = (x

0

; b); and for 0 � k � n � 1, the pattern assoiated with

(y

k

; j

k

)(y

k+1

; j

k+1

) is the initial nonpointed pattern of one of the loal rules.

In that ase, we say that the path joins (x; a) and (x

0

; b).

A nonpointed pattern is said overed if it admits a overed pointed represen-

tative.

One heks that the images of the initial nonpointed patterns of the 5 loal

rules given for the example �

0

are themselves overed. Hene, we are now able

to extend the image of any pattern overed by these 5 loal rules.

De�nition 2.5 (Morphism de�ned by loal rules) Let � be a two-dim-

ensional substitution rule. A two-dimensional morphism de�ned by loal rules

(�; I;S) is given by the substitution rule �, an initial rule I, and a �nite

olletion S of loal rules assoiated to this substitution rule.

The morphism (�; I;S) ats on overed patterns whose support ontains the

initial pointed letter ((m;n); a) of I. One �rst loates the image of ((m;n); a)

and then apply the loal rules in S. Nevertheles, the image of a pointed letter

should not depend on the path used to join it to ((m;n); a).

De�nition 2.6 (Consisteny) A pointed pattern is said to be onsistent for

a morphism with loal rules if:

(1) it ontains the initial letter ((m;n); a) of the initial rule I;

(2) it is overed by the set of loal rules;

(3) the image of a pointed letter is well de�ned, that is, it does not depend

on the path of loal rules used to join it ((m;n); a);

12



(4) the images of two di�erent pointed letters are disjoint.

We an now build the image of some partiular onsistent patterns. One an

�nd in Fig. 2.3 the �rst iterations of (�

0

; I;S), that we denote for short �

0;l

.

Eah iteration �

0;l

n

((1; 0); 1) is split into two parts, one part orresponding

to �

0;l

n�1

((1; 0); 1) whereas the other one is the image of the orrespond-

ing part in �

0;l

n�1

((1; 0); 1) (that is, the omplement of �

0;l

n�2

((1; 0); 1) in

�

0;l

n�1

((1; 0); 1)). These �rst iterations are pointed patterns: the bold symbol

1 denotes the initial letter ((1; 0); 1).

1 7!

2

1

7!

2

3 1

7!

2

3 1

1

7!

2

2 1

3 1

1

7!

2 2

3 1 2 1

3 1

1

7!

2 2

3 1 2 1

3 1

2 1

3 1

1

:

Fig. 2.3. Iteration of the loal rules assoiated with �

0

.

We an already make a �rst observation: the pointed pattern �

0;l

n

((1; 0); 1)

is a subpattern of �

0;l

n+1

((1; 0); 1). Furthermore if one iterates the proess,

one an note that the images of the letters do not depend of the set of rules

de�ned to link them to the (1; 0) (this an be made in di�erent ways), and

there are no overlaps by plaing the images of the di�erent letters, that is, the

rules are onsistent.

Hene one gets larger and larger nested pointed patterns. Moreover, the pat-

terns grow with no \holes", and eventually over any point in Z

2

(see Setion

6.2 for a proof). More preisely the sequene of �nite patterns (�

0;l

n

((1; 0); 1))

onverges in f1; 2; 3g

Z

2

for the topology over f1; 2; 3g

Z

2

endowed with the prod-

ut topology (whih oinides with the natural topology on tilings). Hene,

we will prove the following theorem, whih is a more preise version of the

theorem stated in the introdution:

Theorem 2.7 (Loal rules) The two-dimensional substitution rule �

0

, en-

dowed with the initial loal rule I : ((1; 0); 1) 7! ((1; 0); 1)((1; 1); 2) and

13



the set of loal rules S given in Fig. 2.2, de�nes a two-dimensional mor-

phism with loal rules (�

0

; I;S), that we denote �

0;l

. The pointed patterns

�

0;l

n

((1; 0); 1) are all onsistent. Moreover, the sequene of pointed patterns

(�

0;l

n

((1; 0); 1))

n2N

onverges in f1; 2; 3g

Z

2

to the following in�nite sequene

U = (U(m;n))

Z

2

, where � > 1 denotes the largest root of x

3

� x

2

� 1:

U(m;n) = 1 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄0; �

2

℄;

U(m;n) = 2 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄�

2

; �

2

+ �℄;

U(m;n) = 3 if (�

2

m+ �n) mod (�

2

+ �+ 1) 2℄�

2

+ �; �

2

+ � + 1℄:

Remark that � � 1; 46557 is the seond smallest Pisot number.

2.3 Two-dimensional morphisms with global rules

For the proof of the preeeding theorem we will need to endow �

0

with global

rules.

De�nition 2.8 (Morphism de�ned by global rules) Let � be a two-di-

mensional substitution rule; for any pattern �(a), hoose a partiular repre-

sentative �(a). A global rule is a map v from the set of all pointed letters

to Z

2

. A two dimensional morphism with global rules is de�ned as a map

(�;v) : (x; a) 7! �(a) + v(x; a).

It is unlear that a global morphism an be applied to a large pointed pattern

(there ould be overlaps); in fat, we have the de�nition:

De�nition 2.9 (Consisteny) We say that a pointed pattern W is onsis-

tent for a morphism with global rules (�;v) if, for any two distint pointed

letters ontained in W , their images by (�;v) are disjoint pointed patterns.

The following result will be proved in Setion 6.2.

Theorem 2.10 (Global plaing rules) For all (m;n) 2 Z

2

, de�ne r =

�d(�

2

m+ �n)=(�

2

+ � + 1)e+ 1, and de�ne (m

0

;n

0

) = v(m;n) = (1� n;m

�n� r):

Using the two-dimensional substitution rule �

0

, de�ne a two-dimensional mor-

phism with global rules (�

0

;v) by

� the image under �

0

of the letter 1 loated at (m;n) in the sequene U is the

pattern

2

1

, where 1 is loated at (m

0

;n

0

);

� the image of the letter 2 loated at (m;n) is the pattern

3

loated at (m

0

;n

0

),
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� the image of the letter 3 loated at (m;n) is the the pattern

1

loated at

(m

0

;n

0

).

The sequene (U(m;n))

Z

2

is onsistent for the two-dimensional morphism with

global rules (�

0

;v); moreover, it is a �xed point of this morphism.

The sequene U is a two-dimensional Sturmian word following [BV00a,BV00b℄.

