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Abstrat The disrete plane P(a, b, c, µ, ω) is the set of points (x, y, z) ∈
Z3

satisfying 0 ≤ ax+by+cz+µ < ω. In the ase ω = max(|a|, |b|, |c|), the
disrete plane is said naive and is well-known to be funtional on a oordi-

nate plane. The aim of our paper is to extend the notion of funtionality

to a larger family of arithmeti disrete planes by introduing a suitable

orthogonal projetion diretion (α, β, γ) satisfying αa+βb+ γc = ω. We

then apply this funtionality property to the enumeration of some loal

on�gurations, that is, the (m, n)-ubes suh as introdued in [VC99℄.

The disrete plane P(a, b, c, µ, ω) is the set of integer points (x, y, z) ∈ Z3

satisfying 0 ≤ ax + by + cz + µ < ω. In the ase ω = max(|a|, |b|, |c|),
the disrete plane is said naive and is well-known to be funtional on one of

the oordinate planes, that is, for any point of P of this oordinate plane,

there exists a unique point in the disrete plane obtained by adding to P
a third oordinate. Naive planes have been widely studied, see for instane

[Rev91,DRR94,DR95,AAS97,VC97,Col02,BB02℄.

The present paper extends the notion of funtionality for naive disrete planes

to a larger family of arithmeti disrete planes. For that purpose, instead of pro-

jeting on a oordinate spae, we introdue a suitable orthogonal projetion

on a plane along a diretion (α, β, γ), in some sense dual to the normal ve-

tor of the disrete plane P(a, b, c, µ, ω), that is, αa + βb + γc = ω, so that the

projetion of Z3
and the points of the disrete plane are in one-to-one orre-

spondene. One interest of the notion of funtionality is that it redues a three-

dimensional problem to a two-dimensional one, allowing a better understanding

of the ombinatorial and geometri properties of disrete planes. We thus ap-

ply this funtionality property to the enumeration of some loal on�gurations,

the (m, n)-ubes, for a large family of arithmeti disrete planes, following the

approah of [Vui99,BV01℄.

For larity issues, we have hosen to work here in a three-dimensional spae

but all the results and methods presented extend in a natural way to Rn
, with

n ≥ 2, as well as to arithmeti disrete lines.
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1 Basi notions and arithmeti disrete planes

Let (a, b, c) ∈ R3
, µ ∈ R and ω ∈ R⋆

+; the arithmeti disrete plane P(a, b, c, µ, ω)
is de�ned as follows:

P(a, b, c, µ, ω) = {(x, y, z) ∈ Z3 | 0 ≤ ax + by + cz + µ < ω}.

Moreover, if ω = max{|a|, |b|, |c|} (resp. ω = |a|+ |b|+ |c|) then P(a, b, c, µ, ω) is
said to be naive (resp. standard).

In the present paper, in order to simplify the notation and to failitate the

generalization of our results to higher dimensions, we use a vetor-based repre-

sentation. Let {−→e1,
−→e2 ,

−→e3} be the anonial basis of the R-vetor spae R3
. Let

−→v and

−→
v′ be two vetors of R3

. The notation (−→v ,
−→
v′ ) stands for the usual salar

produt in R3
. Let i ∈ {1, 2, 3}, we denote by vi = (−→v ,−→ei ) the i-th oordinate

of

−→v related to the basis {−→e1 ,
−→e2 ,−→e3}.

Hene, for any arithmeti disrete plane P, there exist a vetor

−→v ∈ R3
and

two real numbers µ ∈ R and ω ∈ R⋆
+ suh that

P = {−→x ∈ Z3 | 0 ≤ (−→x ,−→v ) + µ < ω}.

