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Abstrat

In the present paper we develop a formalism to generate multi-dimensional words

using latties whih generalizes the onstrution of real numbers (one-dimensional

words) from a sequene of partial quotients using ontinued frations. The onstru-

tion was introdued in a speial ase by Simpson and Tijdeman in order to derive a

multi-dimensional generalisation of the theorem of Fine and Wilf. We show that the

produed multi-dimensional words are intrinsially onneted with k-dimensional

Sturmian words.

Key words: Multi-dimensional ombinatoris on words, tilings, latties, disrete

planes, multi-dimensional Sturmian sequenes.

1 Introdution

Let k+1 vetors ~v

0

; ~v

1

; � � � ; ~v

k

in Z

k

be given suh that all the subsets of k ve-

tors are linearly independent. Consider the sublattie � := Z(~v

1

� ~v

0

) + � � �+

Z(~v

k

�~v

0

) of the lattie L := Z~v

0

+Z~v

1

+ � � �+Z~v

k

. For onveniene we assume

L = Z

k

. Let D denote the ardinality of Z

k

=�. We show that the multiples

of ~v

0

represent the D osets of �: This indues a numbering 0; 1; � � � ; D � 1

of the osets suh that

P

k

i=0

x

i

~v

i

belongs to oset

P

k

i=0

x

i

(mod D) whih

we shall indiate by g(

P

k

i=0

x

i

~v

i

): The olouring map � : Z

k

! f0; 1; � � � ; kg

is a projetion of g, thus onstant on osets of �. By onsidering a funda-

mental domain A of Z

k

=� the funtion g indues a roundwalk w given by

Email addresses: berthe�lirmm.fr (Val�erie Berth�e),

tijdeman�math.leidenuniv.nl (Robert Tijdeman).

Preprint submitted to Elsevier Siene 28 Otober 2003



~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

= ~w

0

through A. In our onstrution w has the speial

property that ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D� 1. The funtion

� indues a olouring of A. This is worked out in Setion 2 and illustrated by

an example.

In Setion 3 we introdue extension rules whih extend the roundwalk w

through a lattie domain A of Z

k

=� to a roundwalk w

�

through a larger

lattie domain A

�

of Z

k

=�

�

where �

�

is a lattie generated from � by a

substitution rule � : f0; 1; � � � ; kg ! f0; 1; � � � ; kg

?

applied to ~v

0

; ~v

1

; � � � ; ~v

k

.

Here f0; 1; � � � ; kg

?

denotes the set of nonempty �nite words with letters from

f0; 1; � � � ; kg. The word W

�

de�nes a funtion g

�

numbering the osets of �

�

.

The indued olouring map �

�

: Z

k

! f0; 1; � � � ; kg will have the property

that it is onstant on osets of �

�

and oinides with � on A. We prove, under

suitable onditions, that the funtions g

�

and �

�

an be desribed in terms

of g; � and a matrix M , the so-alled substitution matrix, whih represents

the numbers of eah letter in the words �(0); �(1); � � � ; �(k): So the preise

order of letters in these words is irrelevant for the de�nition of g

�

and �

�

. In

Se. 3.1 we onsider basi extension rules and in Se. 3.3 rules generated by

substitutions of Arnoux-Rauzy type.

Setion 4 studies the iteration of extension rules produing a tower of latties

with orresponding matriesM

(n)

. By extending the olouring of the domains

of the roundwalk we thus generate a sequene of �nite k-dimensional words

(W

(n)

)

n�1

through larger and larger domains A

(n)

(n = 1; 2; � � �) with letters

from f0; 1; � � � ; kg. By indution we get in�nite sequenes of funtions g

(n)

:

Z

k

! f0; 1; � � � ; D

(n)

� 1g and �

(n)

: Z

k

! f0; 1; � � � ; kg. We give expliit

formulas for (�

(n)

)

n�1

in terms of g

(n)

and M

(n)

. Furthermore we show that in

ase of Rauzy extension steps a reurrene relation for the frequenies of the

letters an be obtained in a simple way.

In Setion 5 we onsider the in�nite limit words. Obviously the sequene

(W

(n)

)

n�1

has a limit word, sine the words beome larger and larger and

as soon as a plae has got a �-value, it remains onstant. However, the word

need not be de�ned on Z

k

: Therefore we investigate whether � := lim

n!1

�

(n)

:

Z

k

! f0; 1; � � � ; kg exists in whih ase every word W

(n)

is the restrition of �

to A

(n)

. In Theorem 5.3 we show that under mild onditions � exists indeed

and that it represents a multi-dimensional Sturmian word. Furthermore we

disuss whih multi-dimensional Sturmian words an be limit words of towers

of Rauzy extensions and whih of basi extensions. In Part II of the paper we

shall turn to more general questions and investigate when the roundwalks are

spae �lling.
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2 Roundwalks and latties

The aim of this setion is to introdue the algebrai framework we will use

throughout the paper. This formalism was introdued in a speial ase in [13℄.

2.1 Latties

Let k+1 vetors ~v

0

; ~v

1

; � � � ; ~v

k

in Z

k

be given suh that f

0

:= det(~v

1

; � � � ; ~v

k

) 6=

0; f

i

:= det(~v

1

; ~v

2

; � � � ; ~v

i�1

;�~v

0

; ~v

i+1

; � � � ; ~v

k

) 6= 0 for i = 1; � � � ; k and f

0

;f

1

;

� � � ; f

k

all have the same sign. This implies that ~v

0

; ~v

1

; : : : ; ~v

k

are not on the

same side of some hyperplane. Note that one dedues from Cramer's rule that

f

0

~v

0

+ f

1

~v

1

+ � � �+ f

k

~v

k

=

~

0:

Let L be the lattie Z~v

0

+Z~v

1

+� � �+Z~v

k

. Then on the one hand, det(L) j f

i

for

i = 0; 1; � � � ; k, whene det(L) j d := gd(f

0

; f

1

; � � � ; f

k

): On the other hand,

if ~w

1

; � � � ; ~w

k

is some basis of L, then ~w

j

= �

0;j

~v

0

+ �

1;j

~v

1

+ � � �+ �

k;j

~v

k

with

�

0;j

; �

1;j

; � � � ; �

k;j

2 Z for j = 1; � � � ; k: Hene det(L) = j det(~w

1

; � � � ; ~w

k

) j is a

linear ombination of f

0

; f

1

; � � � ; f

k

and therefore divisible by d. We onlude

that det(L) = d and that L has exatly d osets in Z

k

: If d = 1, then L = Z

k

.

Let � be the lattie Z(~v

1

� ~v

0

) + � � �+ Z(~v

k

� ~v

0

). Then

det(�) = j det(~v

1

� ~v

0

; � � � ; ~v

k

� ~v

0

) j = j f

0

+ f

1

+ � � �+ f

k

j:

Note that � is a sublattie of L of index

D := det(�)=det(L) = d

0

+ d

1

+ � � �+ d

k

;

where d

i

:= jf

i

j=d for i = 0; 1; � � � ; k. Hene gd(d

0

; d

1

; � � � ; d

k

) = 1 and

d

0

~v

0

+ d

1

~v

1

+ � � �+ d

k

~v

k

=

~

0:

Moreover, if a

0

~v

0

+ a

1

~v

1

+ � � � + a

k

~v

k

=

~

0 for some a

0

; a

1

; � � � ; a

k

2 Z, then

a

i

= td

i

for some integer t and i = 0; 1; � � � ; k:

2.2 Roundwalks and their odings

Let us now introdue the notion of a roundwalk.

We laim that ~v

0

generates L=�. Suppose, on the ontrary, that for some i; j

with 0 � i < j < D; iv

0

� jv

0

(mod �). Then (j � i)~v

0

= �

1

(~v

1

� ~v

0

) + � � �+

3



�

k

(~v

k

� ~v

0

) for some integers �

1

; � � � ; �

k

: Hene

(j � i+ �

1

+ � � �+ �

k

)~v

0

� �

1

~v

1

� � � � �

k

~v

k

=

~

0:

Therefore j � i + �

1

+ � � � + �

k

= td

0

;��

1

= td

1

; � � � ;��

k

= td

k

for some

t 2 Z. It follows that j � i = t(d

0

+ d

1

+ � � �+ d

k

) = tD for some t 2 Z whih

yields a ontradition. Thus the multiples i~v

0

(0 � i < D) are elements in L

whih are distint modulo �. Hene f

~

0; ~v

0

; � � � ; (D � 1)~v

0

g is a omplete set

of representatives of L=�. Observe that D~v

0

�

~

0 (mod �).

