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1. Introduction

The purpose of this course is to introduce some notions of entropy: entropy in

information theory, entropy of a curve and topological and measure-theoretic

entropies. For these last two notions, we will consider in particular dynamical

symbolical systems in order to present some measures of disorder for sequences.

We will allude then to the problem of classi�cation of sequences with respect to

their spectral properties thanks to the entropy. For this purpose, we will intro-

duce the sequence of block entropies for sequences taking their values in a �nite

alphabet: we will then compute explicitely the block frequencies (or in other

words, the measure of the associated dynamical system) for some examples of

automatic sequences (Prouhet-Thue-Morse, paperfolding and Rudin-Shapiro

sequences) and for Sturmian sequences (these are the sequences with minimal

complexity among all non-ultimately periodic sequences; in particular, we will

consider some generalized Fibonacci sequences). But, in order to understand

the intuitive meaning of the notions of topological and measure-theoretic en-

tropies, we will begin by de�ning the Shannon entropy of an experiment.
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2. Thermodynamical entropy

The concept of entropy was �st introduced in thermodynamics by Clausius in

1854. In statistical mechanics, the entropy of a system is equal to the logarithm

of the number 
 of accessible microstates corresponding to a macroscopical

state of this system:

S = k ln
;

where k is Boltzmann's constant. It is assumed here that all the microstates of

an isolated system are equiprobable. Hence the probability of the macroscopical

state increases with the number of corresponding microstates. Entropy is thus

a measure of the probability for a macroscopical state to be realized. The

Second Law of Thermodynamics, i.e. the increase of the entropy of an isolated

system, means that the evolution of the system is towards the state of maximal

probability, which is also the state corresponding to the maximal number of

microstates, that is to say the state of maximal disorder.

Let us suppose now that the isolated system is made ofN indentical molecules.

Let us decribe then this system by counting the number N

i

of molecules in each

of k states in the phase space. There are 
 =

N !

N

1

!N

2

!���N

k

!

such ways to realize

this distribution. It can easily be shown, by using Stirling's formula, that the

entropy is thus equal, for large N , to:

S = �kN

X

p

i

logp

i

; where p

i

=

N

i

N

:

This is the kind of formula we will meet in the de�nitions of entropy below.

3. Information theory

Entropy is known in physics as a measure of randomness or disorder. It can also

be considered as a measure of information. Namely, consider an experiment,

say, the roll of a die. Randomness and uncertainty have the same measure.

We thus call entropy a measure of the uncertainty about the outcome of this

experiment. But the amount of uncertainty before the roll corresponds to the

amount of information one receives from the outcome of this roll. Therefore,

entropy is de�ned in information theory as a measure of the uncertainty about

the outcome of an experiment or equivently as a measure of the information

yielded by the happening of this experiment.

A �rst measure of entropy was introduced by Hartley in 1928 ([18]): he

considered distributions of equiprobable events. Wiener de�ned then, in 1948,

the entropy of a single event ([42]). Finally, Shannon introduced, also in 1948,

a measure of information for �nite probability distributions. This is the notion

we will deal with mostly, but we will begin by the Wiener notion of entropy

which is the most intuitive way of measuring information. For introductions to

the notion of entropy in information theory, see for instance [1], [32], [37].
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3.1. Entropy of a single event

FollowingWiener ([42]), consider now the entropy H

W

of a single event A with

probability p(A) 6= 0. For instance, the event A can be \having an ace", when

you roll a die. The entropy is here a measure of the information we receive

when the event A occurs (and also a measure of how unexpected the event A

is). We suppose that the entropy H depends only on the probability p(A) of

the event. The function H should hence have the following properties: it must

be positive (knowing something about an event is information) and additive

(the information yielded by the occurrence of two independent events is the

sum of the informations obtained from each experiment). We thus have:

1. H

W

(p) � 0;

2. H

W

(pq) = H

W

(p) +H

W

(q).

It is easily shown that the only functions which satisfy Properties 1 and 2 are

the functions de�ned by:

f(x) = �� log(x); for all x 2 ]0; 1]; with � � 0:

These functions are de�ned up to a positive multiplicative constant. We will

hence normalize the entropy by assigning the unit value to the equiprobable

case, hence: H

W

(1=2) = 1:

The quantity H

W

(p) = � log

2

(p) is hence the only function which satis�es

all the required conditions and will be called the Wiener entropy of a single

event.

Let us note that the logarithm appears here again, in quite a natural way.

3.2. Entropy of an experiment

Consider now the entropy of an experiment E with outcomes A

1

; A

2

; ::; A

n

of

probabilities p

1

; p

2

; � � � ; p

n

, with

P

p

i

= 1. For instance, E is a roll of a die

with n faces and p

1

; p

2

; � � � ; p

n

are the probabilities of the di�erent faces. We

will suppose here again that entropy only depends upon the probabilities.

Shannon de�nes in [38] the entropy H

S

of the experiment E as the average

value of the entropies of the single events A

1

; A

2

; ::; A

n

, weighted according to

their probabilities. Note that Shannon has obtained this de�nition axiomati-

cally by deriving it from \intuitive" properties that a measure of information

should have, like for the case of a single event.

Let

L(x) =

�

�x log

2

(x) if x 2 ]0; 1];

0 for x = 0:

We then have:

H

S

(E) = H

S

(p

1

; p

2

; � � � ; p

n

) = �

n

X

k=1

p

k

log

2

(p

k

) =

n

X

k=1

L(p

k

):
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The function H

S

is called the Shannon entropy of a �nite probability distribu-

tion.

One can ask the reasons for the choice of base 2 for the logarithm. Such a

normalization corresponds to the choice of the unit of information: the binary

entropies will be measured in bits as the natural entropies measure information

in natural units or nats.

