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Abstract: We study a two dimensional generalization of Stur-
mian sequences corresponding to an approximation of a plane: these
sequences are defined on a three-letter alphabet and code a two di-
mensional tiling obtained by projecting a discrete plane. We show
that these sequences code a Z

2-action generated by two rotations on
the unit circle. We first deduce a new way of computing the rect-
angle complexity function. Then we provide an upper bound on the
number of frequencies of rectangular factors of given size.
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1 Introduction

1.1 Discrete planes and tilings

Discrete planes and tilings arising from their projection, appear in numerous
fields. In particular, such tilings are included in the class of tilings obtained
by the “cut and project” method, like the Penrose tiling [13], see also [30, 32].
These tilings have deep connections with quasicrystals (see for instance [12, 36]).

Discrete planes and lines are also studied in digital geometry and correspond,
in the rational case, to the notion of an arithmetic plane (see for instance [31]
for an arithmetic and algorithmic study or [20], for a topological approach).

The recognition of discrete lines and planes is a classical problem in com-
puter imagery. Basic questions are to obtain a characterization of discrete
planes and to recognize whether a set of points is contained in a discrete plane.
These two questions have mathematical answers, but the problem for computer
scientists is to find fast algorithms to check these properties. Our work might
be applied in this field, in particular, with regard to the introduced property of
balance and to the minimality of the complexity (see also [42]).

Discrete planes correspond to the stepped surface introduced and studied
by Ito and Ohtsuki in [25, 26] from a number-theoretic point of view: more
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†LIAFA, Université Paris 7, 2 pl. Jussieu, F-75251 Paris Cedex 05, France, vuil-
lon@liafa.jussieu.fr

1



precisely, Ito and Ohtsuki study a generating method of a stepped surface by
using the multi-dimensional continued fraction algorithm of Jacobi-Perron and
by introducing substitutions on square faces.

This article studies a coding by a two dimensional sequence of an aperiodic
tiling of the plane. Consider the set of all unit cubes, with vertices at integer
lattice points, which intersect a given plane. The discrete plane approximating
this plane is the (upper or lower) surface of the union of these unit cubes. The
discrete plane thus consists of three kinds of square faces, orientated according
to the three coordinate planes. After projection, we obtain a tiling of the plane
by three kinds of diamonds, being the projections of the square faces. We prove
that this tiling is associated with a Z

2-lattice. We code this tiling over a two
dimensional sequence defined on a three-letter alphabet. Such a sequence has
been introduced by the second author in [41]. The purpose of this paper is to
show that this two dimensional sequence is a coding of a Z

2-action given by
two rotations on the unit circle R/Z and then to deduce metric and topological
properties.

This article is organized as follows. We first recall basic results concerning
Sturmian sequences. The second section contains a brief summary of the dis-
crete line construction. We introduce in the third section a two dimensional
generalization of Sturmian sequences. We show that such a sequence codes
a Z

2-action generated by two rotations on the unit circle and we introduce a
property of balance. In Section 4, we characterize the rectangular factors of
given size in terms of a partition of the unit circle. In Section 5.2, we provide a
new way to compute the rectangle complexity and we show that the complexity
function satisfies P (m,n) = mn + m + n, for all (m,n) (this result was already
given in [41], see also [31] for the rational case). By using a two dimensional
version of the three distance theorem (proved by Geelen and Simpson in [21]),
we also deduce, that the frequencies of rectangular factors of size (m,n) take
at most min(m,n) + 5 values (Section 5.2). We also prove some properties of
uniform recurrence on the language of rectangular factors (Section 5.3). In the
last section, we explore the notion of minimal complexity for two dimensional
sequences. In particular, we provide an example of a two dimensional sequence
of complexity P (m,n) = mn+n, for every (m,n), which is uniformly recurrent
and which has no rational periodic direction.

1.2 Sturmian sequences

A Sturmian sequence is defined as a unidirectional sequence of complexity
p(n) = n + 1, for every n. Recall that the complexity function counts the
number of distinct factors of given length. Note that a sequence whose com-
plexity satisfies p(n) ≤ n, for some n, is ultimately periodic (see [28]). Stur-
mian sequences thus have minimal complexity among non-ultimately periodic
sequences. Sturmian sequences are also characterized by the following geomet-
ric and combinatorial properties. A recent account on the subject can be found
in [11, 27].

• A Sturmian sequence is the coding of the positive orbit of a point x of
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the unit circle under an irrational rotation of angle α, say, with respect
to a partition into two semi-intervals of size α and 1 − α (see [29]).

• Sturmian sequences are codings of trajectories of irrational slope in a
square billiard table obtained by coding horizontal sides by the letter 0
and vertical sides by the letter 1.

• Sturmian sequences are defined by approximation of a line of irrational
slope, i.e., by coding a discrete line (see Section 2).

• Sturmian sequences are exactly the non-ultimately periodic balanced se-
quences over a two-letter alphabet. A balanced sequence is such that the
absolute values of the differences between the number of occurrences of a
letter in any two factors of the same length are at most 1.

By abuse of notation, we call in the sequel a two-sided sequence Sturmian if the
restriction of any translate over N is Sturmian. This means that it is the coding
of the orbit (in both directions) of a point x of the unit circle under an irrational
rotation of angle α, say, with respect to a partition into two half-open intervals
of size α and 1 − α. Such a sequence has complexity p(n + 1) = n + 1, for
every n, but the converse is false, as illustrated by the example of the sequence
. . . 0 . . . 010 . . . 0 . . .

Unidimensional generalizations with values in a three-letter alphabet have
been given by:

a) playing billiards in a cube, one thus obtains the complexity function
p(n) = n2 + n + 1 (see [3] and, for the n-dimensional case, see [5]),

b) by considering sequences of complexity p(n) = 2n + 1 with an extra
combinatorial condition [4],

c) by introducing the notion of episturmian words, which generalizes palin-
dromic properties of Sturmian sequences [17],

d) or by considering well-balanced sequences [22, 24].
Let us see in what respect the two dimensional sequences studied here pro-

vide a generalization of Sturmian sequences. We extend the construction with
discrete lines to a higher-dimensional space (Sections 2 and 3). We show fur-
thermore that these sequences code a Z

2-action generated by two rotations on
the unit circle. These sequences also satisfy some property of balance, that
we describe in Section 3.2. Finally we introduce in Section 6 sequences de-
fined on a two-letter alphabet, and produced as a letter-to-letter projection of
the two dimensional Sturmian sequences. We conjecture these sequences to be
of “minimal” rectangular complexity among two dimensional sequences, which
are uniformly recurrent but not periodic. Furthermore, they can be described
among uniformly recurrent sequences as those sequences of complexity mn + n
[7]. They also show some interesting properties of palindromy generalizing the
Sturmian case [8].
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Figure 1: Discrete line

2 Discrete line

Let us first recall the classical connection between approximations of a line
in the plane and Sturmian sequences (see for instance [10] or [27]). Let D :
y = −αx + γ be a line in R

2. We can assume α > 1 without loss of generality,
by permuting the coordinate axes if necessary and 0 ≤ γ < 1, by translating
the axes by integers (we will come back to these restrictions in the Remark at
the end of this section). We associate to D two discrete lines, namely an upper
discrete line D and a lower discrete line D, by approximating D by vertical and
horizontal edges of length 1 as follows (see Figure 1).