Two-dimensional Sturmian words have many interesting ombinatorial prop-

erties whih allow us to onsider them as a higher-dimensional generalization

of Sturmian words. Classi one-dimensional Sturmian words ode the approx-

imation of a line by a disrete line made of horizontal and vertial segments

with integral verties (for more details, see for instane [PF02,Lot02℄). We

will reall a proof of the fat that these multidimensional sequenes ode dis-

rete plane approximations in Setion 4. In our example, the sequene U is a

disrete approximation of the plane �

2

x + �y + z = 0 in R

3

.

These multidimensional sequenes are also generated by two-dimensional mor-

phisms governed by the Jaobi-Perron algorithm. Namely, a geometri inter-

pretation of the Jaobi{Perron algorithm is given in [ABI02℄ as an indution

proess. Consequently, one an assoiate with the Jaobi{Perron algorithm a

sequene of two-dimensional morphisms whih generates the two-dimensional

Sturmian sequenes mentioned above. This is the proess we want to extend

here to a lass of morphisms. Indeed, this paper aims mainly at explaining the

proess that allows one to dedue the loal rules above from a one-dimensional

iterated morphism, and more generally from any iterated morphism that sat-

is�es the Pisot unimodular property on a three-letter alphabet. Observe again

that we have no diret ombinatorial proof of Theorems 2.7 and 2.10 and that

we would be very interested in getting one.

3 Disrete plane assoiated with an irrational plane

The aim of this setion is to introdue the notion of a disrete approximation

of a plane following [IO94,IO93,Vui98,BV00b,ABI02℄. Let (e

1

; e

2

; e

3

) denote

the anonial basis of R

3

.

We all integral ube any translate of the fundamental ube with integral

verties, that is, any set (p;q; r) + C where (p;q; r) 2 Z

3

and C denotes the

fundamental unit ube (see Fig. 3.1):

C = f�e

1

+ �e

2

+ �e

3

; (�; �; �) 2 [0; 1℄

2

g:

Let P � R

3

be a plane with equation ax + by + z + h = 0. We suppose that
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e1 e2

e3

Fig. 3.1. The fundamental ube C.

the plane has totally irrational diretion, that is, the triple (a; b; ) satis�es no

rational relation. We also suppose that a; b;  > 0.

We will approximate the plane P by seleting points with integral oordinates

above and within a bounded distane of the plane. The disrete plane is de�ned

as a union of faes of integral ubes that onnet these points.

De�nition 3.1 [BV00b,ABI02℄ Let S be the set of integral ubes that interset

the lower losed half-spae ax + by + z + h � 0.

The disrete plane assoiated with P is the boundary of the set S. This disrete

plane is denoted P.

A vertex of the disrete plane P is an integral point that belongs to the disrete

plane. Let V denote the set of verties of P.

Fig. 3.2. A part of the disrete plane P for the plane �

2

x + �y + z = 0, where

�

3

= �

2

+ 1.

3.1 Verties in the disrete plane

In this setion we give a numerial haraterization of the verties of the

disrete plane P. We reover the results of [ABI02℄ by giving a more detailed

proof for the sake of larity.

Proposition 3.2 ([ABI02℄) An integral point (p;q; r) is a vertex of the dis-

rete plane P if and only if 0 < ap+ bq + r + h � a+ b + .
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Proof The proof needs some intermediate steps.

(1) The integral ube (p;q; r) + C is inluded in the set S if and only if

ap + bq + r + h � 0. Indeed, the ube (p;q; r) + C is inluded in S if

it intersets the lower half-spae ax + by + z + h � 0. Sine a; b;  are

positive, if a point belongs to the lower half-spae, then every other point

that is \below" also belongs to the half-spae. Consequently, the ube

(p;q; r)+ C intersets this half-spae if and only its lowest point (p;q; r)

belongs to it, that is, ap + bq + r + h � 0.

(2) An integral point (p;q; r) 2 Z

3

belongs to S if and only if ap+bq+r+h �

a+ b + .

Indeed the point (p;q; r) belongs to S if it belongs to an integral ube

(p

1

;q

1

; r

1

) + C inluded in S, that is, ap

1

+ bq

1

+ r

1

+ h � 0. Sine we

know that (p;q; r) 2 (p

1

;q

1

; r

1

)+C, that is, p�p

1

; q�q

1

; r�r

1

2 f0; 1g,

a haraterization for integral verties in S is given by ap+ bq+ r+h �

a+ b + .

In other words, an integral point belongs to the set S if and only if

its translate by the vetor (�1;�1;�1) belongs to the lower half-spae

ax + by + z + h � 0

(3) Observe that, sine the set S is overed by integral ubes, an integral

point (p;q; r) belongs to the interior of S if and only if all the ubes

ontaining (p;q; r) also belong to S.

Consequently, the point (p;q; r) 2 Z

3

belongs to P if it is on its boundary,

that is, if the following onditions are satis�ed:

� the point (p;q; r) 2 S, that is, ap+ bq + r + h � a+ b + ;

� the point (p;q; r) does not belong to the interior of S, that is, there exists

a ube (p

1

;q

1

; r

1

) + C that ontains (p;q; r) and that is not inluded in S.

Hene, there must exist (p

1

;q

1

; r

1

) suh that p� p

1

; q � q

1

; r � r

1

2 f0; 1g

and ap

1

+ bq

1

+ r

1

+h > 0. An equivalent ondition is ap+ bq+ r+h > 0.

3.2 Partition of the disrete plane by pointed faes

By onstrution, a disrete plane is a union of faes of integral ubes. We

would like to de�ne a true partition by these faes; this is impossible if we

take losed faes, sine edges will then belong to two faes, or if we take open

faes, sine verties and edges will then belong to no fae. We need to introdue

a onvention to de�ne a notion of anonial faes that are neither open nor

losed. (The main di�erene between the notation here and that of [ABI02℄ lies

in our hoie of the distinguished verties of the faes of type 1, 2, 3 (see Fig.

3.3); this hoie is motivated by Proposition 3.3 where the suessive lengths
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of intervals are a, b,  (and not , b, a, as in [ABI02℄).)

Let E

1

, E

2

, and E

3

be the three following basi protiles for the disrete plane:

E

1

= f�e

2

+ �e

3

; (�; �) 2 [0; 1[

2

g

E

2

= f��e

1

+ �e

3

; (�; �) 2 [0; 1[

2

g

E

3

= f��e

1

� �e

2

; (�; �) 2 [0; 1[

2

g:

We all fae of type i pointed on (p;q; r) or shortly pointed fae the set

(p;q; r) + E

i

.