Remark The �rst measure of entropy, introduced by Hartley in 1928 ([18])

was the following: the Hartley measure h of the entropy of an experiment with

n outcomes is de�ned as H

H

(E) = logn: This entropy depends only on the

number of events and not upon their probabilities. For instance, Boltzmann's

formula corresponds to this conception. These two notions coincide if all the

states are equiprobable.

Consider now the case n = 2 (for instance, 
ipping a coin with a given coin).

We have

H

S

(E) = H(p) = �p log

2

p� (1� p) log

2

(1� p):

It is easily seen that the entropy of an experiment of outcomes of probabilities

0 and 1 is equal to 0. This seems rather natural because there is no uncertainty

about the outcome in this situation. The entropy is maximum in the equiprob-

ability case (p = 1=2), which corresponds to the case of maximal uncertainty.

We will see in the next section that this result holds generally for all �nite

probability distributions.

3.3. Concavity of the function L

The function L is concave: for all x

k

in [0; 1] and all (�

1

; � � � ; �

n

) such that

�

i

� 0 and

P

�

i

= 1, Jensen's inequality

L(

n

X

k=1

�

k

x

k

) �

n

X

k=1

�

k

L(x

k

)

holds. To check this, note that the function L has a negative second derivative.

In particular, we have by putting x

k

= p

k

and �

k

= 1=n, for all k:

L(

n

X

k=1

p

k

n

) �

n

X

k=1

1

n

L(p

k

):

Note that

n

X

k=1

p

k

= 1. We thus have the following property:

H

S

(p

1

; � � � ; p

n

) � log

2

n:

This inequality means that the entropy is always smaller than the entropy of

the equiprobability case. This agrees with the fact that the uncertainty about

the outcome of an experiment is maximal when all the outcomes are equally

probable.
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3.4. Marginal and conditional entropy

We have measured here the information obtained with a unique experiment.

Suppose now that we have two experiments E and F which are not independent:

let A

1

; A

2

; ::; A

n

and B

1

; B

2

; ::; B

m

be the possible outcomes of the experiments

E and F respectively, with probabilities p

1

; p

2

; � � � ; p

n

and q

1

; q

2

; � � � ; q

m

.

Suppose that we know the result of the experiment E. One can then ask

what the information yielded by F would be. It would be equal to

H

S

(E;F )�H

S

(E);

i.e. the information obtained by the event of both experiments (H

S

(E;F ))

minus the information yielded by the �rst (H

S

(E)). Now, let q

jk

be the con-

ditional probability of B

k

under the condition A

j

. It is easy to verify that:

H

S

(E;F )�H

S

(E) =

n

X

j=1

p

j

H

m

(q

j1

; � � � ; q

jm

);

with H

m

(q

j1

; q

j2

; � � � ; q

jm

) =

m

X

k=1

L(q

jk

): This quantity is called the conditional

entropy of the experiment F with respect to the experiment E. We denote it

by H

c

(F=E). We thus have:

H

c

(F=E) =

n

X

j=1

p

j

H

m

(q

j1

; � � � ; q

jm

);

and we obtain the following chain-rule:

H

S

(E;F ) = H

S

(E) +H

c

(F=E):

The entropy of the experiment E is called marginal entropy in contrast with

the conditional entropy. The chain-rule expresses that the joint entropy of two

experiments equals the marginal entropy of the �rst one plus the conditional

entropy of the second with respect to the �rst.

From the concavity of the function L, we deduce the following inequality,

with equality if and only if the experiments are independent:

H

c

(F=E) � H

S

(F );

or in other words that conditioning reduces entropy. This seems rather natural

because knowledge concerning the outcome of an experiment cannot increase

the uncertainty in the outcome of another experiment.

We deduce from this that the entropy of a joint event is smaller than or equal

to the sum of the individual marginal entropies; this last inequality is called

independence bound on entropy:

H

S

(E;F ) � H

S

(E) +H

S

(F ):

Note that we have equality here if and only if H

c

(F=E) = H

S

(F ), i.e. if E and

F are independent.
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3.5. Entropy of a �nite curve

Let us see now how to apply these notions to curves and, in the next section,

to sequences.

Mend�es France de�nes in [4] the dimension of a curve. But he also associates

a notion of entropy with the curves. He de�nes in [22], [23], [24] or [26], for

instance, the entropy of a �nite curve �

L

as:

H(�

L

) = �

+1

X

n=1

p

n

log p

n

;

where p

n

is the probability that an in�nite straight line cuts �

L

in exactly n

points. Thus, H(�

L

) is the amount of information yielded by the experiment

\an in�nite straight line is drawn on the plane" and the outcomes are the num-

bers of intersection points. This entropy is hence a measure of the complexity

of plane curves.

A natural question to ask is whether this measure takes �nite values, i.e.

whether there is an upper bound for the entropy. Thus, Mend�es France has

shown the following result:

Theorem 1 We have:

H(�

L

) � log(

2L

C

L

) +

�

e

�

� 1

;

where � = log

2L

2L�C

L

; L is the length of �

L

and C

L

is the \perimeter" of the

curve, or in other words, the length of the convex hull of �

L

.

The function

^

H(�

L

) = log(

2L

C

L

) +

�

e

�

�1

is called the maximal entropy of the

curve and corresponds in a way to a topological entropy, a notion that we will

discuss later on.

Note that Mend�es France gives the following thermodynamical interpretation

of the coe�cient �: he de�nes the temperature of a curve as T =

1

�

. Thermo-

dynamical quantities can be de�ned too, for example pressure or volume of a

curve, which satisfy an equation of state and even an Heisenberg uncertainty

principle (see for instance, [24] or [26]).