Definition 1 Let S (respectively S) be the set of translates of the fundamental
square with integer vertices that intersect the lower half-plane y < −αx + γ
(respectively the upper half-plane y > −αx+γ).The discrete line D (respectively
D) is defined as the topological boundary of S (respectively S).

Define hn = ⌈−αn + γ⌉ and hn = ⌊−αn + γ⌋, for all n ∈ Z. The integer hn

(respectively hn) gives the height of the nth horizontal edge in the discrete line
D (respectively D).

Let us associate with the discrete lines D and D, respectively, the two two-
sided sequences u = (un)n∈Z and u = (un)n∈Z, with values in {0, 1}, defined
by

un = 1 if and only if there exists j ∈ Z such that n = h0 − hj + j,

un = 1 if and only if there exists j ∈ Z such that n = h0 − hj + j.

The sequences u and u are respectively called the upper and lower coding of the
line D.

Note that 0 ≤ γ < 1 implies that h0 = 0 or 1 and that h0 = 0. Furthermore
u0 = u0 = 1, by definition.
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As α > 1, then −hj+1 + j + 1 > −hj + j, for any j ∈ Z. The same holds for
the integers hj. Hence, for any integer n, there exists a unique j ∈ Z such that

h0 − hj + j ≤ n < h0 − hj+1 + j + 1. We define j in the same way.
Roughly speaking the two sequences u and u code respectively the discrete

lines D and D, by 1 for an horizontal edge and by 0 for a vertical edge (see
Figure 1): actually, if un = 1, then un codes the horizontal edge of endpoints
(j, hj) and (j + 1, hj) of the discrete line, and if un = 0, then un codes the

vertical edge of endpoints (j + 1,−n + j + h0 + 1) and (j + 1,−n + j + h0); a
similar description holds for the sequence u.

The following proposition expresses the two sequences u and u as codings
of rotations of the unit circle.

In all that follows Rα denotes the rotation of angle α defined on the unit
circle by:

Rα(x) = x + α (modulo 1).

Except where stated otherwise, every quantity is considered modulo 1.

Proposition 1 Let u and u be respectively the upper and the lower coding of
the line D : y = −αx + γ, where α > 1 and 0 ≤ γ < 1. Let γ = γ, if γ 6= 0 and
γ = 1, otherwise.

The sequences u and u satisfy

un = i ⇐⇒ Rn
1

1+α

(

γ

1 + α

)

∈ Ii,

un = i ⇐⇒ Rn
1

1+α

(

γ

1 + α

)

∈ Ii,

where

I1 =

]

0,
1

1 + α

]

and I0 =

]

1

1 + α
, 1

]

,

I1 =

[

0,
1

1 + α

[

and I0 =

[

1

1 + α
, 1

[

.

Proof Consider the sequence u. Suppose that un = 1. There exists a unique
j ∈ Z such that

n = h0 − hj + j,

i.e.,
n = j + ⌈γ⌉ − ⌈−αj + γ⌉.

Note that γ = γ − ⌈γ⌉ + 1. We thus have

(1 + α)j < n + γ ≤ (1 + α)j + 1,

i.e.,

j <
n + γ

1 + α
≤ j +

1

1 + α
,
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which implies
n + γ

1 + α
∈

]

0,
1

1 + α

]

modulo 1.

Suppose now that un = 0. There exists a unique j ∈ Z such that

h0 − hj + j + 1 ≤ n ≤ h0 − hj+1 + j,

which implies similarly that

n

1 + α
+

γ

1 + α
∈

]

1

1 + α
, 1

]

modulo 1.

The same reasoning applies to u.

Remarks

• This construction is to be compared with the notions of mechanical se-
quences and cutting sequences (see for instance [27]).

• When α is a rational number, both sequences (un)n∈Z and (un)n∈Z are
periodic.

• When α is an irrational number, then both sequences (un)n∈N and (un)n∈N

are easily seen to be Sturmian sequences. Actually a Sturmian sequence
is the coding of a point of the unit circle under the action of an irrational
rotation of angle α, say, with respect either to the partition {[0, 1−α[, [1−
α, 1[} or to the partition {]0, 1 − α], ]1 − α, 1]}. Suppose that the letter 1
codes the interval of length α. We thus have a bijection between the set
of Sturmian sequences (defined on N) that begin with the letter 1 and the
set of the restrictions over N of the upper and lower codings of the lines
D : y = −αx + γ, with α irrational number, α > 1 and 0 ≤ γ < 1.

• We deduce from the classical properties of Sturmian sequences that the
two sequences u and u have the same set of factors. More generally the
set of factors of a coding of a discrete line only depends on the slope α of
the discrete line (see for instance [27]).

• With the previous notations, we can deduce from the proof of Proposition
2.1 the expression for j and j:

j =

⌈

n + γ

1 + α

⌉

− 1,

j =

⌊

n + γ

1 + α

⌋

.

Furthermore, given any irrational number α and any γ, there exists at
most one n for which j 6= j: such an integer n exists if and only if

γ ∈ (1 + α)Z + Z; we thus have if γ 6= 0, j = n+γ
1+α

, un = 0, un+1 = 1,
un = 1, un+1 = 0, and uk = uk, for any k 6= n, n + 1. If γ = 0, then
u0 = 1, u−1 = 0, u0 = 1, u1 = 0, and uk−1 = uk, for any k 6= 0, 1. If
γ 6∈ (1 + α)Z + Z, then both sequences are equal.
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Figure 2: A discrete plane

3 Discrete plane

3.1 Construction

Let us generalize this construction to approximations in R
3. Let P : z =

−αx−βy+γ be a plane in R
3 endowed with the canonical basis (~e1, ~e2, ~e3). We

can still assume α > 1, β > 1, and 0 ≤ γ < 1, without loss of generality. We
associate to the plane P two discrete planes, namely an upper discrete plane
P and a lower discrete plane P , by approximating P by unit square faces as
follows (see Figure 2 and 3.a). This construction corresponds to the stepped
surface introduced by Ito and Ohtsuki in [25, 26].

Definition 2 Let S (respectively S) be the set of translates of the fundamental
cube with integer vertices that intersect the lower half-space z < −αx − βy + γ
(respectively the upper half-space z > −αx − βy + γ).