Notie that eah fae ontains exatly one integral point. We all it the distin-

guished vertex of the fae. Hene, the point (p;q; r) is the distinguished vertex

of the fae (p;q; r) + E

i

.

1

x

y

z

Fae of type 1

x y

z

2

Fae of type 2

x y

z

3

Fae of type 3

Fig. 3.3. The three di�erent kinds of pointed faes in R

3

The reason for the presene of the semi-open intervals and of the signs in the

de�nition of the faes is that suh a hoie of faes provides a true partition

for the disrete plane. This result is not immediate sine problems may our

on edges and integral verties. The proof requires the following intermediate

result, whose proof is given in the Appendix for the sake of larity.

Proposition 3.3 A point (p;q; r) 2 Z

3

is the distinguished vertex of a fae of

type 1 (resp. 2 or 3) in the disrete plane P if and only if ap+bq+r+h 2℄0; a℄

(resp. ℄a; a+ b℄ or ℄a+ b; a+ b+ ℄). If so, (p;q; r) belongs to no other fae in

the disrete plane.

Proof See Appendix A.

Geometrially, this proposition means that an integral point x = (p;q; r) is

the distinguished vertex of a fae of type 1 in the disrete plane P if and only

if x is stritly above the plane P whereas (p� 1;q; r) = x � e

1

is below the

plane. Similarly, it is the distinguished vertex of a fae of type 2 if x � e

1

is

above the plane and x� e

1

� e

2

is below. The type is 3 if x� e

1

� e

2

is above

the plane and x� e

1

� e

2

� e

3

is below.

Theorem 3.4 The pointed faes form a partition of the disrete plane P.

Proof See Appendix A.
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4 Two-dimensional sequene assoiated with an irrational plane

We an now introdue a symboli oding of the disrete plane as a two-

dimensional sequene with values in the three-letter alphabet f1; 2; 3g. We �rst

projet the verties of the disrete plane in the diagonal plane x+ y + z = 0;

we thus obtain a bijetion between V and the lattie Z

2

.

4.1 De�nition of the projetion onto the diagonal plane

Let � be the aÆne projetion on the plane x + y + z = 0 along the diretion

(1; 1; 1).

Geometrially, this projetion simply means that we look at the plane from

the diagonal diretion towards the origin. In partiular, let us notie that

the image by this projetion of the unit ube is nothing else than a regular

hexagone (see Fig. 4.1).

1e
e2

e3

�

7!

π(e1)

π(e3)= − e1 π(e2)) −π(

e2)π(

Fig. 4.1. The projetion of the faes E

1

, E

2

and E

3

in the diagonal plane endowed

with the lattie generated by �(e

1

) and �(e

2

).

A simple omputation gives: �(p;q; r) = (p� r)�(e

1

) + (q � r)�(e

2

).

Hene, the projetion � of the lattie Z

3

is a lattie in x+ y + z = 0:

� =

n

(p� r)�(e

1

) + (q � r)�(e

2

); (p;q; r) 2 Z

3

o

= Z �(e

1

) + Z �(e

2

):

4.2 Projetion of the disrete plane onto the diagonal plane

A quite unexpeted result is that a disrete plane an be reoded on a regular

lattie, despite its three-dimensional struture. An illustration of this result

is given in Fig. 4.2. This is no longer true for instane when onsidering a

disrete plane approximation in R

4

.

Proposition 4.1 ([ABI02℄) The projetion � is a bijetion from the set of

verties V in the disrete plane P onto the lattie �.
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Proof Let g = m�(e

1

) + n�(e

2

) be a point in the lattie �. A point

(p;q; r) 2 V projets on g if and only if �(p;q; r) = (p � r)�(e

1

) + (q �

r)�(e

2

) = g = m�(e

1

) + n�(e

2

). Hene m = p� r and n = q � r.

Sine (p;q; r) 2 V, the oordinates satisfy 0 < ap + bq + r + h � a + b + .

Hene, 0 < am + bn + r(a + b + ) + h � a + b +  whih implies r =

�d

am+bn+h

a+b+

e+ 1. Consequently, (p;q; r) exists and is uniquely determined, so

that � is a bijetion from the set of verties onto �.

Expliit formulas are dedued from the proof:

� : (p;q; r) 2 V 7! (p� r)�(e

1

) + (q � r)�(e

2

) 2 �; (4.1)

�

�1

: m�(e

1

) + n�(e

2

) 2 � 7!

0

B

B

B

B

B

�

m

n

0

1

C

C

C

C

C

A

+

 

�

&

am + bn + h

a+ b + 

'

+ 1

!

0

B

B

B

B

B

�

1

1

1

1

C

C

C

C

C

A

2 V:

From the spae... ... to the diagonal plane.

Fig. 4.2. Verties in the disrete plane projet onto a regular lattie.

4.3 Two-dimensional sequene assoiated with an irrational plane

Fig. 4.2 illustrates that Proposition 4.1 diretly provides a tiling for the diag-

onal plane with the three diamonds: T

1

= �(E

1

),T

2

= �(E

2

), and T

3

= �(E

3

),

shown in Fig. 4.3.

Tile 1

Tile 2

Tile 3

Fig. 4.3. The three basi protiles in the plane x+ y + z = 0.

Let us summarize the results obtained in the preeding setions:
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� Let (m;n) 2 Z

2

. There exists a unique orresponding point in the lattie

�, namely, g = m�(e

1

) + n�(e

2

) 2 �.

� There exists a unique vertex with oordinates (p;q; r) in the disrete plane

P suh that the point g 2 � is the projetion through � of this point, that

is, (p;q; r) = �

�1

(g) 2 P.

� The vertex (p;q; r) 2 P is the distinguished vertex of a unique fae. The

type of this fae is ompletely determined by ap+bq+r+h mod (a+b+).

Hene, it beomes natural to assoiate with eah pair (m;n) 2 Z

2

the type of

the orresponding fae in the disrete plane P. This is shown in Fig. 4.4.

From the planar tiling... ... to the two-dimensional oding.

Fig. 4.4.

The results proved above imply that this oding is one-to-one, meaning that

suh a oding is suÆient to rebuild the whole disrete plane P, as shown in

Fig. 4.5.

Theorem 4.2 Let (m;n) 2 Z

2

and g = m�(e

1

) + n�(e

2

) in the lattie �.