By a roundwalk w through L=� we mean a sequene ~w

0

; ~w

1

; � � � ; ~w

D�1

;

~w

D

= ~w

0

ofD+1 elements from Z

k

suh that ~w

m

�m~v

0

2 � form = 0; 1; � � � ; D

and ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D � 1. Sine modulo � it

does not make any di�erene whether one adds ~v

0

; ~v

1

; � � �, or ~v

k

, the vetors

~w

0

; ~w

1

; � � � ; ~w

D�1

are in D di�erent osets of L=� and therefore distint. Sine

~w

D

= ~w

0

, there are exatly d

j

numbers i 2 f0; 1; � � � ; D� 1g suh that ~w

i+1

�

~w

i

= ~v

j

for j = 0; 1; � � � ; k: Conversely, suppose we are given D vetors ~w

0

=

~w

D

; ~w

1

; : : : ; ~w

D�1

suh that there are exatly d

j

numbers i 2 f0; 1; � � � ; D� 1g

with ~w

i+1

� ~w

i

= ~v

j

for j = 0; 1; � � � ; k: Then ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(= ~w

0

) form

a roundwalk through L=�.

We introdue some further notation. We de�ne the domain A = A(w) of

the roundwalk w as the subset f ~w

0

; : : : ; ~w

D�1

g of Z

k

. So A(w) represents a

omplete set of representatives of L=�. We de�ne the oding w of a roundwalk

~w

0

; ~w

1

; : : : ; ~w

D�1

; ~w

D

= ~w

0

, with ~w

i+1

� ~w

i

2 f~v

0

; � � � ; ~v

k

g for i = 0; 1; � � � ; D�1

as the �nite word w = w

0

: : : w

D�1

over the alphabet f0; 1; : : : ; kg de�ned by

w

i

= j if ~w

i+1

� ~w

i

= ~v

j

for 0 � i � D � 1. Observe that given the vetors

~v

0

; ~v

1

; : : : ; ~v

k

, and the vetor ~w

0

, the roundwalk w is perfetly determined by

its oding w.

2.3 An example

We illustrate the de�nitions by an example.

Example 1 We take k = 2; ~v

0

= (1; 4); ~v

1

= (3; 1); ~v

2

= (�2;�3): Hene

f

0

= �7; f

1

= �5; f

2

= �11; d = 1; L = Z

2

; d

0

= 7; d

1

= 5; d

2

= 11; D =

23;� = Z(2;�3) + Z(�3;�7). We make a roundwalk ~w

0

; ~w

1

; � � � ; ~w

23

= ~w

0

through L=� where

~w

i+1

� ~w

i

=

8

>

>

>

>

>

<

>

>

>

>

>

:

~v

0

for i = 0; 2; 6; 9; 12; 15; 19;

~v

1

for i = 4; 8; 13; 17; 21;

~v

2

for i = 1; 3; 5; 7; 10; 11; 14; 16; 18; 20; 22:
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We indiate the vetors in Figure 1 with h

j

where h indiates the index of ~w

h

and j the index of ~v

j

when ~v

j

= ~w

h+1

� ~w

h

: The oding w of the roundwalk

w is the sequene of the subsripts

0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2;

where j means that the next jump is ~v

j

. Note that there are d

0

= 7 numbers

0; d

1

= 5 numbers 1; d

2

= 11 numbers 2 in the oding word indeed.

16

2

10

2

3

2

20

2

14

2

13

1

7

2

1

2

18

2

17

1

11

2

5

2

22

2

4

1

21

1

15

0

9

0

8

1

2

0

19

0

12

0

6

0

0

0

Figure 1. Roundwalk with jumps from f~v

0

; ~v

1

; ~v

2

g

In fat, the points of the roundwalk through L=� generate a periodi tiling of

L = Z

k

, sine they are a omplete set of representatives of L=�, as illustrated

in Figure 2, where one �nds a �nite part of the periodi tiling of Z

2

by the

pattern in Figure 1, the period vetors being ~v

1

� ~v

0

= (2;�3) and ~v

2

� ~v

0

=

(�3;�7):We an onsider the (upper) numbers in Figures 1 and 2 as a funtion

g from the osets L=� to f0; 1; � � � ; 22g, numbering the osets.

� � � 19

0

13

1

7

2

1

2

18

2

12

0

6

0

0

0

17

1

� � �

� � � 0

0

17

1

11

2

5

2

22

2

16

2

10

2

4

1

21

1

� � �

� � � 4

1

21

1

15

0

9

0

3

2

20

2

14

2

8

1

2

0

� � �

� � � 8

1

2

0

19

0

13

1

7

2

1

2

18

2

12

0

6

0

� � �

� � � 12

0

6

0

0

0

17

1

11

2

5

2

22

2

16

2

10

2

� � �

� � � 16

2

10

2

4

1

21

1

15

0

9

0

3

2

20

2

14

2

� � �

� � � 20

2

14

2

8

1

2

0

19

0

13

1

7

2

1

2

18

2

� � �

� � � 1

2

18

2

12

0

6

0

0

0

17

1

11

2

5

2

22

2

� � �

Figure 2. The periodi tiling generated by the roundwalk
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2.4 Colouring of the roundwalks

We return to the general ase. For the sake of simpliity we assume in the

sequel that L = Z

k

. Hene d = 1: We de�ne the funtion g from Z

k

to

f0; 1; � � � ; D � 1g by g(~x) = m whenever ~x �m~v

0

2 �: It follows �rstly that

g is onstant on osets of L=�, and seondly that g is a linear funtion. Thus

g(

~

0) = 0 and if ~x = (x

1

; � � � ; x

k

) 2 Z

k

, then

g(~x) =

k

X

i=1

x

i

g(~e

i

) (mod D) (1)

where ~e

i

= (0; � � � ; 0; 1; 0; � � � ; 0) is the unit vetor with 1 at plae i for i =

1; 2; � � � ; k, and where a (mod b) is de�ned as the number  with  � a (mod b)

and 0 �  < b. Sine ~v

i

� ~v

0

2 � we have g(~v

i

) = 1 for 0 � i � k, hene

g(

k

X

i=0

x

i

~v

i

) =

k

X

i=0

x

i

(mod D):

For instane in Example 1, when onsidering the point 0

0

as the origin in Z

2

,

one has (Figure 2) g(~e

1

) = 17 = �6 (mod 23), g(~e

2

) = 19 = �4 (mod 23),

and thus the funtion g : Z

2

! f0; : : : ; 22g is given by

g(m;n) = �6m� 4n (mod 23):

Note that the restrition of g to A(w) in Figure 1 preisely indiates the route

of the walk.

To the roundwalk w given by ~w

0

; � � � ; ~w

D

(= ~w

0

) we have assoiated a one-

dimensional word w = w

0

� � �w

D�1

over the alphabet f0; 1; : : : ; kg whih we

alled the oding of w. Now we shall assoiate to w a k-dimensional word W

whih we all the olouring of w. To that purpose, we introdue a olouring

funtion � : Z

k

! f0; 1; : : : ; kg whih will \olour" the roundwalk. More

preisely, f0; 1; : : : ; D� 1g is split into k+1 sets I

0

; : : : ; I

k

(in pratie always

onseutive bloks of integers modulo D) and

�(~x) = l () g(~x) 2 I

l

for l 2 f0; 1; � � �kg; ~x 2 A(w): (2)

Observe that one ould olour the roundwalk w with any number of olours.

Our motivation to onsider exatly k + 1 olours is to make the onnetion

with k-dimensional Sturmian words.

Example 1 (ontinued). We split the roundwalk w in Figure 1 into three

nonempty parts, e.g. we replae numbers i for 5 � i < 14 with 0, i for

6



14 � i < 22 with 1 and numbers i for i = 22 or 0 � i < 5 with 2. We omit the

subsripts and indiate the plae of 0

0

by underlining. This yields Figure 3.

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1

0 0 2

Figure 3. The olouring W of w

Thus � is given by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 5 � �6m� 4n (mod 23) < 14

1 if 14 � �6m� 4n (mod 23) < 22

2 otherwise;

and W = �j

A(w)

is presented in Figure 3.

3 Extension rules

We onstrut an extended k-dimensional word by extending the oding of a

roundwalk.

3.1 The basi extension step

Starting from the situation desribed in the previous setion we introdue the

extension step S

i;j

for i; j 2 f0; 1; � � � ; kg with i 6= j. Put ~v

�

i

= ~v

i

� ~v

j

; ~v

�

h

=

~v

h

for h = 0; 1; � � � ; k; h 6= i. Note that the lattie L

�

:= Z~v

�

0

+ � � � + Z~v

�

k

equals L := Z~v

0

+ � � � + Z~v

k

whih we have assumed to be Z

k

: Put d

�

0

:=

7



jdet(~v

�

1

; � � � ; ~v

�

k

)j; d

�

h

:= jdet(~v

�

1

; � � � ; ~v

�

h�1

;�~v

�

0

; ~v

�

h+1

; � � � ; ~v

�

k

)j for h = 1; � � � ; k:

Then

d

�

h

= d

h

for h 6= j and d

�

j

= d

i

+ d

j

(h; i; j 2 f0; 1; � � � ; kg; i 6= j):

Let �

�

be the lattie Z(~v

�

1

� ~v

�

0

) + � � � + Z(~v

�

k

� ~v

�

0

). Then D

�

:= det(�

�

) =

d

�

0

+ d

�

1

+ � � �+ d

�

k

= D + d

i

.