De�ne now, still followingMend�es France, the entropy of an unbounded curve

�:

H(�) = lim inf

L!+1

H(�

L

)

logL

;

where �

L

is a �nite portion of length L of the curve with the same origin.

Notice the normalization obtained by dividing by logL. We obtain then the

information per unit of length. Similarly, one de�nes the maximal entropy as:

^

H(�) = lim inf

L!+1

^

H(�

L

)

logL

:
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We have:

0 � H(�) �

^

H(�) � 1:

An in�nite straight line, an exponential spiral of equation � = e

�

are of zero

entropy, i.e. deterministic. The spiral � = �

�

, where � > 0, has entropy

1

1+�

.

The dragon curve (see [4]) has entropy equal to

^

H =

1

2

, which is the highest

value for a self-avoiding curve. The spiral � = log(� + 1) is of entropy 1, i.e.

chaotic.

This notion of entropy is to be connected with the dimension of a curve

([4]); namely, the dimension d of a curve satis�es for a large class of them:

d �

1

1�H

; where H denotes the entropy. The meaning of this inequality is that

the dimension increases with the entropy, or in other words, that the entropy

and the dimension increase with the disorder of curves.

3.6. The sequence of block entropies

The purpose of this section is to introduce the block entropies for sequences

with values in a �nite alphabet.

Let us recall that the frequency P (B) of a block B in a given sequence is

de�ned as follows: it is the limit, if it exists, of the number of occurrences of

this block in the �rst N letters of the sequence divided by N .

Let u be a sequence with elements with values in the alphabetA = f1; � � � ; dg.

We suppose that all the block frequencies exist for u. Let

P (xjx

1

� � �x

n

) =

P (x

1

� � �x

n

x)

P (x

1

� � �x

n

)

;

where x

1

� � �x

n

is a block of non-zero probability and x a letter. The intuitive

meaning of P (xjx

1

� � �x

n

) is that it is the conditional probability that the letter

x follows the block x

1

� � �x

n

in the sequence u. We are going to associate with

the sequence u two sequences of block entropies (H

n

)

n2IN

and (V

n

)

n2IN

.

Let E

n

be the experiment \choosing a factor of length n of the sequence".

The outcomes are the factors of length n with probabilities P (x

1

� � �x

n

). Denote

the entropy of E

n

by V

n

. We have, for all n � 1:

V

n

=

X

L(P (x

1

� � �x

n

));

where the sum is over all the factors of length n and with L(x) = �x log

d

(x),

for all x 6= 0 and L(0) = 0: Note that we change here the normalization by

taking the base d logarithm.

Let F be the experiment \choosing a letter of the alphabet A" and H

n

be

the conditional entropy of F with respect to E

n

. We have:

H

n

= H

c

(F=E

n

) =

X

0

P (x

1

� � �x

n

)H(x

1

� � �x

n

); (1)

where the sum is over all the blocks of length n of non-zero probability and

H(x

1

� � �x

n

) =

X

x2A

L(P (x=x

1

� � �x

n

)):
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Thus, H

n

is the entropy of the next symbol when the preceding (n� 1) letters

are known, i.e. H

n

measures the uncertainty about what the next symbol will

be, if we are told the preceding letters.

Now, let us apply to these two sequences the theorems we have seen in

information theory in order to deduce some basic properties for them. Let H

0

be the marginal entropy of F . We have:

H

0

=

X

x2A

L(P (x)):

Obviously, H

0

� 1: Thus, we obtain: 0 � H

n

� H

0

� 1: Furthermore we

clearly have

H

n

= V

n+1

� V

n

;

for all n, by putting V

0

= 0: This property corresponds to the chain-rule.

Thus, (H

n

)

n2IN

is the discrete derivative of (V

n

)

n2IN

. Note that (V

n

)

n2IN

is an

increasing sequence, since H

n

� 0, for all n.

It can be shown that (H

n

)

n2IN

is a monotonic decreasing sequence of n (see,

for instance [11]). The intuitive meaning of this is that the uncertainty about

the choice of the next symbol decreases when the number of known preced-

ing symbols increases; in other words, conditional entropy decreases when the

conditioning increases.

From the decreasing behaviour of the positive sequence (H

n

)

n2IN

, we deduce

the existence of the limit lim

n!+1

H

n

. We have H

n

= V

n+1

� V

n

: By taking

Ces�aro means, i.e. by considering (

n�1

X

k=0

H

k

)=n, we obtain:

lim

n!+1

H

n

= lim

n!+1

V

n

n

:

We will see below, that this limit corresponds to the measure-theoretic entropy

of the dynamical system associated to the sequence u.

Finally, let us note that the sequence (H

n

)

n2IN

of conditional block entropies,

measures in some way the properties of predictibility of the initial sequence u.

Other measures of predictibility are to be found in [12], [13], for predictions

with automata, in [35] for the notion of \noise" and also in a quite similar way,

in [25] and [4], for the opacity of an automaton.

These sequences have been �rst introduced by Shannon in [38], who wanted

to measure the entropy of the English language. Namely, consider a source

emitting a sequence of letters like, for example, a telegraph. If the letters are

independent and with the same probability, the entropy will be:

H = log

2

26:

But if the source emits an English text, the letters do not come with the same

frequency (the letter E occurs more frequently than Q) and the probability
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that a U , for instance, immediately follows a Q, is larger than the probability

that an X comes after a Q. Therefore, Shannon has de�ned the entropy of n

th

order of the English prose by putting:

V

n

= �

X

C2C

n

P (C) log

2

(P (C)) =

X

C2C

n

L(P (C));

where C

n

is the family of all strings of n letters and P (C) denotes the probabil-

ity of the block C. Such a quantity corresponds to the entropy of an arti�cial

language approximating the natural language in the following way: the only

constraint that rules this language is that the probabilities (included the con-

ditional ones) are the same up to order n as those of the natural language.