There exists a unique integer U(m;n) 2 f1; 2; 3g suh that �

�1

(g) is the

distinguished vertex of a fae of type U(m;n) in the disrete plane P :

U(m;n) = 1 if (am + bn + h) mod (a+ b + ) 2℄0; a℄;

U(m;n) = 2 if (am + bn + h) mod (a+ b + ) 2℄a; a + b℄;

U(m;n) = 3 if (am + bn + h) mod (a+ b + ) 2℄a + b; a + b+ ℄:

The sequene (U(m;n))

Z

2

is alled the the two-dimensional oding assoiated

with the plane ax+ by + z + h = 0.
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A two-dimensional

oding..

... provides a planar

tiling...

... that gives a disrete

plane.

Fig. 4.5. From a two-dimensional oding to a disrete plane.

5 A three-dimensional morphism ating on the faes of a disrete

plane

The aim of this setion is to reall the formalism of [AI01℄ whih introdues

generalized substitutions ating on faes of a disrete plane P, and replaing

them by �nite unions of faes inluded in P. For more details on generalized

substitutions, see [AI01,AIS01℄ and Chap. 8 in [PF02℄.

5.1 Disrete plane assoiated with Pisot unimodular morphisms

One-dimensional iterated morphisms

Let A be the �nite alphabet f1; 2; 3g and A

�

the set of �nite words de�ned

over A. The empty word is denoted ". A one-dimensional iterated morphism

� is an endomorphism of the free-monoid A

�

suh that the image of a letter

of A is never empty; we also require that for at least one letter a, we have

j�

n

(a)j ! +1, where jwj denotes the length of the word w. It extends in a

natural way to in�nite or biin�nite sequenes in A

N

and A

Z

.

Abelianization

Let l : A

�

7! N

3

be the natural homomorphism obtained by abelianization of

the free monoid: if jW j

a

denotes the number of ourrenes of the letter a 2 A

in a �nite word W , then we have l(W ) = (jW j

1

; jW j

2

; jW j

3

) 2 N

3

.

With eah one-dimensional iterated morphism � on A is anonially assoi-

ated its inidene matrix M = (m

i;j

)

1�i;j�3

de�ned by m

i;j

= j�(j)j

i

(jW j

i

,

whih ounts the number of ourrenes of the letter i in W ), so that we have

l(�(W )) = Ml(W ) for every W 2 A

�

.

Iterated morphism of Pisot type

A morphism � on three letters is of Pisot type if its eigenvalues satisfy � >

1 > j�

1

j � j�

2

j > 0. In partiular, the dominant eigenvalue � is a Pisot
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number. Furthermore, its inidene matrix M is primitive [CS01,PF02℄, that

is, it admits a power with stritly positive entries.

An iterated morphism � is unimodular if det M = �1.

Till the end of the paper, � denotes an iterated morphism on three

letters that is unimodular and of Pisot type.

Disrete plane assoiated with a one-dimensional Pisot iterated morphism

Let � > 1 > j�

1

j � j�

2

j denote the eigenvalues of the iterated morphim �. Let

P be the ontrating plane (that is, the real plane generated by the eigenvetors

assoiated with �

1

; �

2

) of the inidene matrixM of �. In partiular,P is stable

under the ation ofM and its inverse M

�1

. Similarly, the lower half-spae and

the upper half-spae are stable under the ation of M and M

�1

.

Numerially, the equation of P is ax+by+z = 0, where (a; b; ) = v is a nor-

malized expanding left eigenvetor assoiated with the expanding eigenvalue

�. The Perron-Frobenius theorem ensures that (a; b; ) is a stritly positive

vetor with no rational relationship sine M is primitive. Observe that the

vetor (a; b; ) has algebrai oordinates. Let P be the disrete plane for the

plane P.

Example

Let �

0

be the following iterated morphism �

0

: 1 7! 13, 2 7! 1, 3 7! 2.

Its inidene matrix is M with:

M =

0

B

B

B

B

B

�

1 1 0

0 0 1

1 0 0

1

C

C

C

C

C

A

M

�1

=

0

B

B

B

B

B

�

0 0 1

1 0 �1

0 1 0

1

C

C

C

C

C

A

:

Its harateristi polynomial is X

3

�X

2

� 1, hene its admits one eigenvalue

� > 1, whih is the seond smallest Pisot number, and two omplex onjugate

eigenvalues of modulus stritly smaller than 1. The ontrating plane of this

matrix has equation �

2

x+�y+z = 0 (it is perpendiular to the left eigenvetor

assoiated with � (that is, (�

2

; �; 1)) whereas its expanding diretion is given

by the right eigenvetor assoiated with � (that is, (�

2

; 1; �)).

Notie that this iterated morphism belongs to the lass of modi�ed Jaobi-

Perron substitutions following [IO93℄ (see also [PF02℄, Chap. 8). This lass of

morphisms is dedued from the generalized modi�ed Jaobi-Perron ontinuous

fration algorithm (whih is a two-point extension of Brun's algorithm). Their

matries of inidene desribe this algorithm in its linear additive form.
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5.2 Generalization of the one-dimensional iterated morphism to the disrete

plane

In [AI01,AIS01℄, the de�nition of the iterated morphism � is extended by

duality to the faes (p;q; r) + E

i

on the disrete plane P.

Let P

�

denote the set of �nite pointed patterns on the disrete plane, that is,

the set of �nite disjoint unions of faes in the disrete plane.

Remark that the generalized substitutions introdued in [AI01,AIS01℄ (and

denoted E

�

1

(�) in these papers) at on faes whih for tehnial reasons do not

orrespond exatly to the faes (E

1

; E

2

; E

3

). The faes that are onsidered in

[AI01,AIS01℄ are (E

�

1

; E

�

2

; E

�

3

) suh that x+E

�

i

= x+E

i

+ e

1

+ � � �+ e

i

. The

formalism of generalized substitution that is introdued in [AI01℄ provides the

following formula with our notation.

De�nition 5.1 Let � be a one-dimensional iterated morphism on three letters

that is unimodular and of Pisot type. We all generalized substitution ating

on faes the following tranformation, denoted �

P

, that maps any fae of the

disrete plane P on a pattern in P. For every fae x+ E

i

� P, let

�

P

(x+ E

i

) =

[

k2f1;2;3g

[

P; �(k)=PiS

(M

�1

[x� l(P )� (e

1

+ � � �+ e

i

)℄

+ (e

1

+ � � �+ e

k

)) + E

k

� P

�

: (5.1)

The faes that our in the image of a fae of type i are assoiated with all

the ourrenes of the letter i in the images of the letters of f1; 2; 3g. The

inidene matrix of �

P

is hene the dual of that of �.