In the sequel of this paper, we denote suh a plane by P(−→v , µ, ω). For a given

−→α ∈ Z3
, let Π−→α : R3 → {−→x ∈ R3 | (−→α ,−→x ) = 0} stand for the orthogonal

projetion map onto the plane (−→α ,−→x ) = 0. We furthermore use the notation

π−→α when we onsider the restrition of the projetion Π−→α to a subset of R3
, as

for instane π−→α : P → {−→x ∈ R3 | (−→α ,−→x ) = 0}, for a disrete plane P.

Let us reall a lassial property of naive disrete planes having a positive

normal vetor:

Theorem 1. [DRR94℄ Let P = P(−→v , µ, ω) be a naive disrete plane. If vi = ω,
for i = 1, 2 or 3, then P is in bijetion with the integer points of the plane

(−→ei ,
−→x ) = 0 by the projetion map Π−→ei

, that is, the restrition map π−→ei
: P −→

Π−→ei
(Z3) is a bijetion. The plane (−→ei ,

−→x ) = 0 is alled a funtional plane of P.

An analogous result holds for standard disrete planes:

Theorem 2. [BV00℄ Let P = P(−→v , µ, ω) be a standard disrete plane. Let

−→α =
−→e1 + −→e2 + −→e3. Then, the restrition map π−→α : P −→ Π−→α (Z3) is a bijetion.

2 Generalized funtionality

First, let us notie that in eah of the two ases investigated in Theorem 1 and 2,

the following property holds: let P be a naive or a standard disrete plane with

normal vetor

−→v and with thikness ω; then there exists a vetor

−→α in Z3
suh

that the restrition map π−→α : P −→ Π−→α (Z3) is a bijetion, and (−→α ,−→v ) = ω.
In this setion, we extend this property to any disrete plane P(−→v , µ, ω)

whatever its thikness ω by introduing a dual vetor

−→α ∈ Z3
suh that

(−→v ,−→α ) = ω. Furthermore, we improve this result by showing that the proje-

tions π−→α are the only ones whih provide a one-to-one orrespondene between

the disrete plane P(−→v , µ, ω) and the projetion of Z3
; this will then yield a one-

to-one orrespondene between a disrete plane and a two-dimensional lattie.
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2.1 A bijetive projetion for arithmeti disrete planes

Theorem 3. Let P = P(−→v , µ, ω) be a disrete plane where

−→v ∈ R3
is a non-

zero vetor, µ ∈ R and ω ∈ R⋆
+. Let

−→α ∈ Z3
suh that gcd(α1, α2, α3) = 1 and

(−→α ,−→v ) 6= 0. Then, π−→α : P −→ Π−→α (Z3) is a bijetion if and only if |(−→α ,−→v )| =
ω.

The proof of Theorem 3 �rst requires a tehnial lemma:

Lemma 1. Let P = P(−→v , µ, ω) be a disrete plane with (−→v , µ, ω) ∈ R3×R×R⋆
+.

1. If dimQ(v1, v2, v3) = 1, then there exists (
−→
v′ , µ′, ω′) ∈ Z3 × Z × N suh that

P = P(
−→
v′ , µ′, ω′) and gcd(v′1, v

′

2, v
′

3) = 1.
2. If dimQ(v1, v2, v3) > 1, then the family ((−→x ,−→v ) + µ)−→x ∈P is dense in [0, ω[.

Proof. 1. Let us suppose that dimQ(v1, v2, v3) = 1. Then, there exists ζ ∈

R⋆
+ suh that (ζv1, ζv2, ζv3) ∈ Z3

. Let

−→
v′ = ζ−→v , µ′ = ⌈−ζµ⌉ and ω′ =

⌈ζω − ζµ⌉ − ⌈−ζµ⌉. An easy omputation gives P(−→v , µ, ω) = P(
−→
v′ , µ′, ω′).

Finally, aording to [AAS97℄,

−→v an be hosen with gcd(v1, v2, v3) = 1.
2. If dimQ(v1, v2, v3) > 1, then we onlude by the lassial following result:

the set {m + nα | (m, n) ∈ Z2} is dense in R if α /∈ Q.