Suppose we have a roundwalk ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(= ~w

0

) 2 Z

k

through Z

k

=�

with ~w

h+1

� ~w

h

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for h = 0; 1; � � � ; D�1. Then there are exatly

d

j

numbers h 2 f0; 1; � � � ; D� 1g suh that ~w

h+1

� ~w

h

= ~v

j

for j = 0; 1; � � � ; k:

We may onstrut a roundwalk ~w

�

0

= ~w

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

; ~w

�

D

�

= ~w

�

0

2 Z

k

with ~w

�

h+1

� ~w

�

h

2 f~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

g for h = 0; 1; � � � ; D

�

� 1 through Z

k

=�

�

by inserting for every h with ~w

h+1

� ~w

h

= ~v

i

either ~w

h

+ ~v

�

h

or ~w

h

+ ~v

�

j

in between ~w

h

and ~w

h+1

. Then the new jumps in the roundwalk are of the

form ~v

�

i

; ~v

�

j

; ~v

i

� ~v

�

i

= ~v

�

j

or ~v

i

� ~v

�

j

= ~v

�

i

, and therefore all jumps in the

new roundwalk belong to f~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

g. By arguments given in the previous

setion, the vetors ~w

�

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

represent D

�

di�erent osets of Z

k

=�

�

and are therefore distint, whereas the new roundwalk ontains exatly d

�

h

jumps ~v

�

h

for h = 0; 1; � � � ; k: The yle is not uniquely determined as we have

d

i

times a hoie out of two for the vetor to be inserted. We say that the

insertion is done in the anonial way if eah time ~w

h

+ ~v

�

i

is inserted and in

the anti-anonial way if eah time ~w

h

+ ~v

�

j

is inserted.

The extension step S

i;j

has the following e�et on the oding sequene: every

i is replaed by ij in the anonial ase, by ji in the anti-anonial ase,

whereas we have free hoie between ij and ji for every i in the general ase.

This ation an be desribed by means of the formalism of substitutions. Let

us reall that a substitution � is an appliation from an alphabet A into the

set A

?

�f"g of nonempty �nite words on A; it extends to a morphism of A

?

by

onatenation, that is, �(WW

0

) = �(W )�(W

0

) and �(") = ". It also extends

in a natural way to a map de�ned over A

N

or A

Z

.

Let w and w

�

denote respetiveley the roundwalks ~w

0

; ~w

1

; � � � ; ~w

D�1

; ~w

D

(=

~w

0

) and ~w

�

0

; ~w

�

1

; � � � ; ~w

�

D

�

�1

; ~w

�

D

�

(= ~w

�

0

). Let w and w

�

denote the odings of

the roundwalks w and w

�

, respetively. The ation of the basi extension step

S

i;j

on the oding of the roundwalk w is desribed in the anonial ase by

the substitution �

i;j

: i 7! ij, and h 7! h for h 6= i, and in the anti-anonial

ase by ~�

i;j

: i 7! ji, and h 7! h for h 6= i.

The lattie �

�

indues a linear funtion g

�

: Z

k

! f0; 1; � � � ; D

�

� 1g by

g

�

(~x) = m whenever ~x � m~v

�

0

2 �

�

: This funtion is onstant on osets of

Z

k

=�

�

and satis�es g

�

(0) = 0. We de�ne the projetion �

�

: Z

k

! f0; 1; � � � ; kg

of g

�

by �

�

(~x) = �(~y) where ~y is the lastly visited plae of A(w) when reahing

~x along w

�

. In partiular �

�

(~x) = �(~x) if ~x 2 A:
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Example 2 Let us apply the basi extension step S

1;0

to the roundwalk of

Example 1. Reall that k = 2; ~v

0

= (1; 4); ~v

1

= (3; 1); ~v

2

= (�2;�3); hene

d

0

= 7; d

1

= 5; d

2

= 11; D = 23;� = Z(2;�3) + Z(�3;�7). The oding w of

the roundwalk w is the word

0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2:

We now apply step S

1;0

: Hene ~v

�

0

= (1; 4); ~v

�

1

= (2;�3); ~v

�

2

= (�2;�3); d

�

0

=

12; d

�

1

= 5; d

�

2

= 11; D

�

= 28;�

�

= Z(1;�7) + Z(�3;�7): Five vetors are

inserted, sine d

1

= 5. If we apply the anonial insertion, see Figure 4, then

there are �ve new vetors ~w

�

5

; ~w

�

10

; ~w

�

16

; ~w

�

21

; ~w

�

26

whih are the translates of

~w

�

4

= ~w

4

; ~w

�

9

= ~w

8

; ~w

�

15

= ~w

13

; ~w

�

20

= ~w

17

; ~w

�

25

= ~w

21

by ~v

�

1

= (2;�3). The

translated vetors are just the ones in Figure 1 with index 1. The old vetors

keep their subsripts, whereas the �ve newly introdued vetors get subsript

0. The new oding w

�

= �

1;0

(w) of the roundwalk w

�

is

0 2 0 2 10 2 0 2 10 0 2 2 0 10 2 0 2 10 2 0 2 10 2:

If we make the anti-anonial insertions ~w

h

+ ~v

�

j

instead, there are again �ve

new vetors ~w

�

5

; ~w

�

10

; ~w

�

16

; ~w

�

21

; ~w

�

26

whih are the translates of ~w

�

4

= ~w

4

; ~w

�

9

= ~w

8

;

~w

�

15

= ~w

13

; ~w

�

20

= ~w

17

; ~w

�

25

= ~w

21

, but now by ~v

�

0

= (1; 4). The new vetors get

index 1 and the original �ve vetors get index 0 instead of 1 (see Figure 5).

The oding w

�

of the roundwalk w

�

is in this ase

w

�

= �

0;1

(w) = 0 2 0 2 01 2 0 2 01 0 2 2 0 01 2 0 2 01 2 0 2 01 2:

Observe that the patterns are onneted. Atually the (upper) numbers form

the restritionW

�

to some set A(w

�

) of the funtion g

�

: Z

2

! f0; 1; � � � ; D

�

�

1g (as de�ned in (1)). Sine g

�

is linear and g

�

(0) = 0, it is determined by

g

�

(1; 0) and g

�

(0; 1). We obtain

g

�

(m;n) � �7m� 5n (mod 28):

Hene the numbers oinide in Figures 4 and 5 at orresponding plaes. The

subsripts read in the order 0; 1; � � � ; 27 indiate the jumps of the roundwalk

and therefore reet the oding words. The olouring indued by � (as pre-

sented in Figure 3) is given by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 6 � �7m� 5n (mod 28) < 17

1 if 17 � �7m� 5n (mod 28) < 27

2 otherwise;

9



19

2

12

2

3

2

24

2

17

2

15

1

8

2

1

2

22

2

20

1

13

2

6

2

27

2

4

1

25

1

18

0

11

0

9

1

2

0

23

0

16

0

14

0

7

0

0

0

21

0

5

0

26

0

10

0

Figure 4.

Insertion in the anonial way

16

1

21

1

5

1

26

1

19

2

12

2

10

1

3

2

24

2

17

2

15

0

8

2

1

2

22

2

20

0

13

2

6

2

27

2

4

0

25

0

18

0

11

0

9

0

2

0

23

0

14

0

7

0

0

0

Figure 5.

Insertion in the anti-anonial way

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1 0

0 0 2 1

2 1

0

Figure 6.

W

�

in the anonial ase

0

1

2 1 1 0

0 2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1

0 0 2

Figure 7.

W

�

in the anti-anonial ase

Note that 6; 17; 27 in Figures 4 and 5 orrespond with the numbers 5; 14; 22 in

Figure 1. The words W

�

= �

�

j

A

�

orresponding to Figures 4 and 5 are given

10



in Figures 6 and 7, respetively. We omit the subsripts, but underline the

entry at the origin, as we did in Figure 3.

3.2 Substitution matries

We introdue vetors and matries to reate a general framework to desribe

substitutions and their e�ets on roundwalks. Let � be a substitution de�ned

over the alphabet A = f0; : : : ; kg of ardinality k+1. The substitution matrix

of the substitution � is, by de�nition, the (k + 1) � (k + 1) matrix M

�

the

entry of index (i; j) of whih is j�(a

j

)j

a

i

, that is, the number of ourrenes of

a

i

in �(a

j

).

Let k+1 vetors (~v

0

; ~v

1

; : : : ; ~v

k

) in Z

k

be given suh that Z~v

0

+Z~v

1

+� � �+Z~v

k

=

Z

k

and that

8

>

<

>

:

d

0

:= det(~v

1

; � � � ; ~v

k

);

d

h

:= det(~v

1

; � � � ; ~v

h�1

;�~v

0

; ~v

h+1

; � � � ; ~v

k

); for h 6= 0

are oprime positive integers. Then, by Cramer's rule, d

0

~v

0

+d

1

~v

1

+� � �+d

k

~v

k

=

~

0: Let � be a substitution with substitution matrix M having determinant 1.

