
ON THE THREE DISTANCE THEOREM
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Introduction

The three-distance theorem states that if one picks a real number α and
a natural integer n, then the ordered sequence whose elements are the frac-
tional parts of the points 0, α, 2α, · · · , (n − 1)α, together with 1, partition
the unit interval [0, 1] into successive intervals which have at most three dif-
ferent lengths. Moreover (icing on the cake), if there are three lengths, then
the longest one is the sum of the two others.

This beautiful theorem was conjectured by Steinhaus, and first proved in
1958 by Sós [S5́8], Surányi [Suŕ58] and Świerczkowski [Ś59], and then by
Slater [Sla64] and Halton [Hal65]. See also [AB98, vR88, Sla67, Lan91] for
more on the subject.

One richness of the three-distance theorem is that it is at the same time
a combinatorial, arithmetical and dynamical statement. This is reflected
both in the variety of its proofs and of its generalizations. Arithmetically,
this theorem has to do with the approximation of irrational numbers by
rational ones, based on the approximation properties of the intermediate
partial convergents in the continued fraction expansion of α. Dynamically,
this theorem can be interpreted in terms of lattices; see for instance [MS17]
which relies on homogeneous dynamics and on the properties of the space
of two-dimensional Euclidean lattices.

The aim of the present paper is to combine the combinatorial and dy-
namical viewpoints by focusing on the finite words that encode the suc-
cessive lengths. Note that such a combination has culminated in re-
cent higher-dimensional generalizations such as developed in the papers
[BK18, HM17, HM22].

The three-distance theorem

Let α be a real number. We denote by {α} its fractional part; in other
words, it is α mod 1. Let n be a positive integer. According to the three-
distance theorem, the successive intervals of [0, 1] obtained by placing the
points of the reordered sequence {iα}, i = 0, . . . , n − 1, together with 1,
have at most three different lengths, and if there are three lengths, then the
longest one is the sum of the two others. We use the term distances for
these lengths in order to avoid any confusion with the lengths of the many
intervals which will occur in the article.
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Let us see an example illustrated in Figure 1, where the points are
represented on a circle instead of the segment [0, 1], since they are nat-
urally points of R/Z. Take α = 5/22 and n = 7. Multiplying every-
thing by 22, we replace [0, 1] by [0, 22], and we consider the multiples 5i
of 5 modulo 22, for i = 0, . . . , 6, which are 0, 5, 10, 15, 20, 3, 8, and we or-
der them, this gives 0, 3, 5, 8, 10, 15, 20. The successive intervals of [0, 22]
thus obtained are [0, 3], [3, 5], [5, 8], [8, 10], [10, 15], [15, 20], [20, 22], of succes-
sive lengths 3, 2, 3, 2, 5, 5, 2.
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Figure 1. An illustration of the three-distance theorem,
with α = 5/22 and n = 7 where the three lengths are en-
coded by the letters a, b, c. Its associated permutation in its
cycle form is σ = (0, 5, 1, 6, 2, 3, 4).

Our task now will be to show that the sequence of lengths of the successive
intervals, described above, form a word which belongs to a very special class
of words, namely word encodings of three-interval exchanges, equivalently
perfectly clustering words.

For the example considered above, the word is acacbbc, where the length
of the interval starting at 0 is coded by the letter a, the longest one by b
and the remaining one by c (see Figure 1).

We consider α either irrational, or rational, but in this latter case, to avoid
repetitions in the sequence {iα}, one makes the hypothesis that n is smaller
than the smallest positive denominator of α. Thus, one obtains n successive
intervals when considering the points 0, {α}, {2α}, · · · , {(n− 1)α}, together
with 1. We will now work on the unit interval rather than on the unit circle
such as depicted in Figure 1. This will be in line with the permutations that
we will consider.