The upper discrete plane P (respectively the lower discrete plane P ) is de-
fined as the boundary of S (respectively S).

We will call generically discrete plane (denoted by P ) either P or P , when
there is no need to distinguish between them.

Let Hp,q = ⌈−pα − qβ + γ⌉, Hp,q = ⌊−pα − qβ + γ⌋, for all p, q ∈ Z. Note
that H0,0 = 0.

Let π be the affine projection on the plane x + y + z = 0 according to
the direction (1,1,1) and let ~π denote the corresponding vectorial projection.
Let us endow the plane x + y + z = 0 with two bases, according to whether
we consider the projections of P or P : consider first for P the basis (O′,~i,~j),
where ~i = ~π(~e1 + ~e2), ~j = ~π(~e2), and ~OO′ = −H0,0

~i, and second, for P , the
basis (O,~i,~j).
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Figure 3: Discrete plane and projection

The projection π has thus the following matrix representation in (O′,~i,~j),
R

3 being endowed with its canonical basis (O, ~e1, ~e2, ~e3):

π





x
y
z



 =

(

1 0 −1
−1 1 0

)





x
y
z



 +

(

H0,0

0

)

,

whereas π has the following matrix representation in (O,~i,~j):

π





x
y
z



 =

(

1 0 −1
−1 1 0

)





x
y
z



 .

The discrete plane P is a union of translates of unit square faces. Consider
the following square faces

E1 = {λ~e2 − µ~e3|(λ, µ) ∈ [0, 1[2},

E2 = {λ~e1 − µ~e3|(λ, µ) ∈ [0, 1[2},

E3 = {λ~e1 + µ~e2|(λ, µ) ∈ [0, 1[2}.

We call an upper (respectively lower) pointed face of type i a set of points

{(p, q, r) + Ei},

(respectively
{(p, q, r) − Ei}),

where (p, q, r) ∈ Z
3. We say (p, q, r) is the vertex of this pointed face. See

Figure 4.
Let us prove that the image by the projection π of the discrete plane P gen-

erates a tiling of the plane by three kinds of diamonds, namely the projections
of the faces of type 1, 2 and 3.
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Lemma 1 The property stated below applies to both upper and lower faces. The
notation Hp,q will stand for Hp,q, if one considers upper faces, and for Hp,q, if
one considers lower faces.

The point with coordinates (m,n) is the image by π of the vertex of a face
of type k (with k = 1, 2, 3) if and only if there exists (p, q) ∈ Z

2 such that

m = p + H0,0 − Hp,q, n = −p + q, if k = 3,

p + 1 + H0,0 − Hp,q ≤ m ≤ p + H0,0 − Hp,q+1, n = −p + q, if k = 2,

p + 1 + H0,0 − Hp,q+1 ≤ m ≤ p + H0,0 − Hp+1,q+1, n = −p + q, if k = 1.

Furthermore, given any (m,n) ∈ Z
2, there exists a unique (p, q) ∈ Z

2 such that
(m,n) satisfies one and only one of the above three conditions.

The following corollary is a straightforward consequence of Lemma 1.

Corollary 1 The projections of the square faces of P tile the plane by three
kinds of diamonds being the projection of a face of type Ek, where k = 1, 2 or 3.
Furthermore, each point of Z

2 is the image of exactly one vertex of one pointed
face.

Proof of Lemma 1 We consider implicitly in the proof the case of the upper
discrete plane. The proof works in exactly the same way for the lower discrete
plane (the vectorial cubes that we consider below should be replaced by their
opposites).

• Consider the faces of type 3. By definition, the cube

{(p, q, r) + λ~e1 + µ~e2 − ν ~e3, 0 ≤ λ, µ, ν ≤ 1}

belongs to S if and only if r ≤ Hp,q. Hence a face of type E3 of vertex
(p, q, r) belongs to the boundary if and only if r = Hp,q. The image of
(p, q,Hp,q) by π has coordinates (p − Hp,q + H0,0,−p + q).

• Consider the faces of type 2. Let us prove that a point (p + 1, q + 1, r) is
a vertex of a face of type 2 if and only if Hp,q+1 + 1 ≤ r ≤ Hp,q.

The points with coordinates (p + 1, q + 1,Hp,q − k), with 0 ≤ k ≤ Hp,q −
Hp,q+1−1, are vertices of faces of type E2. Otherwise, suppose that a face
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of type 2 with a vertex satisfying (p + 1, q + 1, r), Hp,q+1 + 1 ≤ r ≤ Hp,q,
does not belong to the boundary of S. Then the cube

{(p, q + 1, r) + λ~e1 + µ~e2 − ν ~e3, 0 ≤ λ, µ, ν ≤ 1}

would belong to S, and then r ≤ Hp,q+1, which would contradict the
assumption on r. In other words, the face of type 3 and vertex (p, q,Hp,q)
is connected to the face of same type and vertex (p, q + 1,Hp,q+1) by
|Hp,q+1 − Hp,q| faces of type E2 (see Figure 5.a).

Conversely, let (p + 1, q + 1, r) be the vertex of a face of type 2. Suppose
that the cube located at the right of this face, i.e.,

{(p, q + 1, r) + λ~e1 + µ~e2 − ν ~e3, 0 ≤ λ, µ, ν ≤ 1}

belongs to S. We thus have r ≤ Hp,q+1. But Hp,q < r, otherwise the
face of type 2 that we consider would not belong to the boundary of S.
As β > 1, Hp,q+1 < Hp,q. This implies that this situation cannot occur.
Hence r ≥ Hp,q+1 + 1 and the cube located at the left of the face we
consider, i.e.,

{(p, q, r) + λ~e1 + µ~e2 − ν ~e3, 0 ≤ λ, µ, ν ≤ 1}

belongs to S, which implies r ≤ Hp,q.

We thus have proved that a point (p + 1, q + 1, r) is a vertex of a face
of type 2 if and only if Hp,q+1 + 1 ≤ r ≤ Hp,q. The projections of these
points have coordinates (m,n), with

p + 1 + H0,0 − Hp,q ≤ m ≤ p + H0,0 − Hp,q+1, n = −p + q.

• Consider the faces of type 1. We similarly prove that a point with co-
ordinates (p + 1, q + 1, r) is a vertex of a face of type 1 if and only if
Hp+1,q+1 + 1 ≤ r ≤ Hp,q+1, i.e., the face Hp,q+1 is connected to the face
Hp+1,q+1 by |Hp,q+1−Hp+1,q+1| faces of type E1. The projections of these
points have coordinates (m,n), with

p + 1 + H0,0 − Hp,q+1 ≤ m ≤ p + H0,0 − Hp+1,q+1, n = −p + q.