5.3 Example

Let �

0

denote our example 1 7! 13, 2 7! 1, 3 7! 2. Then

�

P

: x + E

1

7! (M

�1

[x� e

1

℄ + e

1

+ E

1

) [ (M

�1

[x� e

1

℄ + e

1

+ e

2

+ E

2

)

= (M

�1

x + e

1

� e

2

+ E

1

) [ (M

�1

x+ e

1

+ E

2

);

x + E

2

7!M

�1

[x� e

1

� e

2

℄ + e

1

+ e

2

+ e

3

+ E

3

= M

�1

x + e

1

+ E

3

;

x + E

3

7!M

�1

[x� 2e

1

� e

2

� e

3

℄ + e

1

+ E

1

= M

�1

x� e

2

� e

3

+ E

1

:
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# �

P

# �

P

# �

P

Fig. 5.1. The generalized substitution ating on faes assoiated with �

0

.

5.4 Iteration of the substitution �

P

Formula (5.1) de�nes rules that allow one to replae a single fae in the disrete

plane P by a union of faes. Many points must be heked to be able to iterate

these rules:

� First, we must be sure that the rule maps a fae of the disrete plane into

a union of faes inluded in the disrete plane.

� For onsisteny, the union in Formula (5.1) must be disjoint.

� If one wants to iterate �

P

, one needs to be able to extend the de�nition of

�

P

to patterns of P

�

, that is, to �nite disjoint unions of faes in P. This is

possible as soon as two di�erent faes map to disjoint unions of faes.

The following theorem is given in [AI01℄. We detail its proof in the Appendix

to make the paper self-ontained.

Theorem 5.2 Any one-dimensional iterated morphism that is unimodular

and of Pisot type over a three-letter alphabet an be extended to a generalized

substitution ating on faes of the disrete plane assoiated with the ontrat-

ing plane of the inidene matrix of the iterated morphism. This generalized

substitution maps any pattern (that is, a �nite disjoint union of faes in the

disrete plane) on a pattern of the disrete plane.

The disrete plane is invariant under the ation of the substitution on faes.

Furthermore two distint faes have images whih do not interset.

Proof See Appendix A.

Remark: extension of �

P

to Z

3

. Nothing prevents us to extend the de�ni-

tion of the substitution on faes �

P

to the whole set of faes in the spae (and

not only to the faes that are inluded in the disrete plane): Formula (5.1)

is available for any x 2 Z

3

and any type k, providing that the image of suh

25



a fae may ontain the same fae more than one. Hene, the substitution

�

P

extends to Z

3

� f1; 2; 3g as a weighted substitution. For a more preise

formalism, see [AI01,AIS01℄.

6 Two-dimensional morphisms

6.1 Two-dimensional morphism with global rules assoiated with a one-di-

mensional iterated morphism

Let � denote a one-dimensional iterated morphism that is unimodular and of

Pisot type. Let P stand for the ontrating plane for its inidene matrix and

let P denote the disrete plane assoiated with P. In Setion 5 was explained

how to extend the de�nition of � to the faes of the disrete plane, by intro-

duing a generalized substitution �

P

. In Setion 3 was proved that faes in

the disrete plane projet anonially onto Z

2

� f1; 2; 3g. In this setion the

results of Setions 3 and 5 are mixed together to extend the de�nition of �

P

as

a two-dimensional morphism with global rules: we give a symboli translation

of (5.1).

De�nition 6.1 Let � be a one-dimensional iterated morphism that is uni-

modular and of Pisot type and M its inidene matrix. The global plaing

rules assoiated with � are de�ned from L to L

�

w

as follows:

(�;v) : ((m;n); i) 7!

K

�(k)=PiS

�

N(e

1

+ � � �+ e

k

)�NM

�1

(e

1

+ � � �+ e

i

)

�NM

�1

l(P ) +NM

�1

(m+ r(m;n); n+ r(m;n); r(m;n)); k

�

; (6.1)

where r(m;n) = �d(am + bn)=(a+ b + )e+ 1 and N =

0

B

�

1 0 �1

0 1 �1

1

C

A

.

Indeed, by using the maps � and �

�1

, one an give a formulation for (5.1) in

the lattie Z

2

. More preisely, the point (m;n) 2 Z

2

admits a unique preimage

aording to � in the disrete plane P as �

�1

(m;n) (see (4.1)). We then apply

�

P

to the geometri fae �

�1

(m;n) + E

i

; its image shall be deomposed into

a �nite union of geometri faes following (5.1) that we do projet aording

to �.

Let us note that if �

�1

(m;n) + E

i

is not a fae on the disrete plane, then

the pointed letters in the union might be weighted: for any (x; i), nothing

allows one to state that the image (�;v)(x; i) is a pointed pattern. We just

know that it is a weighted pointed pattern. However, from Theorem 5.2, we
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know that pointed patterns map to pointed patterns in the ase where the

pattern orresponds to a �nite part of the disrete plane P. Indeed, sine � is

a bijetion (Prop. 4.1), a diret onsequene of Theorem 5.2 is the following:

Theorem 6.2 Let � be a one-dimensional iterated morphism that is unimod-

ular and of Pisot type on a three-letter alphabet. Let U = (U(m;n))

Z

2

be the

oding of the disrete plane assoiated with � following Theorem 4.2. Let L

U

be the set of pointed patterns that appear in U .

Then, the global plaing rules given by (6.1) de�ne a two-dimensional mor-

phism, denoted (�;v), ating on L

U

.

Moreover, the oding U of the disrete plane is a �xed point for (�;v) whih

satis�es:

(1) for all (m;n), (�;v)((m;n); U(m;n)) is a pointed pattern that ours in

U ;

(2) for all (m;n), there exists a unique (s; t) suh that (�;v)((s; t); U(s; t))

ontains the pointed letter ((m;n); U((m;n));

(3) if ((m;n); U((m;n)) and ((s; t); U((s; t)) are two distint pointed letters

in U , then their images under the ation of (�;v) are distint.

The only point whih remains to hek here is the seond assertion. It is a diret

onsequene of the fat if (p;q; r) (resp. (u;v;w)) is the point of the disrete

plane P in bijetion with g = m�(e

1

) + n�(e

2

) (resp. h = s�(e

1

) + t�(e

2

)),

then by de�nition of (�;v), (u;v;w) =M

�1

(p;q; r). In this sense, (�;v) an

be onsidered as an \invertible" map over U .