Denote by 0 = x0 < x1 < · · · < xn−1 the numbers iα mod 1 reordered
(with 0 ≤ i ≤ n− 1); let xn = 1. We also define, for 0 ≤ i ≤ n− 1, ki as the
unique integer in

[[n]] = {0, 1, . . . , n− 1}
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such that kiα ≡ xi modulo 1. Its uniqueness comes either from the fact
that α is irrational, or from the assumption that n is smaller than the
smallest positive denominator of α. Our aim will be to express the successor
map which sends a point kiα to its right neighbour, that is, it maps xi
to xi+1. We will describe this map explicitly as a permutation σ of [[n]]
defined by ki 7→ ki+1. For the example of Figure 1, the permutation is
σ = (0, 5, 1, 6, 2, 3, 4) in its cycle form.

Circular symmetric discrete interval exchanges and their
word encoding

Let n ≥ 1. Let (c1, . . . , c`) be a composition of n, that is, an `-tuple
of natural integers whose sum is n (for convenience, we allow 0’s in the
composition). We decompose in two ways the interval [[n]] = {0, 1, 2, . . . , n−
1} into intervals: the intervals I1, . . . , I` (resp. J1, . . . , J`) are defined by
the condition that they are consecutive and that | Ij |= cj (resp. | Jh |=
c`+1−h). Denote by Sn the group of permutations of [[n]]. We define the
permutation σ ∈ Sn by the condition that it sends increasingly each interval
Ih onto the interval J`+1−h. We call such a permutation a symmetric discrete
interval exchange1, and it will be said to be associated with the composition
(c1, . . . , c`).

A symmetric discrete interval exchange may be equivalently defined by
using local translations. The permutation σ acts indeed on [[n]] as a discrete
version of an interval exchange (see e.g. [FZ13]) as described now.

We do it for three intervals. So let ` = 3 and (c1, c2, c3) the composition,
with c1 + c2 + c3 = n. Then the permutation σ is defined by

(1) σ(i) =


i+ c2 + c3 if i ∈ I1 = {0, . . . , c1 − 1}
i+ c3 − c1 if i ∈ I2 = {c1, . . . , c1 + c2 − 1}
i− c1 − c2 if i ∈ I3 = {c1 + c2, . . . , n− 1}

As an example, consider the 3-tuple (2, 2, 3). The intervals I1, I2, I3 are
{0, 1}, {2, 3}, {4, 5, 6} and the intervals J1, J2, J3 are {0, 1, 2}, {3, 4}, {5, 6};
σ sends increasingly {0, 1} onto {5, 6}, {2, 3} onto {3, 4}, and {4, 5, 6} onto
{0, 1, 2}, thus

σ =

(
0 1 2 3 4 5 6
5 6 3 4 0 1 2

)
and its cycle form is (0, 5, 1, 6, 2, 3, 4). Observe that it corresponds to the
permutation of our example from Figure 1.

We say that the permutation σ is circular if it has only one cycle. The
previous example is circular. Note that it is proved by Pak and Redlich that
the probability that a given symmetric discrete exchange of three intervals
in Sn is circular tends to 1/ζ(2) = 6/π2 when n tends to ∞ [PR08].

Let us return to the general case. For a circular symmetric exchange
σ of ` intervals, we define its word encoding as follows: with the previous
notation, let {a1 < · · · < a`} be a totally ordered alphabet; let σ in cycle

1The word “symmetric” refers to the fact that the intervals are exchanged according
to the central symmetry of the set {1, 2, . . . , `}, that is, the mapping h 7→ `+ 1− h.
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form be (0, k1, . . . , kn−1); replace in the word 0k1 · · · kn−1 each digit k by aj
if k ∈ Ij .

In the example, with the alphabet {a < b < c}, we obtain acacbbc as the
encoding word. We see that this word is the same word as the one from the
example of Figure 1. This will be explained in the next section.

A theorem

Consider n successive closed intervals of [0, 1], whose union is [0, 1], as
those considered in the three-distance theorem. Call distances the lengths
of these intervals. Suppose that there are two or three distances, with the
condition that in the latter case, the leftmost interval is not the longest
one. We define the distance encoding as the word on the alphabet {a, b, c},
obtained by replacing from left to right the distances as follows: if there
are three distances, code the leftmost distance (the length of the interval
starting at 0) by a, the longest distance by b, and the other one by c. If
there are two distances, code the leftmost by a and the other by c.