As α > 1 and β > 1, we thus have

p − Hp,n+p < p + 1 − Hp,n+p < p − Hp,n+p+1 < · · ·

< p + 1 − Hp,n+p+1 < p − Hp+1,n+p+1 < p + 1 − Hp+1,n+p+1.

Hence given any (m,n) ∈ Z
2, there exists a unique (p, q) ∈ Z

2 such that (m,n)
satisfies one and only one of the three conditions of Lemma 1.

Corollary 1 implies that we can code the tiling of the plane that we obtain
by a two dimensional sequence defined over Z

2 (see Figures 3 and 5). Actually,
the projections of the square faces tile the plane by three kinds of diamonds
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Figure 5: Stairs and two dimensional sequence.

being the projection of a face of type Ek (where k = 1, 2 or 3). Each diamond is
the juxtaposition of two equilateral triangles: one is called the up triangle (its
coordinates in the basis (O′,~i,~j) are (l,m), (l,m+1), (l+1,m)), the coordinates
of the vertices of the other triangle, which we call the down triangle, will depend
on the type of the associated projected face. Corollary 1 implies that the centers
of the up triangles form a Z

2-lattice (see Figure 3.b). We can thus code this
tiling over Z

2 as follows.

Definition 3 Let U = (Um,n)(m,n)∈Z2 (respectively U = (Um,n)(m,n)∈Z2) be the
sequence that associates with each point with coordinates (m,n) the type of the
upper (respectively lower) face whose vertex projects on (m,n), or equivalently
which codes each up triangle with coordinates say (m,n), (m,n+1) and (m+1, n)
by the index k of the corresponding diamond π(Ek).

The sequence U (respectively U) is called the upper (respectively the lower)
coding of the plane P.

We shall use the usual representation for two dimensional sequences: the
first index indicates the column number from left to right, whereas the second
index n denotes the row number, from bottom to top.

We deduce from Lemma 1 that both two dimensional sequences U and U
satisfy







Um,n = 3 ⇔ ∃ p, m = H0,0 − Hp,p+n + p,
Um,n = 2 ⇔ ∃ p, H0,0 − Hp,p+n + p + 1 ≤ m ≤ H0,0 − Hp,p+n+1 + p,
Um,n = 1 ⇔ ∃ p, H0,0 − Hp,p+n+1 + p + 1 ≤ m ≤ H0,0 − Hp+1,p+n+1 + p.

This property again holds for both sequences U and U , the notation Hp,q stand-
ing for Hp,q or Hp,q, accordingly to the sequence we consider.

We can prove now that the sequences U and U code a Z
2-action defined by

two rotations on the unit circle.
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Theorem 1 Let U and U be respectively the upper and the lower coding of the
plane P : z = −αx − βy + γ, where α > 1, β > 1, 0 ≤ γ < 1. Let γ = γ, if
γ 6= 0 and γ = 1, otherwise. Let

α′ =
1

1 + α + β
, β′ =

1 + α

1 + α + β
=

−β

1 + α + β
,

γ′ =
γ

1 + α + β
and γ′ =

γ

1 + α + β
.

Both sequences U and U code the Z
2-action generated by the two rotations

of the unit circle Rα′ and Rβ′ , of angle respectively α′ and β′. More precisely
we have

Um,n = i ⇐⇒ Rm
α′Rn

β′(γ′) ∈ Ii,

with I3 = ]0, α′], I2 = ]α′, α′ + 1 − β′] and I1 =]α′ + 1 − β′, 1],

Um,n = i ⇐⇒ Rm
α′Rn

β′(γ′) ∈ Ii,

with I3 = [0, α′[, I2 = [α′, α′ + 1 − β′[ and I1 = [α′ + 1 − β′, 1[.

Proof Consider the sequence U .

• Suppose Um,n = 3. There exists p ∈ Z such that

m = H0,0 − Hp,p+n + p,

i.e.,
m − ⌈γ⌉ = p − ⌈−(α + β)p − nβ + γ⌉.

We have

(1 + α + β)p + nβ < m + γ ≤ (1 + α + β)p + nβ + 1,

i.e.,

p <
m − nβ + γ

1 + α + β
≤ p +

1

1 + α + β
,

and
m − nβ + γ

1 + α + β
∈

]

0,
1

1 + α + β

]

modulo 1.

• Suppose Um,n = 2. There exists p ∈ Z such that

H0,0 − Hp,p+n + p + 1 ≤ m ≤ H0,0 − Hp,p+n+1 + p.

This is equivalent to

m − nβ + γ

1 + α + β
∈

]

1

α + β + 1
,

1 + β

α + β + 1

]

modulo 1.

• Suppose Um,n = 1. There exists p ∈ Z such that

p+1−⌈−(α+β)p−(n+1)β+γ⌉ ≤ m−⌈γ⌉ ≤ p−⌈−(α+β)p−α−(n+1)β+γ⌉,

which is equivalent to

m − nβ + γ

1 + α + β
∈

]

1 + β

α + β + 1
, 1

]

modulo 1.

The same reasoning holds for U .

12



Remarks and notations

• Given any (m,n) ∈ Z
2, we can give explicitly the coordinates (p, q, r) of

the vertex of the face whose projection is coded by Um,n, say. Let

p =

⌈

m − nβ + γ

1 + α + β

⌉

− 1.

If Um,n = 3, then p = p, q = n + p, r = Hp,q = −m + H0,0 + p. If
Um,n = 2 or 1, then p = p + 1, q = n + p, r = −m + H0,0 + p. A similar

result holds for the sequence U , with p =
⌊

m−nβ+γ
1+α+β

⌋

.

• This work can be generalized in a higher-dimensional space, either by
introducing the notion of a discrete hyperplane (we thus obtain tilings of
R

d−1), or by considering discrete planes in dimension greater than three
(we get tilings of the plane). We will discuss this second point of view in
the last section of this paper. For what concerns the first point of view,
i.e., codings of discrete hyperplanes, the whole construction and all the
results of this section can be extended in a natural way.

• In the sequel we shall work with the sequence U , that we will denote for
simplicity by U . We shall similarly use the notation I1, I2, I3:

I3 = [0, α′[, I2 = [α′, α′ + 1 − β′[, I1 = [α′ + 1 − β′, 1[.

Hence, |I3| = 1
1+α+β

, |I2| = β
1+α+β

, |I1| = α
1+α+β

. We thus have

Um,n = i ⇐⇒ mα′ + nβ′ + γ′ ∈ Ii.

Note that
0 < α′ < 1/3, α′ < β′ < 1, α′ < 1 − β′.

• As in the one-dimensional case, one can characterize the case where the
sequence U is periodic.

Proposition 2 The sequence U has a non-zero periodic vector, i.e.,

∃(a, b) ∈ Z
2 − {(0, 0)}, ∀(m,n) Um,n = Um+a,n+b,

if and only if 1, α′, β′ are rationally dependent.