Shannon gives examples of such approximations in [38].

Shannon estimates the entropy of the English language to be about 1. The

di�erence with the case of independent letters with same probabilities (H =

log

2

26) comes from the redundancy of English, which is according to Shannon

roughly about 50%: half what we say or write is determined by the structure

of the language (see [38] for more details).

Burrows and Sulston have also studied these conditional block entropies se-

quences in 1991. One motivation could be to �nd a measure of disorder for

sequences which would be convenient to distinguish between sequences accord-

ing to their spectral properties (see [14]).

We will see in the next section some examples of computations of these

conditional block entropies for some automatic sequences and for the Sturmian

sequences.

4. Topological and measure-theoretic entropies

Let us introduce now two measures of disorder for sequences with values in a

�nite alphabet: the topological entropy is de�ned from the notion of complex-

ity and the de�nition of measure-theoretic entropy uses the block frequencies.

We will then consider the general case of a dynamical system and give the

corresponding de�nitions.

4.1. Topological entropy of a sequence

The complexity of a sequence u is de�ned as the function p(n) which counts

the number of distinct blocks of length n which occur in this sequence (see [4]

or [3]). It is a combinatorial notion. The topological entropy ([2]) is then the

exponential growth rate of the complexity as the length increases:

H

top

(u) = lim

n!+1

log

d

(p(n))

n

:
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It is easy to check that this limit exists because of the subadditivity of the

function log(p(n)) :

log(p(n+m)) � log(p(n)) + log(p(m)):

We obviously have: 0 � H

top

(u) �

log

d

d

= 1.

Consider now the entropy of a substitutive sequence (see [4]). The complexity

satis�es: p(n) � Cn

2

, for all n, C being some constant. Thus the entropy of a

of substitutive sequence is zero. As a particular case, the entropy of a periodic

sequence is also zero.

Consider now a Bernoulli sequence, i.e. a sequence corresponding to the

Bernoulli scheme (p

1

; p

2

; � � � ; p

d

), with p

i

6= 0 and

d

X

i=1

p

i

= 1: the frequencies of

the letters are independent and given by the probabilites (p

1

; p

2

; � � � ; p

d

), as for

instance, a sequence obtained by tossing a coin iteratively with a given coin.

Thus, the number of factors of length n is equal to d

n

and the entropy equals

1.

These examples show that the topological entropy cannot distinguish be-

tween periodic and substitutive sequences nor between Bernoulli sequences.

4.2. Measure-theoretic entropy of a sequence

We will hence put a metrical structure in order to make this measure of disorder

more precise. We will therefore consider block frequencies for sequences.

Let u be a sequence with values in A = f1; � � � ; dg and whose frequencies

exist for all blocks. We have seen that the sequences (H

n

)

n2IN

and (

V

n

n

)

n2IN

have the same limitH(u). This limit is called the measure-theoretic entropy of

the sequence u:

H(u) = lim

n!+1

V

n

n

= lim

n!+1

H

n

:

It is the limit of the entropy per symbol of the choice of a block of length n,

when n tends to in�nity.

Some examples of computation of the measure-theoretic entropy are to be

�nd in the following.

4.3. Measure-theoretic entropy of a partition

Let us consider in this section the general case of a dynamical system and

give the corresponding de�nitions of metrical and topological entropies. Let

(X;T; �) be a dynamical system where X is a metrical compact set, � a proba-

bility measure and T a continuous invertible measure-preserving tranformation.

For more details, the reader is referred, for instance, to [16], [34], or [41].

Let P = fP

1

; � � � ; P

r

g be a �nite partition of X. For x 2 X, let k

i

be the

unique integer such that T

i

(x) belongs to P

k

i

. Consider now the �rst n points
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of the orbit of x under T :

x; Tx; � � � ; T

n�1

(x):

They belong successively to

P

k

0

; P

k

1

; � � �P

k

n�1

:

It is convenient to de�ne the name of x by: n(x) = (k

0

; � � � ; k

n�1

; � � �): Thus, it

is a way of coding the trajectory of x under T .

Consider now the new partition

P

n

= fP

k

0

\ P

k

1

\ � � � \ P

k

n�1

; for (k

0

; � � � ; k

n�1

)

being the �rst terms of any name of x 2 Xg:

Let us de�ne the join of two partitions A = fA

1

; � � � ; A

r

g and B = fB

1

; � � � ; B

s

g

by:

A _B = fA

i

\B

j

;A

i

\B

j

6= � g:

Let us note that A _B is also a partition. We have obviously

P

n

= P _ T

�1

P _ � � � _ T

�(n�1)

P:

How to de�ne the entropy of such a partition? We recall that � is a measure

of probability. A partition can be seen as an experiment. We can therefore

consider the sets P

i

of the partition P as the outcomes of probability �(P

i

) of

the experiment \determining to which set of the partition a point x belongs".

The atoms in P and T

�1

P have the same measures. Hence the partition

T

�1

P corresponds to the replication of the experiment associated to P and the

partition P

n

corresponds to n replications. Naturally, the experiments P and

T

�1

P are not necessarily independent.

Hence, let us de�ne the entropy of the partition P by:

H(P ) =

r

X

i=1

L(�(P

i

)):

Thus, the quotient

H(P

n

)

n

is the amount of information per unit of time about

the name of a point x of X, or in other words, the information per replication.

It can be shown easily that H(P

n

) is subadditive, so lim

n!+1

H(P

n

)

n

exists.