We de�ne the olumn vetors ~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

2 Z

k

by

(~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

) = (~v

0

; ~v

1

; : : : ; ~v

k

)M

�1

:

Then Z~v

�

0

+ Z~v

�

1

+ � � �+ Z~v

�

k

= Z

k

. Put

8

>

<

>

:

d

�

0

:= det(~v

�

1

; � � � ; ~v

�

k

);

d

�

h

:= det(~v

�

1

; � � � ; ~v

�

h�1

;�~v

�

0

; ~v

�

h+1

; � � � ; ~v

�

k

) for h 6= 0:

It follows that d

�

0

; d

�

1

; � � � ; d

�

k

are oprime positive integers suh that d

�

0

~v

�

0

+

d

�

1

~v

�

1

+ � � � + d

�

k

~v

�

k

=

~

0: Denote by V and V

�

the k by k + 1 matries with

olumn vetors ~v

0

; ~v

1

; : : : ; ~v

k

and ~v

�

0

; ~v

�

1

; : : : ; ~v

�

k

, respetively, and by

~

d and

~

d

�

the row vetors (d

0

; d

1

; � � � ; d

k

) and (d

�

0

; d

�

1

; � � � ; d

�

k

). Then

V

t

~

d =

~

0; V

�

= VM

�1

; V

� t

~

d

�

=

~

0; (3)

where a left supersript t indiates transposition of vetors or matries. By

the uniqueness of the vetor

~

d with oprime positive oeÆients suh that

V

t

~

d =

~

0, we dedue from VM

�1 t

~

d

�

=

~

0 that

t

~

d = M

�1 t

d

�

: (4)
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Put D = d

0

+ d

1

+ � � �+ d

k

and D

�

= d

�

0

+ d

�

1

+ � � �+ d

�

k

.

Let ~x = (x

0

; x

1

; � � � ; x

k

) 2 Z

k+1

and

t

~x

�

=M

t

~x: Then

k

X

i=0

x

�

i

~v

�

i

= V

� t

~x

�

= VM

�1 t

~x

�

= V

t

~x =

k

X

i=0

x

i

~v

i

:

Let g : Z

k

! f0; 1; � � � ; D � 1g and g

�

: Z

k

! f0; 1; � � � ; D

�

� 1g be linear

funtions suh that g(0) = g

�

(0) = 0 and g(v

i

) = g

�

(v

�

i

) = 1 for i = 0; 1; � � � ; k.

Then

g

�

(

k

X

i=0

x

i

~v

i

) = g

�

(

k

X

i=0

x

�

i

~v

�

i

) =

k

X

i=0

x

�

i

(mod D

�

): (5)

Observe that V

�

;

~

d

�

; D

�

; and g

�

depend only on V andM and are independent

of the way of insertion presribed by �.

In Setion 3.1 the substitution matrix M

i;j

of the substitution �

i;j

(whih is

also that of ~�

i;j

), satis�es M

i;j

= Id+E

j;i

, where Id is the identity matrix and

E

j;i

the matrix of whih all entries are 0 exept for the entry of index (j; i)

whih equals 1. Note that the matrix M

i;j

has determinant 1.

Given a roundwalk any substitution rule � with substitution matrixM having

determinant 1 or �1 indues an extended roundwalk: the roundwalk w is

determined by the starting plae, the vetors ~v

0

; ~v

1

; � � � ; ~v

k

and the oding w.

By keeping the starting plae �xed, by omputing the vetors ~v

�

0

; ~v

�

1

; � � � ; ~v

�

k

aording to the above formula, and by applying the substitution � to w to

obtain w

�

we get the roundwalk w

�

. There is a simple way to desribe w

�

and to �nd A(w

�

). Let 0 � i � k: Consider the plaes of the roundwalk with

subsripts i. The jump ~v

i

in the old roundwalk will be replaed by suessive

jumps ~v

�

j

1

; ~v

�

j

2

; � � � ; ~v

�

j

n

where �(i) = j

1

j

2

� � � j

n

. The new plaes will be adjoined

to A(w): Consider a plae ~a whih belongs to the part A

i

(w) with subsript

i in A(w). This point has been reahed after reading a ertain part of the

oding w. Consider the orresponding part of the oding w

�

. Suppose the

reahed point is ~a too. Then this point appears both in A(w) and in A(w

�

).

Subsequently A(w

�

) is augmented with the plaes ~a translated by the vetors

~v

�

j

1

; ~v

�

j

1

+ ~v

�

j

2

; � � � ; ~v

�

j

1

+ ~v

�

j

2

+ � � �~v

�

j

n�1

. The next point whih is reahed is the

point ~a+~v

�

j

1

+~v

�

j

2

+ � � �~v

�

j

n

= ~a+~v

i

whih is the point following ~a in w. Hene,

by indution, A(w) � A(w

�

) and the set A

i

(w) is replaed with

A

i

(w)[A

i

(w) + ~v

�

j

1

[A

i

(w) + ~v

�

j

1

+ ~v

�

j

2

[ � � � [A

i

(w) + ~v

�

j

1

+ ~v

�

j

2

+ � � �+ ~v

�

j

n�1

:

The situation is illustrated in Setion 3.3 below where A

1

(w) and A

2

(w) are

eah opied one (Figure 10).
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Assume we are given a olouring map � : Z

k

! f0; 1; � � � ; kg whih is a

projetion of g. Then � indues a olouring map �

�

: Z

k

! f0; 1; � � � ; kg as

follows. If for a 2 A we have �(~a) = i, then in w

�

we put

�

�

(~a) = �

�

(~a+ ~v

�

j

1

) = � � � = �

�

(~a + ~v

�

j

1

+ ~v

�

j

2

+ � � �+ ~v

�

j

n�1

) = i: (6)

Note that n equals the i-th olumn sum of the matrixM . Hene the de�nition

of �

�

depends only on � and M and is independent of the way of insertion.

Only the number of ourrenes of eah letter in the substitution rule matters.

Note that �

�

is onstant on osets of �

�

and is therefore a projetion of g

�

.

3.3 The Rauzy extension step

We start from the situation as desribed in the previous setions. For given

j 2 f0; 1; � � � ; kg we introdue the Rauzy extension step R

j

for j 2 f0; 1; � � � ; kg

whih is atually the omposition of all S

i;j

with i 2 f0; 1; � � � ; kg n fjg. Put

~v

R

i

= ~v

i

�~v

j

for i = 0; 1; � � � ; k with i 6= j and ~v

R

j

:= ~v

j

: Hene the orrespond-

ing substitution matrix M

j

has entries 1 at the diagonal and at the j-th row

and further entries 0. Then d

R

i

= d

i

for i 6= j, and d

R

j

= d

0

+ � � � + d

k

= D:

All the supersripts R will refer to the situation after a Rauzy step. Note that

the lattie L

R

:= Z~v

R

1

+ � � � + Z~v

R

k

equals L = Z

k

with lattie determinant

d

R

:= d = 1. Put D

R

:= d

R

0

+ d

R

1

+ � � �+ d

R

k

= 2D � d

j

. Let �

R

be the lattie

Z(~v

R

1

� ~v

R

0

) + � � �+ Z(~v

R

k

� ~v

R

0

): Then

det(�

R

) = d

R

0

+ d

R

1

+ � � �+ d

R

k

= 2D � d

j

= D

R

:

Suppose we have a roundwalk ~w

0

; ~w

1

; � � � ; ~w

D

= ~w

0

in Z

k

through some funda-

mental domain A of � with ~w

i+1

� ~w

i

2 f~v

0

; ~v

1

; � � � ; ~v

k

g for i = 0; 1; � � � ; D�1.

We extend it to a roundwalk ~w

R

0

; ~w

R

1

; � � � ; ~w

R

D

R

= ~w

R

0

in Z

k

through a funda-

mental domain A

R

of �

R

by inserting for every pair h; i with ~w

h+1

� ~w

h

= ~v

i

and i 6= j either ~w

h

+ ~v

R

i

or ~w

h

+ ~v

R

j

in between ~w

h

and ~w

h+1

. Doing so we

obtain a roundwalk where ~w

R

0

; ~w

R

1

; � � � ; ~w

R

D

R

�1

represent the D

R

osets of �

R

:

The new roundwalk ontains d

R

i

jumps ~v

R

i

for i = 0; 1; � � � ; k: This time we

have D

R

�d

R

j

times a hoie out of two to make the insertion. If always ~w

h

+~v

R

i

is inserted (and never ~w

h

+ ~v

R

j

), then we say that the insertion is done in the

anonial way. If always ~w

h

+~v

R

j

is inserted, then we do it in the anti-anonial

way.

The ation of the Rauzy extension step R

j

on the oding w of the roundwalk

w is desribed in the anonial ase by the substitution �

R

j

: i 7! ij, for i 6= j

and j 7! j, and in the anti-anonial ase by ~�

R

j

: i 7! ji, for i 6= j and j 7! j.