Proof Actually, suppose that 1, α′, β′ are rationally independent and
that there exists (a, b) a non-zero periodic vector for U . Hence Uka,kb =
U0,0, for every k, which implies that: ∀k, k(aα′ + bβ′) ∈ [0, α′[. This is
impossible since the sequence (k(aα′ +bβ′))k∈Z is dense on the unit circle.
Conversely, suppose that 1, α′, β′ are rationally dependent. There exists
(a, b) ∈ Z

2−{(0, 0)}, such that aα′+bβ′ ∈ Z, and thus, (a, b) is a periodic
vector.

13



3.2 Balance

Let us first deduce the following property of balance from Theorem 1. A (uni-
dimensional) sequence u is called balanced on the letter i if for any two factors
w and w′ of the sequence u of same length, then

||w|i − |w′|i| ≤ 1,

where |w|i denotes the number of occurrences of the letter i in the word w.

Corollary 2 For every integer n, the sequence Un = (Um,n)m∈Z is balanced on
the letter 3.

For every integer m, the sequence Um = (Um,n)n∈Z is balanced on the letter
2.

For every integer m, the sequence U ′
n = (Um,n−m)m∈Z is balanced on the

letter 1.

Proof Consider, for a fixed n, the sequence Un = (Um,n)m∈Z. Let pr :
{1, 2, 3} → {1, 3} be the projection defined by pr(3) = 3 and pr(1) = pr(2) = 1.
The sequence pr(Un) is thus the coding of the point of the unit circle γ′ + nβ′

under the rotation of angle α′ with respect to the partition {[0, α′[, [α′, 1[}. Thus
the sequence pr(Un) is balanced on the letter 3 and hence the sequence Un has
the same property. A similar reasoning holds for the other letters.

Remark This notion of balance is not completely satisfactory: it might be
interesting to get balance properties for rectangular factors and not only for
one-dimensional factors. Furthermore, whether one can characterize two di-
mensional Sturmian sequences via some balance property is an open question.

4 Factors and frequencies

We will assume from now on that 1, α, β are rationally independent, which
implies in particular that α′ and β′ are irrational numbers.

The aim of this section is to provide a characterization of rectangular factors
in terms of intervals of the unit circle. This characterization is classical in the
one-dimensional case (see for instance [1, 2]). In Section 4.1 we associate to
each rectangular factor a set of points of the unit circle. We prove this set to
be connected in Section 4.2. We thus obtain in Section 4.3 a description of the
set of rectangular factors of given size in terms of a finite partition of the unit
circle.

4.1 Definitions and notation

We call rectangular factor of the infinite sequence U a finite array W of consec-
utive letters of U , say

w1,n . . . wm,n

...
...

w1,1 . . . wm,1,

14



such that there exist k, l satisfying wi,j = Uk+i−1,l+j−1, with 1 ≤ i ≤ m,
1 ≤ j ≤ n. We thus say that the factor W has size (m,n). Note that here we do
not use the usual matrix indexing, but we keep the indexing we previously chose
for the representation of two dimensional sequences. Let L(U,m, n) denote the
language of rectangular factors of size (m,n) of the sequence U. Let us prove
the following.

Lemma 2 The block W = [wi,j], defined on {1, 2, 3} and of size (m,n), is a
factor of U if and only if

I(W ) :=
⋂

1≤i≤m,1≤j≤n

R−i+1
α′ R−j+1

β′ Iwi,j
6= ∅.

Moreover, if W is a factor, then given any fixed integer l, there exists an oc-
currence of W with column index l. The same result holds for the indices of
rows.

Proof From Theorem 1, a block W = [wi,j], defined on {1, 2, 3} and of size
(m,n), is a factor of the sequence U if and only if there exist two integers k, l
such that

γ′ + kα′ + lβ′ ∈ I(W ) =
⋂

1≤i≤m,1≤j≤n

R−i+1
α′ R−j+1

β′ Iwi,j
modulo 1.

This implies that, if W is a factor, then I(W ) 6= ∅.
Reciprocally, suppose that I(W ) 6= ∅. Then the interior of I(W ) is not

empty, for I(W ) is defined as the intersection of left-closed right-open intervals.
Hence for any fixed integer l, there exists k such that γ′ + kα′ + lβ′ ∈ I(W ),
since the sequence (kα′)k∈Z is dense on the unit circle.

Example Consider the factors of size (2, 1). As α′ < 1/3, then [0, α′[∩[1 −
α′, 1[= ∅, i.e., I3 ∩ R−1

α′ I3 = ∅. Hence the word 33 can never be a factor of U .
As α′ < 1 − β′, then

I(31) = [0, α′[∩[1 − β′, 1 − α′[= ∅,

I(32) = [0, α′[∩[0, 1 − β′[= [0, α′[,

I(22) = [α′, α′ + 1 − β′[∩[0, 1 − β′[= [α′, 1 − β′[.

As 1 − α′ > α′ + 1 − β′, then

I(21) = [1 − β′, α′ + 1 − β′[,

I(11) = [α′ + 1 − β′, 1 − α′[,

I(13) = [1 − α′, 1[.

Furthermore as α′ < 1 − β′, then

I(12) = [α′ + 1 − β′[∩[0, 1 − β′[= ∅.

Hence if one considers any fixed line, the letter 3 appears as an isolated letter
and two successive occurrences of the letter 3 are separated by a range of 2’s
and then a range of 1’s.
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4.2 Connectedness

Let us prove now that the sets I(W ) are connected. This proof is based on the
ideas of [1]. We will use the following remark: if I and J are two left-closed and
right-open intervals of the unit circle whose intersection is not connected, then
the sum of their lengths is strictly larger than 1 and the ends of I (respectively
J) belong to the interior of J (respectively I).

Lemma 3 Given any rectangular factor W = [wi,j], defined on {1, 2, 3} and of
size (m,n), the set

I(W ) :=
⋂

1≤i≤m, 1≤j≤n

R−i+1
α′ R−j+1

β′ Iwi,j

defined in Lemma 2 is connected.

Proof Let us prove by induction on sup(m,n) that given any rectangular
factor W = [wi,j] of size (m,n), the set I(W ) is connected. The property is
obviously true for m = n = 1. Suppose that the property holds for a positive
integer N such that sup(m,n) = N . Let W be a factor of size (N + 1, n), with
n ≤ N . Let

I =
⋂

1≤i≤N, 1≤j≤n

R−i+1
α′ R−j+1

β′ Iwi,j
.

The set I is connected by assumption. Fix x in {1, 2, 3}. Suppose that I∩R−N
α′ Ix

is not connected and non-empty. We have |I| + |Ix| > 1. This implies that

∀(i, j), with 1 ≤ i ≤ N, 1 ≤ j ≤ n, wi,j = x. (1)

Otherwise, there would exist (i, j) such that wi,j = y 6= x, and then

|I| + |Ix| ≤ |Iy| + |Ix| < 1.