This limit, i.e.

H(P; T ) = lim

n!+1

H(P _ T

�1

P _ � � � _ T

�(n�1)

P )

n

is called the entropy of the transformation T with respect to the partition P .
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But the choice of P can considerably reduce the uncertainty, for instance, if

P = fXg. Therefore, the measure-theoretic entropy of T is de�ned to be the

maximal uncertainty over all �nite partitions P , i.e.:

H(T ) = sup

P

H(P; T ): (2)

Thus, the entropy H(T ) measures the uncertainty about the way T moves the

points of X.

Now, the question is how to compute the entropy of this system. Namely, the

expression (2) is not easy to use. But, a classical result shows that the supre-

mum in (2) is obtained for the partitions, which are generators with respect to

T : this is the Kolmogorov-Sinai Theorem (see [20] and [39]); a generator is a

partition such that if x 6= y, then n(x) 6= n(y), or in other words, such that the

codings under this partition, of the orbits of two distinct points are di�erent.

Furthermore, the Krieger Generator Theorem [21] asserts the existence of a

�nite generator if the transformation T is ergodic and if the entropy is �nite.

We consider now the particular example of a symbolical dynamical system.

For more details about what follows, the reader is referred to [33] and [34]. Let

u be a sequence with values in A = f1; � � � ; dg and whose frequencies exist for all

blocks. Let T be the one-sided shift, i.e. (Tx)

n

= x

n+1

: Let us suppose that u

is recurrent, i.e. every factor of u appears in�nitely often; thus T is onto on the

orbit closure Orb(u) of u under T in A

N

, endowed with the product of discrete

topologies. Furthermore, we suppose that T is injective (hence invertible) on a

set of full measure: this is the case, for instance, if the complexity of u is sub-

a�ne or if p

u

(n+1)�p

u

(n) is bounded. Let � be the unique T -invariantmeasure

obtained by assigning to the cylinders their frequencies: �([w]) = P (w): It is

easily seen that the partition P = f[1]; � � �; [d]g is a generator. Furthermore,

we have P

n

= f[B]; B block of length ng and we check that H(P

n

) = V

n

:

4.4. Topological entropy of an open cover

Let us now consider the topological notion corresponding to a partition, namely

open covers of the compact space X, in order to de�ne the topological entropy

of a dynamical system (see [2]). Let � be any open cover of X. Let us recall

that an open cover of the space X is a collection of open sets (O

i

)

i2I

such that

X � [

i2I

O

i

:

Let N (�) denote the number of sets in a �nite subcover of � with smallest

cardinality. We denote the join of two covers as :

� _ � = fA \B; A 2 �; B 2 �g:

The topological entropy of T with respect to � is then de�ned as:

H

�

(P; T ) = lim

n!+1

log(N (� _ T

�1

� _ � � � _ T

�(n�1)

�))

n

;
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and the topological entropy of T is given by

H

top

(T ) = sup

�

H(�; T ); (3)

where the supremum is taken over all open covers.

4.5. Variational principle

Let us come back to the sequences of conditional block entropies (H

n

)

n2N

and

(V

n

)

n2N

. What relation exists between these two sequences?

We have, for all k � 0: H

n

= V

n+1

� V

n

and V

0

= 0. We deduce from this

that

n�1

X

k=0

H

k

= V

n

: The sequence (H

n

)

n2N

is decreasing. Thus we obtain that:

nH

n

�

n�1

X

k=0

H

k

= V

n

=

X

L(P (x

1

� � �x

n

)):

By concavity of the function L, we have, for all n � 1: V

n

� log

d

p(n): Thus,

we deduce the following proposition:

Proposition 1 We have H

n

�

log

d

(p(n))

n

, for all n � 1:

We hence have:

lim

n!+1

H

n

= lim

n!+1

V

n

n

= H(u) � H

top

(u) = lim

n!+1

log

d

(p(n))

n

:

This inequality is a particular case of a basic relationship between topological

entropy and measure-theoretic entropy called the variational principle (see, for

a proof, [27]): if T is a continuous map of a compact metric space then

H

top

(T ) = supfH(T ); for � being any measure invariant under Tg:

The two limits lim

n!+1

H

n

and lim

n!+1

log

d

(p(n))

n

are distinct, in general. But,

for instance, if the system (Orb(u); T ) is uniquely ergodic (see [34]), we have

naturally equality between these two limits.

Here is a case where these two limits are distinct. Consider a sequence

corresponding to the Bernoulli scheme (p; 1 � p), with p 6= 0 and p 6=

1

2

.

We recall that the topological entropy equals 1. We have, for every word B:

P (B) = p

jBj

a

(1� p)

jBj

b

, where jBj

x

denotes the number of occurrences of the

letter x in the word B. We thus have, for all n � 1:

V

n

n

= L(p) + L(1 � p) = �p log

2

p� (1� p) log

2

(1 � p):

Thus, we obtain, as expected:

lim

n!+1

H

n

= L(p) + L(1� p) < 1 = lim

n!+1

log

2

(p(n))

n

:
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The notion of measure-theoretic entropy for a sequence seems consequently to

be more precise. But we will see in the next section that in the cases we deal

with mostly, we consider deterministic sequences, i.e. sequences with zero

entropy. Determinism means that there is no uncertainty in the choice of the

next letter, in other words, past determines future. Therefore neither metrical

nor topological entropy can distinguish between these sequences. That is why

we will consider in the sequel the rate of convergence of the sequence H

n

towards

its limit (the measure-theoretic entropy) and not only this limit.