Note that �

R

j

equals the omposition of the substitutions �

i;j

for i 6= j. These

13



substitutions are alled generalized Rauzy substitutions following [2℄. They are

introdued in [3℄ where it is proved that eah Arnoux-Rauzy sequene is in

the shift orbit losure of a unique sequene of the form

lim

n!1

�

R

i

1

Æ : : : Æ �

R

i

n

(0);

where the sequene (i

n

) takes in�nitely many times the value i for every

i = 0; � � � ; k. Note that ~�

R

0

~�

R

1

~�

R

2

= �

3

, where � denotes the usual Rauzy

substitution �(0) = 01, �(1) = 02, �(2) = 0.

We illustrate this by starting from the same situation as in Example 1 and

applying R

0

in the anonial way to obtain Figure 8. Therefore in the oding

sequene (f. subsripts) we replae every i > 0 by i0.

Example 3 We still pursue Example 1. We start from k = 2; ~v

0

= (1; 4); ~v

1

=

(3; 1); ~v

2

= (�2;�3) and roundwalk w with oding

w = 0 2 0 2 1 2 0 2 1 0 2 2 0 1 2 0 2 1 2 0 2 1 2:

On applying R

0

we �nd ~v

R

0

= (1; 4); ~v

R

1

= (2;�3); ~v

R

2

= (�3;�7); d

R

0

=

23; d

R

1

= 11; d

R

2

= 5; D

R

= 39: There are d

1

+ d

2

= 16 new points. If we

replae eah 1 by 10 and eah 2 by 20 we get the roundwalk w

R

with oding

w

R

= 0 20 0 20 10 20 0 20 10 0 20 20 0 10 20 0 20 10 20 0 20 10 20

in Figure 8. In Figure 9 we have applied the oding

~�

R

0

(w) = 0 02 0 02 10 02 0 02 01 0 20 02 0 10 20 0 20 01 20 0 20 01 20:

as it is used in Simpson and Tijdeman [13℄. Here there are no �xed substitu-

tions for the replaement of the letters 1 and 2 and the result is a onvex set

A

�

whih ressembles a hexagon.

Figure 1 an be divided into three zones whih orrespond to the points whih

have subsript 0,1,2, respetively (see the left Figure 10 below). In the right

Figure 10 the part in Figure 1 with index 1 is translated over ~v

R

1

= (2;�3),

the part with index 2 over ~v

R

2

= (�3;�7), whereas all the parts remain at the

same plae too. Beause of the hoie for anonial insertion, the subsripts

at new plaes beome 0. The right Figure 10 explains Figure 8. In Figure 9

the opied parts A

1

(w) and A

2

(w) are eah split into two parts beause of the

14



mixed substitutions 10 and 01 for 1, and 20 and 02 for 2.
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0
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0

Figure 8. Canonial extension
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Figure 9. ST-extension
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Figure 10. The roundwalk w from Figure 1 and its extension w

R

in Figure 8
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Points in Figure 8 and Figure 9 with the same (upper) number are repre-

sentatives of the same oset of �

R

. Hene their di�erene vetor is in �

R

=

Z(1;�7)+Z(�4;�11): Figures 8 and 9 are the restritions of a linear funtion

g

R

: Z

2

! f0; 1; 2; � � � ; 38g. If we onsider the point 0

0

as the origin, then the

funtion g

R

is given by g(m;n) = �10m� 7n (mod 39):

Let us write for short A = A(w) and A

R

= A(w

R

). We extend the funtion

� : A ! f0; 1; 2g to a funtion �

R

: A

R

! f0; 1; 2g. Reall that �j

A

is given

by

�(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 5 � �6m� 4n (mod 23) < 14

1 if 14 � �6m� 4n (mod 23) < 22

2 otherwise:

Consider now the extension to A

R

given in Figure 11. We write a 0, 1 or 2

aording to the value it has in Figure 3 for plaes in A \ A

R

and the value

of the preeding plae in the roundwalk if the plae is in A

R

n A. This yields

Figure 11 where we have underlined the number at the origin. It follows that

the indued word W

R

= f

R

j

A

R satis�es (f. the upper values in the right

Figure 10)

�

R

(m;n) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 8 � �10m� 7n (mod 39) < 23

1 if 23 � �10m� 7n (mod 39) < 37

2 otherwise:

1 0

2 1 1

0 0 2 1

1 0 0 2

2 1 1 0

0 2 1 0

0 0 2 1

1 0 2 1

2 1 1 0

0 2 1

0 0 2

Figure 11. W from Figure 3 and its extension W

�

in the anonial ase
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4 Towers of latties

The aim of this setion is to onstrut towers of latties generating larger and

larger roundwalks, and thus olourings with larger and larger shapes.

4.1 Basi towers

Let ~v

(0)

1

, ~v

(0)

2

; � � � ; ~v

(0)

k

denote vetors in Z

k

with

d

(0)

0

:= det(~v

(0)

1

; � � � ; ~v

(0)

k

) = 1:

Put ~v

(0)

0

= �~v

(0)

1

� : : :� ~v

(0)

k

. Then, for 1 � i � k,

d

(0)

i

:= det(~v

(0)

1

; � � � ; ~v

(0)

i�1

;�~v

(0)

0

; ~v

(0)

i+1

; � � � ; ~v

(0)

k

) = 1:

Put

8

>

<

>

:

L

(0)

= Z~v

(0)

0

+ Z~v

(0)

1

+ � � �+ Z~v

(0)

k

;

�

(0)

= Z(~v

(0)

1

� ~v

(0)

0

) + � � �+ Z(~v

(0)

k

� ~v

(0)

0

):

Then L

(0)

= Z

k

; D

(0)

:= d

(0)

0

+ d

(0)

1

+ � � � + d

(0)

k

= k + 1: We start with the

roundwalk w

(0)

given by

~

0; ~v

(0)

0

; ~v

(0)

0

+~v

(0)

1

; � � � ;

P

k

i=0

~v

(0)

i

=

~

0 with oding w

(0)

=

012 � � �k. For onveniene we assume

P

m�1

i=0

~v

(0)

i

= ~e

m

for m = 1; 2; � � � ; k in

the sequel. This an be ahieved by a transformation of oordinates. Hene

A

(0)

:= A(w

(0)

) = f

~

0; ~e

1

; � � � ; ~e

k

g: One has ~e

m

�m~e

1

2 �

(0)

, for m = 1; � � � ; k.

We thus de�ne g

(0)

= �

(0)

: Z

k

! f0; 1; � � � ; kg by �

(0)

(

~

0) = 0; �

(0)

(~e

m

) =

m for m = 1; � � � ; k and �

(0)

is onstant on osets of Z

k

=�

(0)

: Thus if ~x =

(x

1

; � � � ; x

k

) 2 Z

k

, then

g

(0)

(~x) = �

(0)

(~x) =

k

X

i=1

ix

i

(mod k + 1):

We iteratively apply basi extension steps S

i;j

in the anonial way. Let S

(n)

=

S

i

n

;j

n

denote the n-th extension rule that is applied. We will use the notation

~v

(n)

i

, d

(n)

i

, for 0 � i � k, L

(n)

;�

(n)

; g

(n)

, �

(n)

, V

(n)

,

~

d

(n)

, A

(n)

, w

(n)

, w

(n)

, D

(n)

,

W

(n)

for the values of the previously de�ned symbols at level n. Let us reall

that we use the onvention expressed by (6) for the de�nition of �

(n)

.

By (3) and (4) we have, in terms of matries,

V

(n)

= V

(0)

M

�1

i

1

;j

1

� � �M

�1

i

n

;j

n

and

t

~

d

(n)

= M

i

n

;j

n

� � �M

i

1

;i

n

(

t

~

d

(0)

):

Sine

~

d

(0)

= (1; 1; � � � ; 1), the vetor

~

d

(n)

is given by the row sums of the

produt matrix M

i

n

;j

n

� � �M

i

1

;j

1

.
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Put

M

(n)

:=

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

;

(M

(0)

= Id). De�ne 

(n)

j

as the j-th olumn sum ofM

(n)

(the numbering start-

ing with 0), and r

(n)

j

as the j-th row sum of M

(n)

. When we apply extension

step S

i

n

;j

n

toM

(n)

, then M

(n+1)

is obtained by adding the i

n

-th olumn vetor

of M

(n)

to its j

n

-th olumn vetor.