We thus deduce from 2|Ix| ≥ |I| + |Ix| > 1, that |Ix| > 1/2, x 6= 3 (since
|I3| = α′ < 1/2) and hence that |Ix| ≤ 1 − α′.

Let us note [a, b[= R−N
α′ Ix. We have d(a, b) = |Ix| ≤ 1 − α′, and thus

d(b, a) ≥ α′, where the notation d(a, b) stands for the distance between a and
b on the oriented unit circle. The intersection I ∩ [a, b[ is not connected by
assumption. Hence [b, a] is included in the interval I. As d(b, a) ≥ α′, then
b + α′ ∈ [b, a] and hence b + α′ belongs to I. Let y be the letter such that
the interval Iy follows Ix on the oriented unit circle. Recall that [a, b[= R−N

α′ Ix.

Hence b+α′ ∈ R−N+1
α′ Iy. We thus have R−N+1

α′ Iy∩I 6= ∅. But I ⊂ R−N+1
α′ IwN,1

.
Hence wN,1 = y 6= x, which yields the desired contradiction with Equation (1).
We have thus proved that I ∩ R−N

α′ Ix is connected.

Let I ′ = I ∩ R−N
α′ Ix. We similarly prove that I ′ ∩ R−N

α′ R−1
β′ Ix, and then

I ′ ∩ (∩2≤j≤n R−N
α′ R−j+1

β′ Ix) are connected for any x in {1, 2, 3}. Hence the
induction property holds for (N + 1, n), with n ≤ N .

Suppose now that n = N + 1 and m ≤ N + 1. Let W ′ = [wi,j ]1≤i≤m,1≤j≤N .
We thus have I(W ′) connected. We prove similarly that I(W ′) ∩ R−N

β′ Ix is
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connected, for any x ∈ {1, 2, 3}. Note that β′ may be strictly larger than
1/2: indeed β′ > 1/2 if and only if 1 + α > β. But if Ix > 1/2, we have
|Ix| ≤ sup(1− β′, β′) : suppose β′ < 1/2, then x = 2 and |I2| = 1− β′; suppose
β′ > 1/2, then x = 1 and |I1| < β′. In the first case we use exactly the same
proof as previously. In the second case, if we note [a, b[= R−N

β′ Ix, we have
d(a, b) < β′ and hence a + β′ ∈ [b, a] ⊂ I. We conclude in the same way. Hence
we similarly prove that I(W ) is connected for any factor of size (m,N + 1)
(m ≤ N) and (N + 1, N + 1).

We thus have proved that the induction property holds for N + 1, which
completes the proof.

More generally, we prove similarly the following.

Lemma 4 Given any (α′′, β′′), with (1, α′′, β′′) rationally independent and given
any finite partition of the unit circle into intervals of length smaller than sup(α′′, 1−
α′′) and sup(β′′, 1 − β′′), then any intersection of the form

I =
⋂

1≤i≤m,1≤j≤n

R−i+1
α′′ R−j+1

β′′ Iwi,j
,

is connected (the block [wi,j] takes its values into the set of indices of the parti-
tion).

4.3 Factors

We thus deduce from Lemma 2 and 3 that the intervals I(W ), associated to
the rectangular factors of size (m,n), are in one-to-one correspondence with the
intervals

R−i+1
α′ R−j+1

β′ Il, 1 ≤ i ≤ m, 1 ≤ j ≤ n, l = 1, 2, 3.

Example The intervals corresponding to the factors of size (2, 1) are obtained
by putting the extremal points of I3, I2, I1, R−1

α′ (I3), R−1
α′ (I2), R−1

α′ (I1), i.e., the
points modulo 1

0, α′, α′ − β′,−α′,−β′.

In the general case, we have the following.

Lemma 5 The intervals I(W ), associated to the rectangular factors of size
(m,n), are obtained by putting on the unit circle the points of the partition
Qm,n :

−iα′ − jβ′, with − 1 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1,

−nβ′ − iα′,with − 1 ≤ i ≤ m − 2.
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5 Topological and metric properties

We can thus deduce from Lemmas 2 and 5 the number of rectangular factors
of given size (i.e., the rectangular complexity function) by counting points of
the corresponding partition (Section 5.1). By considering the lengths of the
intervals, we can obtain an upper bound for the number of distinct frequencies
for rectangular factors of given size (Section 5.2). Finally, we consider properties
of uniform recurrence in Section 5.3.

5.1 Complexity function

Let us associate to the two dimensional sequence U a measure of its “complex-
ity” as follows: let P (m,n) denote the number of distinct rectangular factors
of size (m,n) of the sequence U , i.e., P (m,n) = CardL(U,m, n); the function
(m,n) → P (m,n) is called (rectangular) complexity of the sequence U . This
quantity is connected to the topological entropy.

The complexity function for triangular and rectangular factors for tilings
arising from the projection of a discrete plane is computed in [41]. The proof is
based on a notion of geometrical balance and on the study of the combinatorics
of patterns. Reveillès also computes in [31] the rectangle complexity function
in the rational case.

Let us see how to deduce from Lemma 5 the complexity function for rect-
angular factors.

Theorem 2 The complexity in rectangles of the sequence U satisfies

∀(m,n), P (m,n) = mn + m + n.

Proof From Lemma 5, the number of factors of size (m,n) of the sequence U
is equal to the number of intervals on the unit circle of extremal points (modulo
1) −iα′ − jβ′, with −1 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, and −nβ′ − iα′, with
−1 ≤ i ≤ m − 2. There are mn + m + n such points and hence nm + n + m
such intervals.

5.2 Frequencies

The frequency f(W ) of a factor W of the sequence U is defined as the limit,
if it exists, of the number of occurrences of this block in the “central” square
factor

U−n,n . . . Un,n

...
...

U−n,−n . . . Un,−n,

of the sequence divided by (2n + 1)2. Given any interval I of the unit circle,
the convergence when n tends towards +∞ of

Card{−n ≤ i ≤ n, iα′ + ρ ∈ I}

2n + 1
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towards the length of I is uniform in ρ (in other words, an irrational rotation
is uniquely ergodic). Hence the frequency of every factor W of U exists and is
equal to the length of

I(W ) =
⋂

1≤i≤m,1≤j≤n

R−i+1
α′ R−j+1

β′ Iwi,j
.

Therefore the number of frequencies of rectangular factors of the sequence
U of size (m,n) is equal to the number of lengths of the partition Qm,n (defined
in Lemma 5), which is given by a two dimensional version of the three distance
theorem proved by Geelen and Simpson in [21].