5. Entropy and spectral properties

Let us now consider the question of classifying dynamicals systems up to iso-

morphism. We will not give detailed de�nitions here but they can be found for

instance in [34]. Let us recall that roughly, a dynamical system is said to be

a factor of another dynamical system if the �rst one can be \constructed" in

the second one, i.e. if there exists a map from the �rst one into the second one

preserving measure and transformation.

How does entropy react with factorisation? Intuitively, one can see that

there is a loss of information. In fact, it can be shown easily that entropy

decreases with factorisation (see for instance [11]). If two dynamical systems are

metrically isomorphic, then each of them is a factor of the other. Hence entropy

is an isomorphism invariant. Two isomorphic dynamical systems are spectrally

alike, i.e. they are spectrally isomorphic for the structure of Hilbert space,

which can be associated to a dynamical system, as explained in [34]. Hence,

a spectral invariant (like ergodicity or mixing properties) is an isomorphism

invariant. A natural question then arises: can we �nd non-spectral invariants?

The measure-theoretic entropy introduced by Kolmogorov to this e�ect in 1958

(see [20]) allows us to answer this question: we have seen that the entropy is

an isomorphism invariant; so, two Bernoulli schemes with di�erent entropies

are not isomorphic but are always spectrally isomorphic. Hence a necessary

condition for two Bernoulli schemes to be isomorphic is that they have the

same entropy. In fact, the converse is true. This question remained open a long

time but Ornstein solved it in 1970, by giving in [30] a complete classi�cation

of the Bernoulli shifts up to isomorphism:

Ornstein's theorem Two Bernoulli schemes are isomorphic if and only if

they have the same entropy.

In the case of discrete spectrum, the classi�cation is relatively easier: we have

equivalence between metrical isomorphism and spectral isomorphism. Namely,

Halmos and Von Neuman showed in 1942 that the eigenvalues allow us to say

whether two ergodic transformations with discrete spectrum are isomorphic or

not (see [17]).
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Discrete spectrum classi�cation Theorem Two ergodic measure-preserving

transformations with discrete spectrum are spectrally isomorphic if and only if

they have the same eigenvalues. Furthermore, if they are spectrally isomorphic

then they are isomorphic.

In the case of discrete spectrum, the entropy is equal to 0. Thus the entropy

is not convenient to distinguish between systems with low disorder.

Note that the entropy is in general equal to 0 in the examples we deal with

mostly. We have namely the following property(see for instance, [31] or [32]):

Zero entropy If the entropy of an invertible measure-preserving transfor-

mation T is strictly positive, then T has countable Lebesgue spectrum.

Thus, we have the following corollary:

Corollary 1 If T is of �nite multiplicity or of continuous singular spectrum

or of discrete spectrum, then the entropy of T is equal to 0.

Therefore, either low complexity sequences (like substitutive sequences, for

instance) or the examples of transformations given by M. Que��elec in [34], as

irrational rotations of the circle, q-odometers, or the Chacon transformation,

or also, Besicovitch almost-periodic and mean almost-periodic sequences ([4])

have zero entropy.

6. Some examples of computation of block entropies

Wewill see in this section that one can compute explicitely the block frequencies

and consequently the block entropies (H

n

)

n2IN

, de�ned in the section 2.6, for

some examples of automatic sequences (Prouhet-Thue-Morse, paperfolding and

Rudin-Shapiro sequences) and for Sturmian sequences: these are the sequences

with minimal complexity among all non-ultimately periodic sequences (see for

instance, [4] or [41]); in particular we will consider some generalized Fibonacci

sequences. We will �nally address the following question: given a sequence u,

can we deduce from the rate of convergence of the sequence of conditional block

entropies whether an atomic structure associated to u is \quasicrystalline" or

not? Or, in other words, can we deduce from the block entropies, spectral

properties of the initial sequence?

This question was put forward by Burrows and Sulston (1991) who have in-

troduced this measure of disorder in the study of quasiperiodic structures. By

computing the �rst and second order entropies H

1

and H

2

for the Prouhet-

Thue-Morse sequence and for some generalizations of the Fibonacci sequence,

they have obtained the following comparison of disorder: among the sequences

they have studied, the sequences which are quasiperiodic (or of discrete spec-

trum) have entropy of �rst and second order lower than those which are not

purely discrete. But these entropies H

1

and H

2

are not su�cient, for instance,

to distinguish between the Rudin-Shapiro sequence and a normal sequence, i.e.
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a sequence such that all blocks of same length have the same frequency. Thus it

is interesting to obtain entropies of all orders and to compare them. Therefore

we need to compute the block frequencies.

M. Que��elec has shown how to obtain the block frequencies of a substitutive

minimal sequence by using the matrix of the associate primitive substitution

and the Perron-Frobenius Theorem (see [34] and for more details, [33]). We

will deduce here the block frequencies of all orders from a �nite number of small

length block frequencies, by using recurrence formulas between the frequency

of a block and the frequencies of its pre-images by the substitution. But this

method does not work for Sturmian sequences, because they are generally not

substitutive. The idea here, due to Dekking [15], will be to use the Rauzy

graph of words [36], which we de�ne in the following. Dekking obtains in [15],

a precise description of the frequencies of the words occurring in the Fibonacci

sequence.

6.1. Ultimately periodic and \random" sequences

Consider �rst the following two extreme cases: the case of minimal disorder,

i.e. the case of ultimately periodic sequences, or in other words, of sequences

which are periodic from some index on, and the case of maximal disorder, i.e.

the case of \random" sequences. Let us note that it is the same thing, in terms

of frequencies, to consider ultimately periodic sequences and purely periodic

sequences.