Observe that the i-th row sum r

(n)

i

denotes the total number of entries i in

the word W

(n)

for 0 � i � k, whereas the j-th olumn sum 

(n)

j

denotes the

number of letters j in the oding word w

(n)

, that is, the number of plaes in

A

(n)

with subsript j, for 0 � j � k. Of ourse,

P

k

i=0



(n)

i

=

P

k

i=0

r

(n)

i

= D

(n)

,

the total number of points in A

(n)

, that is the ardinality of Z

k

=�

(n)

:

We use the linearity of the funtion g

(n)

and the results of Se. 3.2 to give

expliit expressions for g

(n)

and �

(n)

. Let ~x 2 Z

k

. Put ~x =

P

k

m=1

x

m

~e

m

: Then

g

(n)

(~x) =

k

X

m=1

x

m

g

(n)

(~e

m

) (mod D

(n)

):

By our speial hoie of the ~v

i

and �

(0)

, the roundwalk w

(n)

starts from the

origin and jumps along r

(n)

0

plaes with subsript 0 until it reahes ~e

1

, then

passes r

(n)

1

plaes with subsript 1 until it reahes ~e

2

, and so on. Hene the

number g

(n)

(~e

j

) equals the total number of letters 0; 1; � � � ; j�1 inW

(n)

. Thus

g

(n)

(~e

j

) =

P

j�1

i=0

r

(n)

i

for j = 1; � � � ; k and

g

(n)

(~x) =

k

X

j=1

x

j

j�1

X

i=0

r

(n)

i

(mod D

(n)

):

It follows from the de�nition of � that

�

(n)

(~x) = m()

m�1

X

i=0

r

(n)

i

� g

(n)

(~x) <

m

X

i=0

r

(n)

i

:

So we have derived the following proposition.

Proposition 1 Under the assumptions made in this setion the funtion �

(n)

:

Z

k

! f0; 1; � � � ; kg satis�es, for m = 1; � � � ; k and ~x = (x

1

; � � � ; x

k

) 2 Z

k

,

�

(n)

(~x) = m()

P

m�1

i=0

r

(n)

i

D

(n)

�

8

<

:

P

k

j=1

x

j

P

j�1

i=0

r

(n)

i

D

(n)

9

=

;

<

P

m

i=0

r

(n)

i

D

(n)

;

where D

(n)

=

P

k

i=0

r

(n)

i

and fyg denotes the frational part of y.

Example 4 Let k = 2; ~v

(0)

0

= (1; 0); ~v

(0)

1

= (�1; 1); ~v

(0)

2

= (0;�1): We apply

periodially extension steps S

0;1

; S

1;2

; S

2;0

. Hene we obtain the sequene of
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matries M

(n)

:

0

B

B

B

B

B

�

1 1 0

0 1 0

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 1 1

0 1 1

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

2 1 1

1 1 1

1 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

2 3 1

1 2 1

1 1 1

1

C

C

C

C

C

A

n = 1 n = 2 n = 3 n = 4

0

B

B

B

B

B

�

2 3 4

1 2 3

1 1 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 3 4

4 2 3

3 1 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 9 4

4 6 3

3 4 2

1

C

C

C

C

C

A

0

B

B

B

B

B

�

6 9 13

4 6 9

3 4 6

1

C

C

C

C

C

A

n = 5 n = 6 n = 7 n = 8

We ompute r

(8)

0

= 28; r

(8)

1

= 19; r

(8)

2

= 13; D

(8)

= 60; ~v

(8)

0

= (2;�5); ~v

(8)

1

=

(6;�1); ~v

(8)

2

= (�5; 3). Thus the indued funtion �

(8)

: Z

2

! f0; 1; 2g is given

by

�

(8)

(x; y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 0 � f

28

60

x +

47

60

yg <

28

60

1 if

28

60

� f

28

60

x +

47

60

yg <

47

60

2 if

47

60

� f

28

60

x +

47

60

yg < 1:

This is independent of the made insertions.

4.2 Rauzy towers

We start from the same situation as in the previous setion, but now we apply

Rauzy extensions steps R

j

. Sine a Rauzy extension step is a ombination of

k basi extension steps, the formulas for g and � in Se. 4.1 remain valid with

supersripts (n) in plae of (kn). However, in the Rauzy ase the numbers r

(n)

i

satisfy a useful reurrene relation whih failitates the omputation of the

funtion �

(n)

. Write ~r

(n)

= (r

(n)

0

; r

(n)

1

; � � � ; r

(n)

k

). Let 0 � j � k: If the Rauzy

step R

j

is applied at level n, then

~r

(n)

=M

(n) t

(1; 1; � � � ; 1) =M

(n�1) t

M

j

t

(1; 1; � � � ; 1):

(Reall that

t

M

j

is the matrix with entries 1 at the diagonal and at the j-th

olumn and entries 0 elsewhere).

Sine

t

M

j

t

(1; 1; � � � ; 1) = 2

t

(1; 1; � � � ; 1)� ~e

j

;
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we have ~r

(n)

= 2~r

(n�1)

�M

(n�1)

~e

j

= 2~r

(n�1)

� ~

(n�1)

j

, where ~

(n�1)

j

is the j-th

olumn vetor of M

(n�1)

. In view of M

(l+1)

= M

(l) t

M

i

when R

i

is applied

at level l, we obtain ~

(n�1)

j

= ~

(n�2)

j

= � � � = ~

(q)

j

6= ~

(q�1)

j

if the previous

time that a Rauzy extension step R

j

was applied was at level q. Furthermore,

~

(q)

j

= ~r

(q�1)

. Thus

~r

(n)

= 2~r

(n�1)

� ~r

(q�1)

(7)

if at level n a Rauzy step R

j

is applied and the previous time that R

j

was

applied was at level q. The above argument is of ourse independent of the

hosen way of insertion. The orresponding funtion �

(n)

: Z

k

! f0; 1; 2g is

given in Proposition 1.

Example 5We onsider k = 2 and apply periodially Rauzy steps R

2

; R

1

; R

0

.

This yields a sequene of matries (M

(n)

)

n�0

starting with

0

B

B

B

B

B

�

1 0 0

0 1 0

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 0 1

0 1 1

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

1 2 1

0 2 1

0 1 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

4 2 1

3 2 1

2 1 1

1

C

C

C

C

C

A

n = 0 n = 1 n = 2 n = 3

0

B

B

B

B

B

�

4 2 7

3 2 6

2 1 4

1

C

C

C

C

C

A

0

B

B

B

B

B

�

4 13 7

3 11 6

2 7 4

1

C

C

C

C

C

A

0

B

B

B

B

B

�

24 13 7

20 11 6

13 7 4

1

C

C

C

C

C

A

n = 4 n = 5 n = 6

The row sums satisfy a reurrene relation ~r

(n)

= 2~r

(n�1)

� ~r

(n�4)

for every

n � 4. The harateristi polynomial reads x

4

�2x

3

+1 = (x�1)(x

3

�x

2

�x�

1) = (x�1)(x��)(x��)(x��) where � is the Tribonai number (in referene

to the Fibonai number

1+

p

5

2

) ; one has � � 1:84 and j�j < 1. We �nd that

there are onstant oeÆients 

j;i

suh that r

(n)

i

= 

0;i

�

n

+

1;i

+

2;i

�

n

+

3;i

�

n

for

i = 0; 1; 2 and all n. The oeÆients an be omputed from ~r

(0)

; ~r

(1)

; ~r

(2)

; ~r

(3)

.

The orresponding funtions �

(n)

are given by Proposition 1. It will be lear

that the funtions �

(n)

onverge to a limit word on Z

2

, but this will be the

subjet of the next setion.
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5 Multi-dimensional Sturmian words

In this setion we study the limit words whih an be obtained by using towers

of latties as desribed in the previous setion.

5.1 Some de�nitions and non-existene results

It is obvious from the theory of extended roundwalks that W := lim

n!1

W

(n)

exists and is de�ned on A := [

1

n=0

A

(n)

= lim

n!1

A

(n)

: However, the word W

depends on the way the insertions are being made at eah step. It is easy to

show that it an happen that A 6= Z

k

. Take a �xed plae ~x 2 Z

k

; j~xj > 1:

At every level we have free hoie of making insertions. At most one of both

insertions involves ~x, sine in the notation of Se. 3.1 at least one among

~w

h

+

~

v

�

i

and ~w

h

+

~

v

�

j

is di�erent from ~x. So we an seure by making the

\right" insertions that ~x =2 A

(n)

for every n. Thus ~x =2 A:

In view of W

(n)

= �

(n)

j

A

(n)

for every n, it would be nie if lim

n!1

�

(n)

exists,

that is, �

(n)

(~x) is onstant for every ~x 2 Z

k

and n � n

0

(~x), sine then we

have a limit word � : Z

k

! f0; 1; � � � ; kg whih is independent of the hosen

insertions and W = �j

A

. We shall show that lim

n!1

�

(n)

does not exist in

general.

We use the notation of Se. 4.1. Put �

(n)

m

=

P

m�1

i=0

r

(n)

i

D

(n)

for m = 1; � � � ; k +

1. Then we dedue from Proposition 1 that, for m = 0; 1; � � � ; k and ~x =

(x

1

; � � � ; x

k

) 2 Z

k

,

�

(n)

(~x) = m() �

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

: (8)

Obviously lim

n!1

�

(n)

exists if �

m

:= lim

n!1

�

(n)

m

exists for m = 0; 1; � � � ; k

and, in ase �

m

is rational, �

(n)

m

� �

m

for all large n. If so, the limit word � is

given by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

(9)

and the density of the letter m equals �

m+1

� �

m

for m = 0; 1; � � � ; k. Note

that 0 � �

0

� �

1

� � � � � �

k

� �

k+1

:= 1 and that the sum of the densities of

the letters equals 1. Before going into the study of the struture of the limit

words, we onsider a situation where the limit does not exist.
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Let k = 4 and 0 < " <

1

2

. We apply basi extension steps S

0;1

and S

1;0

until

the sum of the densities of 0 and 1 exeeds 1 � ", subsequently we apply

basi extension steps S

2;3

and S

3;2

until the sum of the densities of 2 and

3 exeeds 1 � ", subsequently we apply basi extension steps S

0;1

and S

1;0

until the sum of the densities of 0 and 1 exeeds 1� ", and so on. Obviously,

lim inf

n!1

�

(n)

2

< ", lim sup

n!1

�

(n)

2

> 1� ", and lim

n!1

�

(n)

2

does not exist,

so that lim

n!1

�

(n)

does not exist either.