With the hypothesis of Lemma 1, let us observe that P(
−→
v′ , µ′, ω′) is a naive

(resp. standard) disrete plane, if so is P(−→v , µ, ω).

Proof of Theorem 3. We assume w.l.o.g that (−→α ,−→v ) > 0. Let

−→x =

(x1, x2, x3),
−→
x′ = (x′

1, x
′

2, x
′

3) ∈ Z3
; π−→α (−→x ) = π−→α (

−→
x′ ) if and only if there ex-

ists (k, k′) ∈ Z2
suh that k′(

−→
x′ − −→x ) = k−→α . With no loss of generality we

an suppose that gcd(k, k′) = 1; then, k′
divides gcd(α1, α2, α3) and |k′| = 1.

In other words, π−→α (−→x ) = π−→α (
−→
x′ ) if and only if there exists k ∈ Z suh that

−→
x′ = −→x + k−→α . Moreover,

−→x + k−→α ∈ P if and only if

−((−→x ,−→v ) + µ)

(−→α ,−→v )
≤ k <

ω − ((−→x ,−→v ) + µ)

(−→α ,−→v )
.

1) Let us �rst assume that (−→α ,−→v ) = ω. Then,

#

[[

−((−→x ,−→v ) + µ)

(−→α ,−→v )
,
ω − ((−→x ,−→v ) + µ)

(−→α ,−→v )

[[

= 1,

and we have proved that π−→α : P −→ Π−→α (Z3) is a bijetion.

2) Conversely, let us assume that π−→α : P −→ Π−→α (Z3) is a bijetion.

i. If dimQ(v1, v2, v3) = 1, then, thanks to Lemma 1, we an suppose that

−→v ∈ Z3
, with gcd(v1, v2, v2) = 1, and (µ, ω) ∈ Z × N⋆

. Let

−→x ∈ Z3
suh

that (−→x ,−→v ) + µ = 0. Then −→x ∈ P and (−→x + −→α ,−→v ) + µ = (−→x ,−→v ) +
(−→α ,−→v ) + µ = (−→α ,−→v ) > 0. Moreover, π−→α (−→x + −→α ) = π−→α (−→x ). Sine
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π−→α is injetive then

−→x + −→α /∈ P, and hene (−→α ,−→v ) ≥ ω. On the other

hand, let

−→
x′ ∈ Z3

suh that (
−→
x′ ,−→v ) + µ = −1. Then, (

−→
x′ +−→α ,−→v ) + µ =

(
−→
x′ ,−→v ) + (−→α ,−→v ) + µ = (−→α ,−→v ) − 1 ≥ 0. Sine π−→α is surjetive and

(−→α ,−→v ) > 0, then −→x + −→α ∈ P, that is, (−→α ,−→v ) − 1 < ω, or equivalently,
(−→α ,−→v ) ≤ ω.

ii. Let us suppose that dimQ(v1, v2, v3) ≥ 2. Then, eah interval

[

−((−→x ,−→v )+µ)
(−→α ,−→v )

, ω−((−→x ,−→v )+µ)
(−→α ,−→v )

[

, with

−→x ∈ P, ontains one and exatly one

integer if and only if (−→α ,−→v ) = ω by Lemma 1.

Projeting aording to

−→α orresponds to looking at the plane along a di-

retion parallel to

−→α . Moreover, Theorem 3 states that, looking at the disrete

plane P(−→v , µ, ω) along this diretion, one an see all points of P(−→v , µ, ω) as

if they were on the plane (−→α ,−→x ) = 0. In Setion 2.3, we show that a natural

regular lattie struture emerges from this point of view.

As a generalization of funtional planes for naive disrete planes, we de�ne:

De�nition 1. Let P = P(−→v , µ, ω) be a disrete plane with

−→v ∈ R3
a non-zero

vetor, µ ∈ R and ω ∈ R⋆
+. Let

−→α ∈ Z3
suh that π−→α : P −→ Π−→α (Z3) is a

bijetion. The plane (−→α ,−→v ) = 0 is alled a (generalized) funtional plane of P.