Recall the statement of the three distance theorem (see for instance [38, 39,
40] and the survey [2]). For a given α in ]0, 1[, let us place the points 0, α, 2α,
. . . , nα on the unit circle. These points partition the unit circle into n + 1
intervals having at most three lengths, one being the sum of the other two.
Geelen and Simpson have given the following generalization of this result (see
[21]).

Theorem 3 [Geelen and Simpson] Assume we are given three real numbers
α, β, ρ and two positive integers m, n. The set of points

{iα + jβ + ρ, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}

partitions the unit circle into intervals having at most min{m,n} + 3 lengths.

We thus deduce the following result on frequencies.

Proposition 3 The frequencies of rectangular factors of size (m,n) of the se-
quence U take at most min{m,n} + 5 values.

Proof The set of points

{−iα′ − jβ′, −1 ≤ i ≤ m − 1, 0 ≤ j ≤ n}

partitions the unit circle into intervals having at most min{m,n} + 4 lengths.
The number of frequencies of rectangular factors of the sequence U of size
(m,n) is equal to the number of lengths of the partition Qm,n. The point
−(m−1)α′−nβ′ does not belong to Qm,n, hence one more length might appear.

Remarks

• Whether this bound is sharp is an open question.

• In the Sturmian case, there are at most three frequencies, when one con-
siders factors of given length (see [6]); this result corresponds to the three
distance theorem. More generally, if one codes the orbit of a point of the
unit circle under an irrational rotation with respect to a partition into
two intervals, then there are at most 5 frequencies for the factors of given
length. An expression of these five frequencies is given in [9] using an
algorithm of approximation (modulo 1) of β by the points kα.

19



5.3 Uniform recurrence

A sequence is said to be uniformly recurrent if for every n, there exists an integer
N such that every square factor of size (N,N) contains every square factor of
size (n, n).

Proposition 4 The sequence U is uniformly recurrent.

Proof The uniform recurrence is a direct consequence of the three gap theo-
rem (see [37]): let δ be an irrational number and I be an interval of the unit
circle; the gaps between the successive integers j such that {δj} ∈ I take at
most three values which only depend on the length of I. Let l(n) denote the
smallest of the at most n + 5 lengths of the intervals corresponding to the
square factors of U of size (n, n). Let g(α′, n) be the length of the largest gap
obtained when the three gap theorem is applied using the irrational number
α′ and an interval of length l(n). Then every factor of size (n, n) appears in
every factor of size (g(α′, n)+ n− 1, n) (and thus in every square factor) of size
(g(α′, n) + n − 1, g(α′, n) + n − 1). Note that the same reasoning applies when
exchanging α′ and β′.

From an ergodic point of view, this corresponds to the minimality of the
Z

2-action.
Actually we have proved a stronger property than uniform recurrence: for

every n, there exists an integer N such that every square factor of size (n, n) in
L(U, n, n) appears in every rectangular factor of size (N,n), which implies the
following proposition.

Proposition 5 For any integer k, the language of rectangular factors of the
sequences constructed with k consecutive rows of the form

((Un,i), (Un,i+1), · · · , (Un,i+k−1))n∈Z

does not depend on the index i.

This property of “strong” uniform recurrence has the following geometric
interpretations.

Proposition 6 Two two dimensional Sturmian sequences coding two discrete
planes with the same totally irrational normal have the same language of rect-
angular factors.

Proof The quantity
⋂

1≤i≤l,1≤j≤k R−i+1
α′ R−j+1

β′ Iwi,j
is independent of the height

γ′ of the plane. Since we work with semi-intervals, then the fact that
⋂

1≤i≤l,1≤j≤k R−i+1
α′ R−j+1

β′ Iwi,j
is non-empty does not depend on the sense of

the partition. Therefore, the sequences U and U (that is the lower and the
upper codings introduced in Section 3) have also the same set of factors.

Proposition 7 Two discrete planes with the same totally irrational normal
vector have the same finite patterns of faces.
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Proof Let F be a finite pattern of faces (not necessarily connected) appearing
in the sequence U for a given plane of equation z = −αx−βy + γ. There exists
a rectangular word W , which is a factor of U , and such that F appears in W.
Consider a sequence U ′ given by a discrete plane with same normal vector. By
the preceding proposition, W is a factor of U ′. Then F appears in U ′.

6 Minimal complexity

In the one-dimensional case, a sequence satisfying p(n) ≤ n for some n, is
ultimately periodic (see [29], and also [16]). Hence Sturmian sequences are the
sequences of lowest complexity among the non-ultimately periodic sequences.
In the higher-dimensional case, no such results have been obtained: which
complexity functions are realisable, and whether or not there is a notion of
minimal complexity for two dimensional sequences, are both open questions.
The aim of this section is to provide an example of sequence of complexity
mn + n, obtained by a projection of the sequence U .

Definition 4 Consider the letter-to-letter projection pr : {1, 2, 3} → {1, 3}
defined by pr(1) = pr(2) = 1 and pr(3) = 3. Let V = (Vm,n)(m,n)∈Z2 be the
image by the projection pr of the sequence U . We thus have

• Vm,n = 3 ⇐⇒ 0 ≤ {mα′ + nβ′ + γ′} < α′,

• Vm,n = 1 ⇐⇒ α′ ≤ {mα′ + nβ′ + γ′} < 1.

The sequences in rows are Sturmian sequences that have the same language
(corresponding to the angle α′), whereas the sequences in columns are binary
codings with respect to the partition {[0, α′[, [α′, 1[} of the rotation of angle β′.

Lemma 6 There exist m0, n0 such that the complexity of the sequence V is
equal to mn + n, whenever m > m0 or n > n0.

Proof The sets I(W ) corresponding (as defined in Section 4.1) to the rect-
angular factors of size (m,n) are bounded by the points −iα′ − jβ′, with
−1 ≤ i ≤ m−1, 0 ≤ j ≤ n−1. These sets are not connected for the first values
of m,n because of the following relationship between α′ and β′: α′ < 1−β′ and

1 − β′ < 1 − α′. In fact, consider the factor W =
1
1

. We thus have

I(W ) = [α′, 1[∩[α′ + 1 − β′, 1 − β′[= [α′ + 1 − β′, 1[∪[α, 1 − β′[.

However, by using the same argument as in Section 4.2, we prove the following:
if I(W ) is not connected for a given rectangular factor W = [wi,j], then there
exists x such that: ∀(i, j), wi,j = x. But the set of integers n such that xn is
a factor of any Sturmian sequence of angle α is bounded: such a bound can be
explicitly given with respect to α (see [2]). The same result holds by considering
the sequences in columns, i.e., the binary codings with respect to the partition
{[0, α′[, [α′, 1[} of the rotation of angle β′. Hence if n or m are large enough,
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then the sets I(W ) are connected. Hence there exist positive integers m0 and
n0 such that the complexity of the sequence V is equal to mn + n, whenever
m > m0 or n > n0.