We give the de�nitions of k-dimensional regular word and k-dimensional Stur-

mian word, respetively.

De�nition 1 An in�nite k-dimensional regular word is an in�nite word U :

Z

k

! f0; 1; : : : ; kg whih satis�es either

8(x

1

; : : : ; x

k

) 2 Z

k

; (U(x

1

; : : : ; x

k

) = m()

x

1

�

1

+ : : :+ x

k

�

k

+ � 2 [�

m

; �

m+1

[ (mod 1));

or 8(x

1

; : : : ; x

k

) 2 Z

k

; (U(x

1

; : : : ; x

k

) = m()

x

1

�

1

+ : : :+ x

k

�

k

+ � 2℄�

m

; �

m+1

℄ (mod 1));

for some real numbers �

0

= 0 < �

1

< : : : < �

k

< �

k+1

= 1 and �. If,

moreover, 1; �

1

; : : : ; �

k

are independent over Q we all it a k-dimensional

Sturmian word.

The multidimensional Sturmian words have been studied mainly for k = 2

in [5{8,4℄ and have many interesting ombinatorial properties whih allow us

to onsider them as a higher-dimensional generalisation of Sturmian words.

In partiular, they are nonperiodi (i.e., there is no nonzero vetor of peri-

odiity with integer oeÆients) and uniformly reurrent (i.e., for every posi-

tive integer n, there exists an integer N suh that every square fator of size

(N; : : : ; N) ontains every fator of size (n; : : : ; n)). Furthermore they have

m

1

: : : m

k

+

P

k

i=1

Q

j 6=i

m

j

fators of length (m

1

; : : : ; m

k

). Reall that (lassi)

Sturmian words ode the approximation of a line by a disrete line made of

horizontal and vertial segments with integer verties (for more details, see

for instane [12,11℄). These multidimensional sequenes ode disrete hyper-

plane approximations. In the sequel we will use the following observation: the

densities of letters 0; 1; : : : ; k in a k-dimensional Sturmian word exist and are

equal to �

1

; �

2

� �

1

; � � � ; 1� �

k

, respetively, (in the notation of Def. 1). The

�rst theorem is an assertion of the type that every �nite balaned word is a

fator of a Sturmian word.

Theorem 1 We use the notation of Se. 2 and Def.1. Let w be a roundwalk

in the domain A(w). De�ne � : Z

k

! f0; 1; : : : ; kg in ~x = (x

1

; � � � ; x

k

) 2 Z

k

by

(9). Then the k-dimensional �nite word �j

A(w)

is a fator of a k-dimensional

Sturmian word with � = 0:
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Proof We have

�(

k

X

i=1

x

i

~e

i

) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

for m 2 f0; 1; � � �kg; ~x 2 A(w):

Let (�

1

; � � � ; �

k

) 2 R

k

with 1; �

1

; � � � ; �

k

linearly independent over Q be suh

that (D�

1

; � � � ; D�

k

) approximates the vetor �

1

; � � � ; �

k

with rational entries

so well that

f

k

X

i=1

x

i

�

i

g 2 [�

m

; �

m+1

[() f

k

X

i=1

x

i

�

i

g 2 [�

m

; �

m+1

[;

for m 2 f0; 1; � � �kg; ~x 2 A(w). For m 2 f0; 1; � � � ; kg we then have

�j

A(w)

(~x) = m() �

m

� f

k

X

i=1

x

i

�

i

g < �

m+1

:

It follows from (9) that �j

A(w)

is a fator of the k-dimensional Sturmian word

with parameters �

1

; � � � ; �

k

assoiated to the partition by right-open and left-

losed intervals and � = 0.

The limit words we study have the additional property that the onstant � in

the de�nition is 0. We all suh words homogeneous.

Corollary 1 The wordsW

(n)

orresponding to �

(n)

j

A

(n)

(w

(n)

)

ourring in Se.

4.1 are fators of homogeneous multidimensional Sturmian words.

5.2 Some suÆient onditions for onvergene

We will apply the following result.

Theorem 2 [9℄ Let (M

j

)

j2N

be a sequene of square matries of size k + 1

with oeÆients in N with values from a �nite set for whih there exists a

positive matrix P suh that M

j

attains this value P for in�nitely many values

j. Let C

k+1

+

denote the nonnegative one in R

k+1

of vetors with nonnegative

entries. Then there exists a positive vetor

~

l =

t

(l

0

; l

1

; : : : ; l

k

) with

P

k

j=0

l

j

= 1

suh that

\

n2N

M

1

� � �M

n

(C

k+1

+

) = f�

~

l ; � 2 R

+

g:

In other words, for every nonzero vetor ~x in R

k+1

with nonnegative entries,

M

1

M

2

: : :M

n

~x onverges towards the vetor

~

l in R

k+1

. Observe that suh a

onvergene property needs not hold without the assumption of Theorem 2 as

illustrated by Keane's example of a minimal and nonuniquely ergodi exhange

of 4 intervals [10℄.
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We apply Theorem 2 to the starting situation desribed in Se. 4.1. We assume

that we have an in�nite tower (M

i

n

;j

n

)

n�1

of basi extension matries. Sine

there are only �nitely many hoies for M

i;j

, for every positive integer h there

exist matries P suh that P =

t

M

i

n

;j

n

t

M

i

n+1

;j

n+1

� � �

t

M

i

n+h�1

;j

n+h�1

for

in�nitely many n. Suppose there exists an h for whih suh a P exists with all

entries positive. Then there exists a onstant  for whih there exist in�nitely

many suh n of the form mh+ : We de�ne

P

1

=

t

M

i

1

;j

1

t

M

i

2

;j

2

� � �

t

M

i

�1

;j

�1

and

P

m

=

t

M

i

(m�1)h+

;j

(m�1)h+

t

M

i

(m�1)h++1

;j

(m�1)h++1

� � �

t

M

i

mh+�1

;j

mh+�1

:

Aording to Theorem 2 there exist positive numbers l

0

; l

1

; � � � ; l

k

2 R

k+1

with

P

k

j=0

l

j

= 1 suh that

\

n2N

P

1

� � �P

n

(C

k+1

+

) = R

+

t

(l

0

; l

1

; : : : ; l

k

):

It follows (with the notation of Setion 5.1) that

\

n2N

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

(C

k+1

+

) = R

+

t

(l

0

; l

1

; : : : ; l

k

):

In partiular,

lim

n!1

(r

(n)

0

; � � � ; r

(n)

k

) = lim

n!1

t

M

i

1

;j

1

� � �

t

M

i

n

;j

n

t

(1; � � � ; 1) 2 R

+

t

(l

0

; l

1

; : : : ; l

k

):

Sine r

(n)

0

+ r

(n)

1

+ � � �+ r

(n)

k

= D

(n)

, we obtain

lim

n!1

r

(n)

m

D

(n)

= l

m

for m = 0; 1; � � �k:

It follows for these values of m that

lim

n!1

�

(n)

m

= l

0

+ l

1

+ � � �+ l

m�1

=: �

m

:

We de�ne � : Z

k

! f0; 1; � � � ; kg by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

; (10)

for ~x = (x

1

; � � � ; x

k

) 2 Z

k

and m = 0; 1; � � � ; k where �

0

= 0; �

k+1

= 1: Thus

� represents a multi-dimensional regular word and the density of the letter m

equals �

m+1

� �

m

= l

m

for m = 0; 1; � � � ; k:
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It remains to prove that lim

n!1

�

(n)

= �. We have from (8)

�

(n)

(~x) = m() �

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

:

Fix ~x = (x

0

; x

1

; � � � ; x

k

) 2 Z

k

: If �

m

< f

P

k

j=1

x

j

�

j

g < �

m+1

, then �

(n)

m

<

f

P

k

j=1

x

j

�

(n)

j

g < �

(n)

m+1

for n � n

0

(~x), so that �

(n)

(~x) = m for n � n

0

(~x).

Hene �(~x) = lim

n!1

�

(n)

(~x) = m:

We now onsider the boundary ase. Suppose f

P

k

j=1

x

j

�

j

g = �

m

. Then �

m�1

<

f

P

k

j=1

x

j

�

(n)

j

g < �

m+1

for n � n

0

(~x) so that �

(n)

(~x) ism�1 orm (with obvious

yli adjustments if m = 0 or m = k). If

�

(n)

m

� f

k

X

j=1

x

j

�

j

g < �

(n)

m+1

for all n � n

1

(~x), then we are ertain that lim

n!1

�

(n)

(~x) = m. In ase there

are in�nitely many n suh that the reverse inequality holds, then it is not true

that the limit exists and equals �. Thus we have proved the following result.