2.2 Existene of a dual vetor

In the ase of an arithmeti disrete plane with normal vetor

−→v ∈ R3
and

thikness ω ∈ R⋆
+, there is no reason for a vetor

−→α ∈ Z3
to exist satisfying

(−→α ,−→v ) = ω (onsider the ase (v1, v2, v3, ω) is Q-free). However, if P(−→v , µ, ω)
is an arithmeti disrete plane with normal vetor

−→v ∈ Z3
, then, aording to

Lemma 1, we an suppose that ω ∈ Z and gcd(v1, v2, v3) = 1. We then dedue

from Bezout's Lemma that there exists a vetor

−→α ∈ Z3
suh that (−→α ,−→v ) = ω.

Let us prove now that

−→α ∈ Z3
an be hosen suh that gcd(α1, α2, α3) = 1.

Theorem 4. Let P(−→v , µ, ω) be an arithmeti disrete plane with (−→v , µ, ω) ∈
Z3 ×Z×Z⋆

+ and gcd(v1, v2, v3) = 1. There exists

−→α ∈ Z3
suh that (−→α ,−→v ) = ω

and gcd(α1, α2, α3) = 1. In other words, there exists

−→α ∈ Z3
suh that π−→α :

P(−→v , µ, ω) −→ Π−→α (Z3) is a bijetion.

Proof. Let

−→
β ∈ Z3

suh that (
−→
β ,−→v ) = 1. Then, (ω

−→
β ,−→v ) = ω. Let −→u ∈ {−→x ∈

Z3 | (−→x ,−→v ) = 0}, let d = gcd(u1, u2, u3) and let

−→α = ω
−→
β + d−1−→u . Then, an

easy omputation gives (−→α ,−→v ) = ω and gcd(α1, α2, α3) = 1. We end the proof

by applying Theorem 3.

We have illustrated Theorem 4 in Figure 1 in the ase of a disrete line for a

better visualisation of the situation.
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O −→α
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Fig. 1. Generalized funtionality: the orthogonal projetion of the disrete line 0 ≤
7x1 + 10x2 + µ < 24 onto the line 2x + y = 0.

2.3 Funtional regular lattie assoiated to an arithmeti disrete

plane

Let us see now how any arithmeti disrete plane P an be reoded in a funtional

way on a regular two-dimensional lattie, despite its three-dimensional struture.

Let P = P(−→v , µ, ω) be an arithmeti disrete plane. Let

−→α ∈ Z3
suh that

gcd(α1, α2, α3) = 1 and (−→α ,−→v ) = ω (in ase (−→v , µ, ω) ∈ Z3 × Z × N⋆
, and

gcd(v1, v2, v3) = 1, the existene of suh a vetor

−→α omes from Theorem 4).

One of the oe�ients αi, for i ∈ {1, 2, 3} being non-zero, we assume in this

setion that α3 6= 0 with no loss of generality.

First, let us notie that sine Π−→α (−→α ) =
−→
0 , then, for all

−→x ∈ Z3
,

Π−→α (−→e 3) = −
α1

α3
Π−→α (−→e1) −

α2

α3
Π−→α (−→e2).

Then, for all

−→x ∈ Z3
,

Π−→α (−→x ) = x1Π−→α (−→e1) + x2Π−→α (−→e2) + x3Π−→α (−→e3)

=

(

α3x1 − α1x3

α3

)

Π−→α (−→e1) +

(

α3x2 − α2x3

α3

)

Π−→α (−→e2)

and

Π−→α : R3 −→ {−→x ∈ R3 | (−→α ,−→x ) = 0}
−→x 7→ α3x1−α1x3

gcd(α1,α3)

−→
f1 + α3x2−α2x3

gcd(α2,α3)

−→
f2 ,

(1)

with

−→
f1 =

gcd(α1, α3)

α3
Π−→α (−→e1) and

−→
f2 =

gcd(α2, α3)

α3
Π−→α (−→e2).