The following result can easily be shown (see [8]):

Proposition 2 Let u be a ultimately periodic sequence of period 
. We have:

H

k

= 0, for all k � 
:

Namely, there is no uncertainty at all in the choice of the next letter. The

converse is not true. Suppose, for instance, that the frequencies of the letters

are equal to 0 or 1. We then have H

0

= 0: The sequence (H

n

)

n2IN

being a

decreasing sequence, we obtain H

n

= 0, for all n.

But if the sequence is minimal, we obtain the following property:

Proposition 3 Let u be a minimal sequence such that H

k

0

= 0 for some inte-

ger k

0

. Then u is a periodic sequence of period p(k

0

), where p(k

0

) denotes the

complexity of order k

0

:

The proof of this statement comes from the fact that the frequencies are strictly

positive in a minimal sequence.

Consider now a \random" sequence or in other words, a normal sequence:

all the blocks of given length have the same frequency. Hence the conditional

probabilities P (x=B) are equal and H

n

= 1, for all n � 0. It can easily be

shown, by using (1) that the converse is true. Thus, we have the following

proposition:
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Proposition 4 We have H

n

= 1 for all n, if and only if the sequence u is a

normal sequence.

Therefore, in these two extreme cases, the sequence (H

n

)

n2IN

gives a charac-

terization of the ultimately periodic and the \random" sequences.

6.2. Sturmian sequences

The Sturmian sequences are the sequences with minimal complexity among

all non-ultimately periodic sequences (see [4]). Thus, it is rather interesting

to measure the disorder of such sequences. The Fibonacci sequence and the

generalized Fibonacci sequences which are de�ned as the �xed points of the

substitutions: �(a) = a

n

b et �(b) = a, with n � 1 are some examples of

Sturmian sequences. Let us recall that a Sturmian sequence is the itinerary of

the orbit of a point � of the unit circle under a rotation of irrational angle �,

with respect to complementary intervals of length � and 1�� of the unit circle

(see [29] and [28]). We have the following result:

Theorem 2 Let u be a Sturmian sequence with angle �: Let m be greater than

1. Let

p

1

q

1

and

p

2

q

2

be two successive m-Farey points such that:

p

1

q

1

< � <

p

2

q

2

.

The frequencies of the blocks of length m are the following:

p

2

� �q

2

; �q

1

� p

1

; �(q

1

� q

2

) + p

2

� p

1

:

More precisely, there are

� m � q

2

+ 1 blocks of length p

2

� �q

2

,

� m � q

1

+ 1 blocks of length �q

1

� p

1

� and (q

1

+ q

2

)�m� 1 blocks of length �(q

1

� q

2

) + p

2

� p

1

.

Therefore the values of the conditional block entropies satisfy:

H

m�1

= L(p

2

� �q

2

) + L(�q

1

� p

1

)� L(�(q

1

� q

2

) + p

2

� p

1

);

with L(x) = �x log

2

(x):

Let us recall the de�nition of an m-Farey point: it is an element of the

interval [0; 1] of the form

p

q

, where p � 0, 1 � q � m and gcd(p; q) = 1: Two m-

Farey points

p

1

q

1

et

p

2

q

2

are successive if and only if : p

2

q

1

�p

1

q

2

= 1. The points

p

1

q

1

and

p

2

q

2

depend on m and can be given explicitly, by using the continued

fraction extension of the angle �.

This theorem can be proved either by using the combinatorial de�nition of

the Sturmian sequences (p(n) = n+1) or the dynamical characterization (Stur-

mian sequences are irrational rotations). It is easily seen that block frequencies

correspond to intervals of the unit circle. This theorem is thus another formu-

lation of the 3-distance Theorem (see, for instance [40]):
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3-distance Theorem Let � be any irrational number. Let us place the

points f�g, f2�g, � � � ; fn�g, where f�g denotes the integral part of �, on the

line segment [0; 1]. The (n + 1) segments found have at most three di�erent

lengths, one being the sum of the two others.

The tool of the combinatorial proof here is the Rauzy graph of words. The

Rauzy graph of words of length n associated to a sequence is the orientated

graph whose nodes are the factors of length n of the sequence and whose arrows

are de�ned as follows: there is an arrow from U to V , if there exists a word W

such that

U = xW and V = Wy; with x; y 2 fa; bg and xWy is a factor of the sequence:

Suppose now that we have a Sturmian sequence. From the complexity

(p(n) = n + 1), we deduce that there is only one factor of length n with

two right extensions. Let us call this factor R

n

. We de�ne, similarly, L

n

as the

factor of length n with has two left extensions. Thus, the graph of words of

given length has the two following forms, according as L

n

= R

n

or L

n

6= R

n

:

' $

�

& %

-

1

2

3

�

G

n

D

n

G

n

= D

n

�

�

�

�

�

�

�

�

�

�

1

3

Let U be a node of the graph. Let U

+

denote the number of arrows wich

come to U and U

�

the number of arrows which go out U . We have the following

lemma:

Lemma 1 If U

+

= 1 and V

�

= 1, then the words U and V have the same

frequency.

Namely, the factor U has only one right extension, that we denote x, and

similarly, the factor V has only one left extension y. Therefore, we have the

following equalities between the frequencies:

P (U ) = P (Uy) = P (xWy) = P (xV ) = P (V ):

We deduce in particular from this lemma that all the words of the branch

(1), except L

n

and R

n

, have the same frequency, that similarly, all the words

of the branch (3), except L

n

and R

n

, have the same frequency and �nally that

all the words of the branch (2), L

n

and R

n

included, have the same frequency.
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Thus we obtain that the frequencies of the factors of given length of a Sturmian

sequence take at most three values.

More precisely, Theorem (2) can be shown by studying the lengths of the

branches of the graph, whose evolution is precisely described in [7].