6.2 Proofs of Theorems 2.7 and 2.10

We now have gathered all the elements and tools we need to prove Theorem

2.7, and in partiular, the onsisteny for the loal rules of Fig. 2.2.

Computation of the global rules

Let �

0

: 1 7! 13; 2 7! 1; 3 7! 2 and a = �

2

, b = � and  = 1, �

3

= �

2

+1. Let

r = r(m;n) = �d(am + bn)=(a+ b+ )e + 1. Then one omputes Formula

(6.1) in this ase, with v((m;n); i) = (1� n;m� n� r(m;n)):

(�

0

;v) : ((m;n); 1) 7! ((0;�1); 1)((0; 0); 2) + v((m;n); 1)

((m;n); 2) 7! ((0; 0); 3) + v((m;n); 2) (6.2)

((m;n); 3) 7! ((0; 0); 1) + v((m;n); 3):
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Hene the two-dimensional substitution rule assoiated with �

0

is given by:

�

0

: 1 7!

2

1

2 7! 3 3 7! 1:

The two-dimensional morphism with global rules (�

0

;v) ats on the set of

pointed patterns L

U

of the two-dimensional oding U of the plane ax+by+ =

0 following Theorem 6.2. The expliit expression for U is given by Theorem

4.2. The sequene U is a �xed point for (�

0

;v) with the plaing rule of (6.2).

>From the two-dimensional morphism with global rules (�

0

;v), let us dedue

the expression for the two-dimensional morphism with loal rules (�

0

; I;S),

that we denote �

0;l

.

Computation of the initial rule

One has U(1; 0) = 1 and and (�

0

;v)((1; 0); 1) = ((1; 0); 1)((1; 1); 2). The

initial letter ((1; 0); 1) of the initial rule I is sent on ((1; 0); 1)((1; 1); 2).

Computation of the loal rules

Let us suppose that the pointed pattern

3 1

ours at (m;n) in the �xed

point U , that is, the pattern W = ((m;n); 3)((m+ 1;n); 1) belongs to L

U

.

Hene,

� ma+ nb 2 ℄a+ b; a + b+ ℄ modulo (a + b+ ),

� (m+ 1)a+ nb 2 ℄0; a℄ modulo (a + b+ ).

Observe that this pattern indeed ours somewhere in U by density of the set

of points ma + nb modulo (a+ b + ).

We know that ma + nb 2℄a + b; a + b + ℄ modulo (a + b + ) and if we add

a to this quantity, then we obtain the number (m + 1)a + nb that belongs

to the interval ℄0; a℄ modulo (a + b + ). Hene d(am + bn)=(a+ b + e and

d(am + bn + a)=(a+ b + )e di�er by exatly 1, so that

� r(m+ 1;n) = r(m;n)� 1,

� m

0

(m+ 1;n) = m

0

(m;n),

� n

0

(m+ 1;n) = n

0

(m;n) + 2.

Consequently,

(�

0

;v)((m;n)+((0; 0); 3)(1; 0); 1)) = (m

0

;n

0

)+((0; 0); 1)((0; 1); 2)((0; 0); 2):
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Symbolially this gives

3 1

7!

2

1

1

The proof of the omputation for the other loal rules in Fig. 2.2 follows the

same sheme.

Consisteny and onvergene towards the two-dimensional oding U

One �rst heks that the images of the initial nonpointed patterns of the 5

loal rules, as well as I((1; 0); 1), are themselves overed. Hene, we are now

able to extend the image of any pattern overed by these 5 loal rules.

All the pointed patterns �

0;l

n

((1; 0); 1) our in U , sine U(1; 0) = 1, and

�

0;l

((1; 0); 1) = ((1; 0); 1)((1; 1); 2), whih underlies a loal rule. Observe that

the iteration using loal rules does not produe overlaps following Theorem

6.2. Furthermore, the image of a pointed letter does not depend on the path

of loal rules whih joins it to the initial letter (1; 0); 1), sine this value is

given by U . Hene the pointed patterns �

0;l

n

((1; 0); 1) are onsistent. In order

to prove that the sequene of pointed patterns �

0;l

n

((1; 0); 1) admits a limit

sequene de�ned everywhere in Z

2

, it remains to hek that we over all Z

2

.

Covering of the full lattie Z

2

This is equivalent with overing all the disrete plane P when we iterate �

P

starting from e

1

+E

1

. The idea of the proof is to strongly use the \inversibility"

of �

P

: a fae of the disrete plane x + E

i

is said to be the diret anestor of

the fae y + E

j

if y + E

j

ours in �

P

(x + E

i

) in Formula (5.1). Indeed the

uniity of the diret anestor omes from Theorem 5.2.

The main point is the following lemma, meaning that the diret anestor of

a given fae that is far enough from the origin is nearer from the origin than

this fae. The Eulidean norm in R

3

is denoted jj jj.

Lemma 6.3 Let � denote one of the two omplex onjugate ontrating eigen-

values of the inidene matrix of �

0

. Let x + E

i

be the diret anestor of the

fae y + E

j

. Let

C =

1

q

j�j � j�j

 

3 + (�+ j�j)

�

3

�

3

+ 2

p

�

4

+ �

2

+ 1

!

and � =

q

j�j:

If jjyjj � C; then jjxjj � �jjyjj:
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Proof See Appendix A.

As a onsequene, let y + E

j

be a fae in the disrete plane. Let y

0

+ E

j

0

=

y+E

j

, y

1

+E

j

1

, : : : , y

k

+E

j

k

be a �nite sequene of anestors of y+E

j

, that

is, eah fae y

i

+E

j

i

ours in �

P

(y

i+1

+E

j

i+1

). Then Lemma 6.3 means that

jjy

i

jj � max fC; �

i

jjyjjg. This implies that there exists an integer N suh

that y + E

j

ours in �

N

P

(y

N

+ E

j

N

), and y

N

belongs to the ball of radius C

in Z

3

.

It suÆes now to hek that there exists an iteration starting from 1 whih

overs the ball of radius C in Z

3

to omplete the proof.

In our ase, one omputes � = 1; 46557 and j�j = 0; 826031, so that 75 � C �

80. One heks by omputation that �

P

100

(e

1

+E

1

) overs the ball of size 80

in R

3

, whih onludes the proof of Theorems 2.7 and 2.10.

6.3 Generalization of this proof to other two-dimensional morphisms

Lemma 6.3 holds for general Pisot unimodular one-dimensional iterated mor-

phisms. Hene, loal rules for a two-dimensional morphism arising from a Pisot

unimodular one-dimensional iterated morphism will allow one to generate the

full plane Z

2

as soon as the three following properties are satis�ed:

� The images of initial patterns of loal rules are themselves overed.