We thus dedue that Γ−→α = Π−→α (Z3) = Π−→α (P) is a sub-lattie of the two-

dimensional lattie Z
−→
f1 + Z

−→
f2. The lattie Γ−→α is alled a funtional lattie of P.

This generalizes the onept of funtionality de�ned for naive disrete planes as

a projetion onto the integer points of one of the oordinate planes.
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3 From a funtional lattie to the assoiated disrete

plane

Let P = P(−→v , µ, ω) be an arithmeti disrete plane and Γ−→α be a funtional

lattie of P (see Setion 2.3). A natural question is: �given an element

−→y ∈ Γ−→α ,

how an we reover the unique vetor

−→x ∈ P suh that π−→α (−→x ) = −→y ? � In

the following, we investigate this question for the lassial lasses of arithmeti

disrete planes, namely the naive, the standard [Rev91,DRR94,DR95℄ and the

graeful ones [BB99,BB02℄.

3.1 Generalized funtionality for a partiular lass of disrete planes

Let P(−→v , µ, ω) be an arithmeti disrete plane and let

−→α ∈ Z3
suh that

(−→α ,−→v ) = ω. In this setion, we assume that there exists i ∈ {1, 2, 3} suh

that αi = 1. This ondition inludes the set of naive, standard and graeful

arithmeti planes (see Setion 3.2). Let us thus suppose that α3 = 1. In this

ase, let us notie that Γ−→α = Z
−→
f1 + Z

−→
f2 .

Let

−→y ∈ Γ−→α . From now on, if no onfusion is possible with the representation

of

−→y related to the basis {−→e1 ,
−→e2 ,

−→e3}, we will denote (y1, y2) the unique pair of

integers suh that

−→y = y1
−→
f1 + y2

−→
f2 .

Let

−→x ∈ P and let

−→y = π−→α (−→x ) ∈ Γ−→α . Aording to (1), one has x1 =
y1 + α1x3 and x2 = y2 + α2x3. Hene, (−→x ,−→v ) + µ = y1v1 + y2v2 + x3(α1v1 +
α2v2 + v3) + µ and

0 ≤ (−→x ,−→v ) + µ = v1y1 + v2y2 + x3ω + µ < ω. (2)

Thus, given any

−→y ∈ Z2
, we an easily reover the unique vetor

−→x ∈ P suh

that π−→α (−→x ) = −→y . Indeed, let us �rst note that (2) yields an expliit formula

for the height x3 of the points of P, that is, x3 = −
⌊

v1y1+v2y2+µ
ω

⌋

. Let us all

HP,−→α : Γ−→α −→ Z the funtion whih to any point y1
−→
f1 + y2

−→
f2 ∈ Γ−→α assoiates

the height x3 of the orresponding point
−→x ∈ P, that is, the unique point

−→x ∈ P

suh that π−→α (−→x ) = −→y :

HP,−→α : −→y 7→ −

⌊

v1y1 + v2y2 + µ

ω

⌋

.

One thus obtains:

Proposition 1. If α3 = 1, then the funtion π−1
−→α

: Γ−→α −→ P is de�ned by, for

all

−→y ∈ Γ−→α :

π−1
−→α

(−→y ) =

t



y1

y2

0



 + HP,−→α (y1, y2)

t



α1

α2

1



. (3)
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3.2 Classial examples

Let us suppose that

−→v ∈ N3
, and v3 = max{v1, v2, v3}. If P is a naive or a

standard disrete plane, then we an suppose α3 = 1, sine vi ≥ 0 for i ∈ {1, 2, 3}.
In the speial ase of naive disrete planes, we reover the already known formula:

Corollary 1. If P is a naive disrete plane, then

−→α = −→e3, for all

−→x ∈ P,

π−→α (−→x ) = x1
−→e1 + x2

−→e2 and for all

−→y ∈ Γ−→α ,

π−1
−→e3

(−→y ) = y1
−→e1 + y2

−→e2 −

⌊

v1y1 + v2y2 + µ

v3

⌋

−→e3 .