Theorem 3 Apply from the starting situation as desribed in Se. 4.1 an

in�nite sequene (M

i

n

;j

n

) of basi extension matries. Suppose there exists a

positive integer h and a matrix P with only positive entries suh that P =

M

i

n

;j

n

M

i

n

+1;j

n

+1

� � �M

i

n

+h�1;j

n

+h�1

for in�nitely many values of n. Let �

m

=

lim

n!1

�

(n)

m

for m = 1; 2; � � � ; k and de�ne � by (9). Then lim

n!1

�

(n)

= � :

Z

k

! f0; 1; � � � ; kg exists if and only if

�

(n)

m

� f

k

X

j=1

x

j

�

(n)

j

g < �

(n)

m+1

for n � n

1

(~x) for every ~x 2 Z

k

for whih f

P

k

j=1

x

j

�

j

g = �

m

for some m 2

f0; 1; � � � ; kg:

Note that the latter ondition is ful�lled if 1; �

1

; � � � ; �

k

are linearly independent

over the rationals, that is, if the limit word is Sturmian, sine then there annot

be a point ~x 6= ~e

m

with f

P

k

j=1

x

j

�

j

g = �

m

, whereas �

(n)

(~e

m

) = �(~e

m

) = m by

de�nition.

Corollary Suppose that to the starting situation as desribed in Se. 4.1

we apply an in�nite periodi sequene (R

j

n

)

n�1

of Rauzy steps. If eah of

R

0

; R

1

; � � � ; R

k

ours in the period and the limit values �

0

; �

1

; � � � ; �

k

are lin-

early independent over the rationals, then the limit word lim

n!1

�

(n)

= �
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exists and it is the Sturmian regular word given for m = 0; 1; � � � ; k by

�(~x) = m() �

m

� f

k

X

j=1

x

j

�

j

g < �

m+1

:

Proof Suppose eah of R

0

; R

1

; � � � ; R

k

ours in the period. Note that

when applying R

i

we multiply by the substitution matrix M

i

with nonnega-

tive entries and with entries 1 at the i-th olumn. Hene the produt matrix

orresponding to a period has only positive entries at the i-th olumn for

i = 0; 1; � � � ; k: Thus the produt matrix orresponding to one period has only

positive entries. Beause of the linear independene ondition it follows from

Theorem 3 that lim

n!1

�

(n)

= �:

Example 5 (ontinued). We onsider k = 2 and apply the Rauzy steps

R

2

; R

1

; R

0

periodially. Then the substitution matries M

n

have row sums

~r

(n)

satisfying r

(n)

i

= 

0;i

�

n

+

1;i

+

2;i

�

n

+

3;i

�

n

for i = 0; 1; 2 and all n. Reall

that � > 1; j�j < 1. Sine r

(n)

i

!1, we have lim

n!1

r

(n)

i

D

(n)

= 

0;i

for i = 0; 1; 2:

A diret alulation gives



0;0

=

�

2

(� + 1)

2

; 

0;1

=

1

� + 1

; 

0;2

=

�

(� + 1)

2

:

Sine � is a root of the irreduible polynomial x

3

� x

2

� x � 1, the numbers

�

0

= 

0;0

; �

1

= 

0;1

; �

2

= 

0;2

are linearly independent over the rationals. Thus

the limit word � : Z

2

! f0; 1; 2g is given by

�(x; y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if 0 � f

�

(�+1)

2

x +

2�+1

(�+1)

2

yg <

�

2

(�+1)

2

1 if

�

2

(�+1)

2

� f

�

(�+1)

2

x+

2�+1

(�+1)

2

yg <

�

2

+�+1

(�+1)

2

2 if

�

2

+�+1

(�+1)

2

� f

�

(�+1)

2

x+

2�+1

(�+1)

2

yg < 1:

Note that in the above orollary the requirement that eah among the rules

R

0

, R

1

; � � � ; R

k

ours in a period is neessary for the onlusion. If R

m

does

not appear in the period, then r

(n)

m

= 1 for all n, that is, in every �

(n)

there is

only one oset with �

(n)

-value m. Hene the density of the letter m beomes

0 and the limit word annot be regular.

A similar orollary an of ourse be given for a periodi sequene of basi

extension steps (S

i

n

;j

n

) where eah matrix M

i;j

appears in a period. However,

here the ondition is far too strong. It suÆes, but it is not neessary, that the

produt matrix taken over a period has positive entries. We shall deal with

suh situations in part II of the paper.
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5.3 Approximations of given regular words

In this subsetion we address the question whether and how some given regular

word an be obtained as the limit by applying a tower of extension steps. Not

every regular word � an be the limit word when applying an in�nite sequene

of Rauzy extensions steps. Indeed, for every n the vetor ~r = (r

0

; r

1

; � � � ; r

k

),

where r

0

; r

1

; � � � ; r

k

are the densities of the letters 0; 1; � � � ; k of the word �,

should be in the onvex hull of the olumn vetors (D

(n)

)

�1

(~

(n)

0

;~

(n)

1

; � � � ;~

(n)

k

)

of M

(n)

, beause ~

(n)

0

+ ~

(n)

1

+ � � � + ~

(n)

k

= ~r

(n)

and lim

n!1

~r

(n)

D

(n)

= ~r. Here

we restrit ourselves to the linear manifold x

0

+ x

1

+ � � � + x

k

= 1, sine

the sum of the densities equals 1. In partiular, in ase k = 2, the vetor

~r

(n)

should be in the onvex hull of ~

(n)

0

;~

(n)

1

;~

(n)

2

. When we start with R

0

we have ~

(1)

0

=

t

(1; 0; 0); ~

(1)

1

=

t

(1; 1; 0); ~

(1)

2

=

t

(1; 0; 1) and for R

1

and

R

2

symmetri situations our. Thus no density vetor (r

0

; r

1

; r

2

) inside the

triangle with verties

1

p

2

(1; 1; 0);

1

p

2

(1; 0; 1);

1

p

2

(0; 1; 1) an be obtained as a

limit. In partiular, regular words where the letters have about equal densities

annot be the limit words of Rauzy extensions.

A further elaboration of the onvexity argument would lead to the onlusion

that the limit values ~r of towers of Rauzy extensions have the shape of a

Sierpinski triangle fratal.

If we onsider basi extension steps, then the situation is entirely di�erent.

Suppose that we apply an in�nite sequene of basi extension steps fS

i

n

;j

n

g

n�1

to the usual starting position. It is lear that any possible limit density vetor

~r = (r

0

; r

1

; � � � ; r

k

) of a regular word satis�es r

0

+ r

1

+ � � � + r

k

= 1 and has

nonnegative oeÆients. It is therefore in the onvex hull of ~e

0

= ~

(0)

0

; � � � ; ~e

k

=

~

(0)

k

. Suppose that after n extension steps (D(n))

�1

the vetor ~r

(n)

is in the

onvex hull of the olumn vetors (D

(n)

)

�1

~

(n)

0

; (D

(n)

)

�1

~

(n)

1

; � � � ; (D

(n)

)

�1

~

(n)

k

.

Then applying M

i;j

(= M

i

n

;j

n

), the olumn vetor ~

(n)

i

is replaed with the

vetor ~

(n)

i

+ ~

(n)

j

and the other olumn vetors are unhanged. If ~r is not in

the onvex hull of the vetors

~

(n)

0

D

(n)

; � � � ;

~

(n)

i�1

D

(n)

;

~

(n)

i

+ ~

(n)

j

D

(n)

;

~

(n)

i+1

D

(n)

; � � � ;

~

(n)

k

D

(n)

;

then it is in the onvex hull of the vetors

~

(n)

0

D

(n)

; � � � ;

~

(n)

j�1

D

(n)

;

~

(n)

i

+ ~

(n)

j

D

(n)

;

~

(n)

j+1

D

(n)

; � � � ;

~

(n)

k

D

(n)

:

Thus by replaing S

i

n+1

;j

n+1

with S

j

n+1

;i

n+1

if neessary, we keep ~r in the onvex

hull of the olumn vetors. Doing so indutively we an guarantee that start-

ing with any sequene of extensions steps (S

i

n

;j

n

)

n�1

and making appropriate

interhanges of i's and j's, the vetor ~r is in the intersetion of the onvex

27



hulls of (D

(n)

)

�1

~

(n)

0

; (D

(n)

)

�1

~

(n)

1

; � � � ; (D

(n)

)

�1

~

(n)

k

taken over all n. In parti-

ular, if the intersetion onsists of one point (r

0

; r

1

; � � � ; r

k

) and r

0

; r

1

; � � � ; r

k

are linearly independent over the rationals, then the limit word exists and is

a homogeneous Sturmian word.
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