� The image of the initial letter of the initial rule is overed.

� There exists an iteration of (�; I;S) on the initial letter whih overs the

ball of radius C given in Lemma 6.3.

Some examples satisfy these onditions while other do not. It remains to un-

derstand whih lasses of examples do satisfy these onditions.

7 Additional remarks

This study is only a starting point, and many open problems remain. In par-

tiular, one would like to know the largest set on whih the two-dimensional

morphism with loal rules (�

0

; I;S) is de�ned. One would also like to have a

general (algebrai) framework that allows to ompute, for a given set of loal

rules, the set of patterns and of sequenes whih is onsistent for these rules.

Let us fous on the fat that the loal rules orrespond to a set of nonpointed

patterns. Nevertheless, if the image of a given letter is �xed, then one an

put the images of the adjaent letters, thus produing a pointed pattern. We
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have no general statement yet on the existene of the loal rules. But we

onjeture that there always exists a set of �nite loal rules for any Pisot

unimodular iterated morphism. These rules need not be neessarily onneted

(as the images of the letters under the two-dimensional morphism). Observe

furthermore that the loal rules or the global plaing rules depend on the

one-dimensional morphism (�

0

; I;S) and not only on the matrix M.

Another question is the \seed" problem: what is the minimal pattern that gen-

erates the omplete sequene? Examples show that this question is not trivial.

As a related example, observe that if one wants to generate the above itera-

tions of (�

0

; I;S) starting from ((0; 0); 1) (and not ((1; 0); 1) as previously),

then one needs further loal rules for the beginning. One then an generate

any sequene with the same set of fators as U using the extended �nite set

of loal rules.

If we understand reasonably well the theory of one given two-dimensional

morphism, it would remain to study the theory of an in�nite sequene of

morphisms following the S-adi approah (see for instane [Fer96℄ and [PF02℄

Chap. 12). In the setting of the paper, this amounts to go from the study of the

ontrating plane of a matrix (given by an equation with algebrai oeÆients)

to a general plane, using some kind of multidimensional ontinued fration

algorithm. This study has already been started in [ABI02℄.

A Tehnial proofs

Proof of Proposition 3.3 Let us notie �rst that if four integral verties

that make a unit square all belong to the disrete plane P, then the assoiated

fae is all inluded in P. Hene, the disrete plane P ontains no square hole.

Indeed, when four integral verties make a square, one of their oordinates is

onstant. Suppose that it is the third oordinate. Hene the four verties are of

the form (p;q; r), (p+ 1;q; r), (p;q+ 1; r), (p+ 1;q+ 1; r). Sine (p;q; r) 2

P, we have ap+bq+r+h > 0, so that the ube (p;q; r)+C is not inluded in S.

But (p+ 1;q+ 1; r) 2 P, whih means a(p+1)+b(q+1)+r+h � a+b+, that

is, ap+ bq+ (r�1)+h � 0. Hene the ube (p;q; r� 1)+C is inluded in S.

Consequently, the unit square with verties (p;q; r), (p+ 1;q; r), (p;q+ 1; r),

(p+ 1;q+ 1; r) is at the intersetion of a ube in S and another ube outside

S. This means that the full square is at the boundary of S.

If ap+bq+r+h 2℄0; a℄, then (p;q; r), as well as (p;q; r+ 1), (p;q+ 1; r) and

(p;q+ 1; r+ 1) satisfy the relation 0 < ax+by+z+h � a+b+, so that they

are verties in P and they are the orners of the fae (p;q; r) + E

1

, whose

distinguished vertex is (p;q; r). Hene, this fae is inluded in the disrete
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plane.

If ap+bq+r+h 2℄a; a+b℄, then (p;q; r) as well as (p� 1;q; r), (p;q; r+ 1)

and (p� 1;q; r+ 1) are verties of P and they are the orners of the fae

(p;q; r) + E

2

.

If ap + bq + r + h 2℄a + b; a + b + ℄ then (p;q; r) as well as (p� 1;q; r),

(p;q� 1; r) and (p� 1;q� 1; r) are verties of theP and they are the orners

of the fae (p;q; r) + E

3

.

Hene (p;q; r) is the distinguished vertex of at least one fae in the disrete

plane P.

Conversely, if (p;q; r) belongs to two faes in P, then these faes must have

di�erent types sine two faes with the same type are disjoint by onstrution.

However, (p;q; r)+E

1

and (p;q; r)+E

2

annot be inluded simultaneously in

P: if so, their losure is also inluded in P, so that the points (p;q+ 1; r+ 1)

and (p� 1;q; r) belong simultaneously to P , while they annot both satisfy

the relationship 0 < ax + by + z + h � a + b + . Similarly, (p;q; r) +

E

1

and (p;q; r) + E

3

annot both be inluded in P (both (p;q; r+ 1) and

(p� 1;q� 1; r) annot appear to be an integral vertex). The same holds for

(p;q; r)+E

2

and (p;q; r)+E

3

, where (p;q; r+ 1) and (p� 1;q� 1; r) would

both belong to V: An illustration is given in Fig. A.1. This proves the uniity.

Fig. A.1. Con�gurations that are forbidden in the disrete plane P .

Proof of Theorem 3.4 The faes partition the points in P that are neither

verties nor on edges. We proved above that verties are inluded into exatly

one fae. Hene the faes of type 1,2 and 3 provide a partition of P as soon

as every edge is also inluded into exatly one fae. It thus remains to prove

that every edge in the disrete plane P is inluded in one and only one fae

of P and does not interset any other fae.

Let us oberve that if an edge is inluded in P, then so does its losure sine

P is losed. Let [(p;q; r); (p;q; r+ 1)℄ � P be a vertial edge inluded in the

disrete plane (the proofs for the edges parallel to the other diretions are

similar).

From the proof of Proposition 3.2, the following holds:
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� We know that (p;q; r) belongs to P, that is, ap + bq + r + h > 0. This

implies (p;q; r) + C 6� S.

� We also know that (p;q; r+ 1) 2 P. This implies that the following inlu-

sion holds (p� 1;q� 1; r) + C � S.

There are two other ubes in S whih might ontain this edge, that is, (p� 1;

q; r) + C and (p;q� 1; r) + C:

(1) Assume (p� 1;q; r) 2 P. Then (p� 1;q; r)+C 6� S, so that (p;q; r)+E

2

is inluded in the boundary of S. This implies that this fae ontains the

edge [(p;q; r); (p;q; r+ 1)℄.