Conerning the ase of the standard disrete planes, we obtain, as a diret on-

sequene of Proposition 1:

Corollary 2. If P is a standard disrete plane, then

−→α = −→e1 + −→e2 + −→e3, for all

−→x ∈ P, π−→α (−→x ) = (x1 − x3)
−→e1 + (x2 − x3)

−→e2 , and for all

−→y ∈ Γ−→α ,

π−1
−→e3

(−→y ) =

t



y1

y2

0



 −

⌊

v1y1 + v2y2 + µ

v1 + v2 + v3

⌋

t



1
1
1



.

Let us suppose now that P = P(−→v , µ, ω) is a graeful plane, that is, 0 ≤ v1,≤
v2 ≤ v3 and ω = max(v1+v2, v3). If v1+v2 ≤ v3, then P is a naive disrete plane

and this ase has already been studied. Let us then assume that ω = v1 + v2.

Let

−→α = −→e1 + −→e2 . Then, for all
−→x ∈ P, π−→α (−→x ) = (x1 − x2)

−→e1 + x3
−→e3 .

Up to a permutation on the set {α1, α2, α3}, we reover the following from

Proposition 1:

Proposition 2. If P is a graeful plane. Then

−→α = −→e1 + −→e2 and the funtion

π−1
−→α

: Γ−→α −→ P is de�ned by, for all

−→y ∈ Γ−→α ,

π−1
−→α

(−→y ) =

t



0
y1

y2



 +

⌈

v2y1 − v3y2 + µ

v1 + v2

⌉

t



1
1
0



.

4 Plane partitions and loal on�gurations

The aim of this setion is to apply the previous results to the study of (m, n)-
ubes and loal on�gurations, generalizing the study performed for naive planes

in [VC97,Sh97,Gér99,VC99,Col02℄. For the sake of onsisteny, we all them

here

−→m-ubes rather than (m, n)-ubes.
Let P = P(−→v , µ, ω) be an arithmeti disrete plane and let

−→α ∈ Z3
suh that

gcd(α1, α2, α3) = 1 and (−→α ,−→v ) = ω (reall that if

−→v ∈ Z3
and gcd(v1, v2, v3) =

1, then the existene of

−→α is ensured by Theorem 4). Let us assume furthermore

that α3 = 1.
Let

−→m ∈ (N⋆)2 be given. By

−→m-ube, we mean a loal on�guration in the

disrete plane that an be observed thanks to π−→α through an

−→m-window in the

projetion lattie Γ−→α . More preisely,
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De�nition 2. Let

−→m ∈ (N⋆)2. The −→m-ube C(−→y ,−→m), with −→y ∈ Γ−→α , is de�ned

as the following subset of P:

C(−→y ,−→m) =
{

π−1
−→α

(−→y +
−→
i ),

−→
i ∈ [[0, m1[[×[[0, m2[[

}

.

In order to enumerate the di�erent types of

−→m-ubes that our in P, we repre-

sent them as loal on�gurations as follows.

De�nition 3. The

−→m-loal on�guration LC(−→y ,−→m), with −→y ∈ Z2
and m ∈

(N⋆)2, is de�ned as follows:

LC(−→y , m) =
[

HP,−→α (−→z ) − HP,−→α (−→y )
]

−→z ∈[[0,m1−1[
−→
f1+[[0,m2−1[[

−→
f2

.

We say that

−→y is an index of ourrene of the loal on�guration LC(−→y ,−→m).

Let us note that a loal on�guration is a plane partition.