6.3. Block frequencies for some automatic sequences

Let us consider now some automatic sequences which are of distinct spectral

types (see, for instance, [4] or [34]):

� the Prouhet-Thue-Morse sequence, which has continuous singular spec-

trum,

� the Rudin-Shapiro sequence, which has Lebesgue spectrum,

� the paperfolding sequence, which has discrete spectrum.

Let H

T

, H

R

and H

P

be respectively the sequences of conditional block en-

tropies for the Prouhet-Thue-Morse, the Rudin-Shapiro and the paperfolding

sequences. We expect the following inequality between H

T

, H

R

and H

P

:

H

P

n

� H

T

n

� H

R

n

; for every n;

or in other words, we expect, for instance, from the paperfolding sequence to

show more order than the Prouhet-Thue-Morse sequence with respect to this

particular measure of disorder.

Let us recall that these three sequences are deterministic, that is to say

of zero entropy, so the sequence (H

n

) converges towards 0 for each of theses

sequences.

We have the following result (see [9] and also [15], for the Prouhet-Thue-

Morse sequence):

Proposition 5 The frequencies of blocks of length m, with 2

k

+1 � m � 2

k+1

,

take the following two values:

�

1

3:2

k

;

1

6:2

k

; for the Prouhet-Thue-Morse sequence, if m � 2,

�

1

8:2

k

;

1

16:2

k

; for the Rudin-Shapiro sequence, if m � 8,

�

1

4:2

k

;

1

8:2

k

; for the paperfolding sequence, if m � 7.

We can deduce from this, the expression of the conditional block entropies:

Proposition 6 Let H

T

n

, H

R

n

and H

P

n

be respectively the conditional block en-

tropies for the Prouhet-Thue-Morse, the Rudin-Shapiro and the paperfolding

sequences. We have:

� H

T

n

=

4

3:2

k

; for 2

k

+ 1 � m � 3:2

k�1

,

H

T

n

=

2

3:2

k

; for 3:2

k�1

+ 1 � m � 2

k+1

and k � 1.

� H

R

n

=

1

2

k

; for 2

k

+ 1 � m � 2

k+1

and m � 8;
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� H

P

n

=

1

2

k

; for 2

k

� m � 2

k+1

� 1 and m � 7.

We can notice the following relationship between H

R

n

and H

P

n

:

Proposition 7 We have H

P

n

= H

R

n+1

, for all n.

We will not give a detailed proof but the methods used here in the compu-

tation of the frequencies are similar to those used in the computation of the

complexity (see [4]): we use for the Prouhet-Thue-Morse sequence the fact that

each word of length greater than 4 comes from a unique word by the substitu-

tion (which is called the pre-image). For instance, the word aba comes from the

words ab and ba but baba comes only from the word bb. The substitution is here

of length 2. Hence, the number of occurrences of a word (of length greater than

4) in the �rst 2n letters of the sequence is equal to the number of occurrences of

its pre-image in the �rst n letters. We deduce from this that the frequency of a

block is equal to half the frequency of its unique pre-image by the substitution.

It is easy then to compute the frequencies by using this induction formula. The

same situation occurs for the �xed point of the substitution which generates

after a letter to letter projection, the Rudin-Shapiro sequence. Furthermore we

have a bijection between the factors of length greater than 8 of the �xed point,

and the factors of same length of the projection: namely, these two sequences

have the same complexity function for n greater than 8 (see [4]). Hence, we

can deduce using this bijection, the frequencies in the Rudin-Shapiro sequence

from the frequencies in the �xed point. For the paperfolding sequence the same

situation holds: we have a bijection between the factors of length greater than

7 of the �xed point and the factors of same length of the projection (see [4]).

But there is a slight di�erence concerning the properties of \recognizability" of

the �xed point: some words can arise from two di�erent words by the substi-

tution. In fact, these words which have more than one pre-image are exactly

the special (or expansive) ones, that is to say the words which have at least two

right extensions in the sequence. Despite this di�culty, it is possible to �nd

here again recurrence formulas.

Remark This method works also for the generalized Rudin-Shapiro se-

quences which count the number of occurences of the pattern 1 ? � � � ? 1 in

the binary expansion of every integer (see [5] and [6]). We obtain, if d is the

length of the pattern ? � � �?, that the conditional block entropies are ultimately

equal to 2

d

times the corresponding entropies of the classical Rudin-Shapiro

sequence.

6.4. Conclusion

Let us come back to the initial question of the comparison of block entropies for

these sequences. It can be seen, by computing the �rst values of the conditional

block entropies, that we have inequalities between the values of conditional
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block entropies of the same order for the �rst values. We have namely: H

P

�

H

T

� H

R

, for n � 8. But, for n � 9, this ordering does not hold. In particular,

we have:

H

P

9

= H

R

9

= 1=8 < H

T

9

= 1=6:

From Proposition 7, we deduce that H

P

n

� H

R

n

and that for almost n, this

inequality becomes an equality. More precisely,

� for n = 2

k

, we have H

P

n

=

H

R

n

2

;

� but for n 6= 2

k

, we have H

P

n

= H

R

n

:

Furthermore, we see that there is a kind of shu�e between the values of H

R

(and consequently of H

P

) and the values of H

T

:

� for 2

k

+ 1 � n � 3:2

k�1

, we have: H

T

n

=

4

3

H

R

n

=

4

3

H

P

n

,

� and for 3:2

k�1

+ 1 � n < 2

k+1

, we have: H

T

n

=

2

3

H

R

n

=

2

3

H

P

n

:

In particular, these three sequences of conditional block entropies converge with

the same rate towards 0.

We conclude from this that this measure of disorder cannot allow us to

distinguish between deterministic sequences even if they have di�erent spectral

properties.
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