(2) Assume (p� 1;q; r) 62 P. Then (p� 1;q; r) + C � S so that the fae

(p;q; r) +E

1

is inluded in the boundary of the disrete plane, and on-

tains the edge [(p;q; r); (p;q; r+ 1)℄.

(3) Assume (p;q� 1; r) 2 P, then (p;q� 1; r) + C 6� S, and the fae

(p;q� 1; r) +E

1

is inluded in the disrete plane and ontains the edge

[(p;q; r); (p;q; r+ 1)℄.

(4) Assume (p;q� 1; r) 62 P, then (p;q� 1; r) + C � S, and the fae

(p+ 1;q; r) +E

2

is inluded in the disrete plane and ontains the edge

[(p;q; r); (p;q; r+ 1)℄.

In the last two ases, the edge [(p;q; r); (p;q; r+ 1)[ is inluded in the losure

of a fae but not in this fae itself. Hene there exists exatly one fae inluded

in P whih ontains [(p;q; r); (p;q; r+ 1)[ whih orresponds to one of the

�rst two ases.

Proof of Theorem 5.2 Two points need to be heked to state the theorem.

(1) The morphism �

P

is well de�ned from P to P

�

: the image of a fae in

the disrete plane is the union of distint faes in the disrete plane.

First, let us hek that the union in Formula (5.1) is disjoint. Suppose

that two faes in this formula are equal. They must have the same type k.

Hene �(k) shall be deomposed under the forms �(k) = P

1

jS

1

= P

2

jS

2

with l(P

1

) = l(P

2

). But, with no loss of generality one an suppose jP

1

j <

jP

2

j, so that P

1

is a strit pre�x of P

2

, leading to a ontradition.

Let x + E

i

� P. Let us prove that all the piees in �

P

(x + E

i

) are

faes in P. Let �(k) = PiS, y = x� l(P )� (e

1

+ � � �+ e

i

) and M

�1

y +

(e

1

+ � � � + e

k

) + E

k

be a fae in �

P

(x + E

i

). >From the geometrial

interpretation of Prop. 3.3, this fae is inluded in the disrete plane if

and only if M

�1

y + e

k

is above the plane P and M

�1

y is below.

Sine x+E

i

� P, we know that x� (e

1

+ � � �+e

i

) = y+ l(P ) is below

the plane. Hene y is below P and so is M

�1

y.

We also know that e

k

=M

�1

Me

k

=M

�1

l�(k) =M

�1

[l(P )+e

i

+l(S)℄,

so that M

�1

y + e

k

= M

�1

(x � (e

1

+ � � � + e

i�1

)). By de�nition of P,

x� (e

1

+ � � �+ e

i�1

) is above the plane P, and so does M

�1

y + e

k

.
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(2) The morphism �

P

an be iterated on P

�

: two distint faes on the disrete

plane have images whih do not interset. Let y+E

k

be in the intersetion

of �

P

(x

1

+ E

i

1

) and �

P

(x

2

+ E

i

2

). Then there exists �(k) = P

1

i

1

S

1

=

P

2

i

2

S

2

suh that x

1

� l(P

1

)�(e

1

+ � � �+e

i

1

) = x

2

� l(P

2

)�(e

1

+ � � �+e

i

2

).

If jP

1

j = jP

2

j then i

1

= i

2

, whih implies x

1

= x

2

so that x

1

+ E

i

1

and

x

2

+ E

i

2

are the same. If jP

1

j 6= jP

2

j we an suppose that jP

1

j < jP

2

j.

Then l(P

2

) = l(P

1

) + e

i

1

+ z with z a nonnegative vetor. Hene the

vetor x

2

� (e

1

+ � � �+ e

i

2

) = z+ x

1

� (e

1

+ � � �+ e

i

1

�1

) is the sum of the

nonnegative vetor z with a vetor that is known to be above the plane

P. But x

2

� (e

1

+ � � � + e

i

2

) is also below the plane sine x

2

+ E

i

2

is in

the disrete plane, that is, a ontradition.

Proof of Lemma 6.3 Let (x+E

i

) be the diret anestor of y+E

j

, that is,

y + E

j

ours in �

P

(x+ E

i

).

Let �

s

denote the projetion onto the ontrating plane P of M along its

expanding diretion (�

2

; 1; �), and let �

u

denote the projetion onto the ex-

panding plane P along the ontrating diretion. Let (p;q; r) = x denote the

oordinates of x. One has:

�

u

(x) =

�

2

p+ �q + r

�

4

+ 2�

(�

2

; 1; �):

Sine (p;q; r) belongs to the disrete plane, then �

2

p+�q+r � �

2

+�+1 = �

4

,

jj�

u

(x)jj � K

�

=

�

4

�

4

+ 2�

p

�

4

+ 1 + �

2

;

and

jjxjj � jj�

s

(x)jj+K

�

:

Sine they have the same eigenspaes, the maps �

u

and M

�1

ommute, and

�

u

(M

�1

x) =M

�1

�

u

(x) = �

�1

�

u

(x): We thus get

jj�

s

(M

�1

x)jj � jjM

�1

xjj+ jj�

u

(M

�1

x)jj � jjM

�1

xjj+ �

�1

K

�

:

Let � denote one the two onjugate omplex eigenvaluues ofM (j�j < 1); then

jj�

s

(x)jj = jjM�

s

(M

�1

x)jj � j�j jj�

s

(M

�1

x)jj � j�j(jjM

�1

xjj+ �

�1

K

�

):

From Formula (5.1), the points y and M

�1

x di�er at most by the sum of the

three basi vetors, hene jjM

�1

xjj � jjyjj+ 3, so that

jjxjj � jj�

s

(x) +K

�

� j�j(jjM

�1

xjj+ �

�1

K

�

) +K

�

� j�j(jjyjj+ 3 + �

�1

K

�

) +K

�

� j�j(jjyjj+K

0

�

);
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with K

0

�

= (3 +K

�

)=j�j+ �

�1

K

�

:

Now we have to notie that the real funtion a 7! j�j(a + K

0

�

) is an aÆne

funtion that is above any aÆne funtion with a greater slope as soon as a is

large enough. For instane, let j�j < � =

q

j�j < 1. Then, if a � K

0

�

�=(1��),

one has j�j(a+K

0

�

) � �a. This implies:

if jjyjj � C = K

0

�

�

1� �

, then jjxjj � � jjyjj:
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