Example 1. For instane, let us onsider the arithmeti disrete plane P =
P(−→v , µ, ω) with −→v = 4−→e1 + 2−→e2 + 5−→e3 , µ = 0 and ω = 9. Let −→α = −→e1 + −→e3 . We

illustrate the loal on�guration LC(
−→
f1 +

−→
f2, 3(−→e1 + −→e2)) of P and its preimage

by π−1
−→α

in Fig. 2.

0 −1

−1−1

−2

−1

−2

−2−2

PSfrag replaements

−→
f1

−→
f2

PSfrag replaements

Fig. 2. From left to right: a loal on�guration of the disrete plane P(4−→e1 + 2−→e2 +
5−→e3 , 0, 7) and its orresponding preimage by π−1

−→
e2+

−→
e3

.

We follow here the approah developed in [Vui99℄. For a naive disrete plane P, it

is well known that, given two points

−→x and

−→
x′

of P suh that their projetions

by π−→α are 4-onneted in the funtional plane, then |x3 − x′

3| ≤ 1. In other

words, the di�erene between the height of

−→x and

−→
x′

is at most 1. A quite

unexpeted fat is that this property holds for any arithmeti disrete plane with

α3 = 1. More preisely, it is easy to see that, for all

−→y ∈ Γ , HP,−→α

(

−→y +
−→
f1

)

−

HP,−→α (−→y )) takes only two values, namely −
⌊

v1

ω

⌋

and −
⌊

v1

ω

⌋

− 1. In the same

way, HP,−→α

(

−→y +
−→
f2

)

−HP,−→α (−→y )) takes only the values −
⌊

v2

ω

⌋

and −
⌊

v2

ω

⌋

−1.

In eah ase, one of these values is odd, whereas the other one is even; we de�ne

Eh and Oh to be respetively the even and the odd value taken by −⌊ v1

ω
⌋ and

−⌊ v1

ω
⌋ − 1; we similarly de�ne Ev and Ov. It is now natural to introdue the

following two-dimensional sequene:

U = (U−→y )−→y ∈Γ−→
α

= (HP,−→α (−→y ) mod 2)−→y ∈Γ−→
α
∈ {0, 1}Z2

.



9

By de�nition, it is easily seen that the sequene U satis�es:

∀−→y ∈ Γ−→α , U−→y = 0 if and only if −
y1v1 + y2v2 + µ

ω
mod 2 ∈ [0, 1[.

Let w = [wy ]y∈[[0,m1−1]]×[[0,m2−1[[ be a word of size m1×m2 over {0, 1}. We de�ne

the omplement w of w as follows: w = [wy]y∈[[0,m1−1[[×[[0,m2−1[[, where 1 = 0
and 0 = 1. Let us reall [Vui99,BV00℄ that the set of fators of the sequene U
is stable under omplementation. We thus introdue the following equivalene

relation:

v ∼ w if and only if v ∈ {w, w}.

We have the following theorem, inspired by [Vui99℄:

Theorem 5. There is a natural bijetion between the equivalene lasses of the

relation ∼ of the fators of the sequene U and the

−→m-loal on�gurations of P.

Proof. Consider the loal on�guration L = LC(−→y ,−→m); we an assoiate to it

the m1 × m2 word

[L(−→z ) mod 2]−→z ∈[[0,m1−1[[
−→
f1+[[0,m2−1[[

−→
f2

,

that we denote for short L mod 2. If HP,−→α (−→y ) is even, then L mod 2 is a fator

of the two-dimensional sequene U ; otherwise, HP,−→α (−→y ) is odd and L mod 2
is a fator of U and so is L mod 2, by stability of the set of fators of U by

omplementation.