Following this idea, let us construct a sequence of complexity satisfying
P (m,n) = mn + n, for every (m,n).

Proposition 8 Let α′′, β′′ ∈ ]0, 1[ be such that (1, α′′, β′′) is totally irrational
and sup(α′′, 1 − α′′) ≤ sup(β′′, 1 − β′′). Let V = (Vm,n)(m,n)∈Z2 be the sequence
defined as follows:

• Vm,n = 3 ⇐⇒ mα′′ + nβ′′ ∈ [0, α′′[ modulo 1,

• Vm,n = 1 ⇐⇒ mα′′ + nβ′′ ∈ [α′′, 1[ modulo 1.

The complexity of the sequence V satisfies:

∀(m,n), P (m,n) = mn + n.

Furthermore, the sequence V is uniformly recurrent and has no periodic rational
direction: there do not exist (a, b) ∈ Z

2 − {(0, 0)} such that

∀(m,n) ∈ Z
2, Vm,n = Vm+a,n+b.

Proof Following Section 4.2 (Lemma 4), the sets I(W ) are easily seen to be
connected under the assumptions of the proposition. This yields the expression
of the complexity function.

The uniform recurrence and the non-periodicity of the two dimensional se-
quence V can be proved in the same way as that of U .

We thus obtain an example of a uniformly recurrent sequence with no pe-
riodic rational direction and of low complexity (∀(m,n), P (m,n) = mn + n).
For more results on these sequences, see [7, 8]. No other example of a uniformly
recurrent sequence with no periodic rational direction and of lower complexity
seems to be known.

Let us end this paper by recalling the following conjecture: let V be a two
dimensional sequence defined on the alphabet A; if there exist two positive
integers n0,m0 such that

P (m0, n0) ≤ m0n0,

then the sequence V has a periodic rational direction. The converse is false:
take a binary unidimensional sequence of maximal complexity (p(n) = 2n, for
every n). One can construct such a sequence C = (Cn)n∈N by using the Cham-
pernowne construction (see for instance [15]), i.e., by concatenating the base 2
expansions of the absolute value of the integers. Hence all possible combinations
of the digits 0 and 1 appear in the sequence C and: ∀n, p(n) = 2n. The double-
sequence (C(m,n))(m,n)∈N2 defined by C(m,n) = C(0,m + n) has the periodic
direction (−1, 1) and its complexity satisfies: ∀(m,n), P (m,n) = 2m+n−1.
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Note that Sander and Tijdeman have proved in [35] the conjecture for factors
of size (2, n) or (n, 2) , i.e., if there exists n such that P (2, n) ≤ 2n or P (n, 2) ≤
2n, then the sequence is periodic. They state a more general conjecture in [33,
34, 35], by extending the notion of complexity. Furthermore a counterexample
to the corresponding conjecture for k-dimensional sequences with k ≥ 3 is
given in [34]. Epifanio, Koskas and Mignosi prove in [19] a weakened version
of the conjecture: if there exist (m0, n0) such that P (m0, n0) ≤ αm0n0, with
α = 1/100, then the sequence is periodic. The limiting case mn + 1 has been
exhaustively described by Cassaigne in [14], see also [7] for a study of two
dimensional sequences of which language of factors in line is the language of a
recurrent Sturmian sequence.

7 Construction of double sequences associated with

tilings in higher dimensions

Consider now the extension of these results to discrete planes (not hyperplanes)
in dimension greater than three. Indeed, the “cut and project” method (see for
instance [36]) we have considered here provides a natural way first, to construct
tilings of the plane with diamonds, and second, to code them by two dimensional
sequences over a finite alphabet.

Consider a plane P (i.e., an affine space of dimension 2) in R
d (with d ≥ 4).

As previously, the discrete plane P associated to P is defined as the (upper
or lower) surface of the union of all unit hyper-cubes, with vertices at integer
lattice points, which intersect the plane P. Consider a projection π onto an
affine plane, for instance, the orthogonal projection on P. The projection of the
points with integer coordinates of the discrete plane P determines the vertices
of the tilings. For example, we show in Figure 6 1 a part of a tiling arising from
a discrete plane in R

4 and in Figure 7, a tiling arising from a discrete plane in
R

5: this tiling is a Penrose Tiling.
The next step is to construct an explicit two dimensional sequence associated

to such a tiling. The idea is to parametrize the discrete plane by a lattice.
We have defined in R

3 pointed faces in such a way that the discrete plane is
partitioned into these pointed faces. The projection π maps the vertices of the
discrete plane (i.e., the integral points) in a one-to-one way onto a Z

2-lattice Γ
(see Corollary 1): each point of Γ is the projection of a distinguished vertex of
a face of determined type. In this sense, one can say that the two dimensional
sequences associated to these tilings are quite natural.

In the higher-dimensional case, we can also map the tiling onto a Z
2-lattice.

Consider for instance the construction for R
4 and R

5. First, note that the
projections of the faces in a discrete plane in dimension R

d tile a 2d−gone, as
the projection of a unit hyper-cube in R

d. In consequence, it is sufficient [18]
to map the vertices of the 2d−gone onto integer points of Z

2, in order to map
the tiling onto a Z

2-lattice (see Figure 8).

1These figures have been realized thanks to QuasiTiler
(http://www.geom.umn.edu/apps/quasitiler/about.html).
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Figure 6: Projection of a discrete plane in R
4

Figure 7: Projection of a discrete plane in R
5

1

2

6

4

3

5

7

Figure 8: An octogone mapped onto a Z
2 lattice
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Figure 9: Seven pointed faces

Figure 10: Fourteen pointed faces

For d = 4, all the vertices are mapped onto integer points. The only trouble
is that there exists an integer point in the interior of one of the faces. To solve
it, we simply cut this face into two parts (pointed faces 5 and 6 on Figure 8).
We thus find a two dimensional sequence defined on a seven-letter alphabet
associated to the discrete plane in R

4 (see Figure 9).
For d = 5, (see Figure 10) all the vertices are mapped onto integer points.

There are two integer points which belong respectively to the interior of two
faces and two integer points which belong to the interior of the same face. We
simply cut the first two faces into two parts and the third one into three parts.
We thus find, for a discrete plane in R

5 (i.e., a Penrose tiling), a two dimensional
sequence defined on a fourteen-letter alphabet.

The notion of dynamical system associated with Penrose tilings has been
introduced by Robinson in [32]. See also [23] for the notion of Sturmian dy-
namical systems. We guess that it is possible to associate as previously to the
tilings defined here a rotation in a torus of appropriate dimension.
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plexité 2n + 1, Bull. Soc. math. France 119 (1991), 199–215.

[5] Y. BARYSHNIKOV Complexity of trajectories in rectangular billiards,
Comm. Math. Phys. 174 (1995), 43–56.
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