Conversely, let us show how we an anonially reonstrut a

−→m-loal on�g-

uration, with

−→m ∈ (N⋆)
2
, from a given m1 ×m2-fator w of the two-dimensional

sequene U . Let us �rst assume that w−→
0

= 0. We de�ne a plane partition

H = [H(−→z )]−→z ∈[[0,m1−1]]
−→
f1+[[0,m2−1]]

−→
f2

by indution as follows: we set H(
−→
0 ) = 0;

let

−→z ∈ [[0, m1−1]]
−→
f1 +[[0, m2−1]]

−→
f2 be a non-zero vetor. If w−→z +

−→
f1

= w−→z , then

we set H(−→z +
−→
f1) = H(−→z ) + Eh. Otherwise, we set H(−→z +

−→
f1) = H(−→z ) + Oh.

Similarly, if w−→z +
−→
f2

= w−→z , then we set H(−→z +
−→
f2) = H(−→z )+Ev. Otherwise, we

set H(−→z +
−→
f2) = H(−→z ) + Ov.

The plane partition H is a loal on�guration of P; indeed, if w ours at

index

−→y in U , then H = LC(−→y ,−→m) and w = (H mod 2) sine H(−→y ) is even

(we have w−→
0

= 0). Now, if w−→
0

= 1, we apply the same reonstrution proess to

w. We reover again a loal on�guration LC(−→y ,−→m) suh that w = (LC(−→y ,−→m)
mod 2).

One dedues, in partiular, from Theorem 5 that any loal on�guration of

the disrete plane P ours at least twie: one at an index

−→y with H(−→y ) even
and seond, at an index

−→y suh that H(−→y ′) is even.
Let us now investigate the enumeration of

−→m-ubes ouring in a given arith-

meti plane. The number of (3, 3)-ubes inluded in a given naive arithmeti

disrete plane has been proved to be at most 9 in [VC97℄. More generally, in

[Rev95,Gér99℄, the authors proved that, given a naive arithmeti disrete plane
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P, P ontains at most m1m2
−→m-ubes. In the following theorem, we show that

this property also holds for

−→m-loal on�gurations in an arithmeti disrete plane

P(−→v , µ, ω), whih is non-neessarily naive.

Theorem 6. Let P = P(−→v , µ, ω) be a disrete plane,

−→α ∈ Z3
suh that

(−→α ,−→v ) = ω and α3 = 1, and let

−→m ∈ (N⋆)2. Then, P ontains at most m1m2
−→m-loal on�gurations.

Proof. Aording to [Vui99,BV00℄, the fators of size m1×m2 of the sequene U
are in one-to-one orrespondene with the intervals of R/2Z of extremal points

− i1v1+i2v2

ω
and − i1v1+i2v2

ω
+ 1 with (i1, i2) ∈ [[0, m1 − 1]]× [[0, m2− 1]]. There are

at most 2m1m2 suh points and the result follows from Theorem 5.

5 Conlusion and perspetives

The aim of the present work was to introdue suitable tools generalizing the

lassial ones used in the study of arithmeti disrete planes. We have exhibited

a generalized funtionality for arithmeti disrete planes P(−→v , µ, ω) and proved

that, as soon as |(−→α ,−→v )| = w and gcd(α1, α2, α3) = 1, there is a one-to-one

orrespondene between P and a two-dimensional lattie Γα. Thanks to these

results, we have shown for various lasses of arithmeti disrete planes, how to

reover

−→x ∈ P in orrespondene with any

−→y ∈ Γα. We also have investigated

plane partitions and loal on�gurations and extended the well-known result on

the number of (m, n)-on�gurations in a naive plane, that is, there are at most

mn suh on�gurations.

This approah o�ers new perspetives to investigate further general prop-

erties of arithmeti disrete planes of any thikness. In partiular, we plan

to use it to generate arbitrarily large parts of disrete planes via symboli

substitutions following [ABS04℄, to reover the orresponding Farey tessela-

tion as well as the symmetry properties of

−→m-loal on�gurations of a disrete

plane [VC99℄, and �nally as a new approah to the reognition problem of dis-

rete planes [FST96,FP99,VC00℄.
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