Theorem 1. Take a nonzero real number α and a natural integer n ≥ 1
as explained before, that is, if α is rational, then n is smaller than the
smallest positive denominator of α. Suppose that there are three distances
for the successive intervals of [0, 1] obtained by placing the points of the
reordered sequence {iα}, i = 0, . . . , n−1, together with 1. Then the leftmost
interval is not the longest one. The distance encoding of these intervals is
the word encoding of some circular symmetric exchange of three intervals on
the alphabet {a < b < c}.

Theorem 1 is essentially [Tah17, Theorem 2] but we provide here a purely
combinatorial proof. We prove this theorem in the next section, first when α
is rational, then we deduce it for irrational α by a compacity argument, or, in
combinatorial terms, by applying the pigeonhole principle. As a byproduct,
we obtain a new proof of the three distance theorem; this will be seen in the
course of the proof.

We first give an idea of the proof by continuing our running exam-
ple, with α = 5/22, n = 7, where we multiply everything by N =
22 as explained above: we replace [0, 1] by [0, 22] and we consider the
multiples 5i of 5 modulo 22, for i = 0, · · · , 6. See also Figure 1 for
an illustration. We found that the 7 successive intervals of [0, 22] are
[0, 3], [3, 5], [5, 8], [8, 10], [10, 15], [15, 20], [20, 22], with sequence of lengths

3, 2, 3, 2, 5, 5, 2.

Indeed, the seven first multiples of 5 modulo 22 are

0, 5, 10, 15, 20, 3, 8, and reordered, they are 0, 3, 5, 8, 10, 15, 20.

We now list all numbers from 0 to 21 (that is, all numbers modulo 22),
and put in boldface the previous list:

(0, 1, 2,3, 4,5, 6, 7,8, 9,10, 11, 12, 13, 14,15, 16, 17, 18, 19,20, 21).

This emphasizes the distances, which are the gap-lengths determined by the
boldfaced elements. Note that the inverse modulo 22 of 5 is 9. Multiplying
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modulo 22 everything by 9, we obtain

(0, 9, 18,5, 14,1, 10, 19,6, 15,2, 11, 20, 7, 16,3, 12, 21, 8, 17,4, 13).

Multiplying by 9 allows one to consider elements of [[N ]] and [[n]] as acting
as multiples of α, i.e., with the previous notation, to shift from xi = kiα to
ki. We now consider this sequence as a circular permutation ω; this map is
nothing else than the addition by 9 modulo 22. Now the boldfaced elements
refer to the sequence (ki) such that the elements kiα occur successively in
[0, 1].

Let us now “induce” ω with respect to [[7]], by considering σ the cyclic
restriction of ω to [[7]], that is, the permutation obtained by removing in the
cycle ω all elements which are not in [[7]]. Then

σ = (0, 5, 1, 6, 2, 3, 4).

It turns out that σ is a discrete exchange of three intervals; indeed, it is
the permutation σ of our running example. Moreover, the three distances
(that is, the lengths of the runs) are the numbers s(i), i = 0, . . . , 6, where
s(i) is the smallest exponent s such that ωs(i) ∈ {0, 1, 2, 3, 4, 5, 6}. In other
words, the three distances are the return times of the addition by 9 modulo
22.

We see that the word-encoding of σ is acacbbc, which corresponds precisely
to the sequence of distances 3, 2, 3, 2, 5, 5, 2. Note that any irrational number
close enough to 5/22 gives the same permutation and the same word. We
have chosen to give here an example with α rational since it allows integer
computations.

Proof of the theorem

The proof is divided into three parts, denoted A, B, C. In Part A, we
define formally cyclic restrictions and their basic properties. In Part B, we
treat the case of α rational, and α irrational is treated in Part C. A lemma
used in the proof is given at the end of the section.

A.1. We begin by defining formally the cyclic restriction of a permuta-
tion. Given any permutation ω ∈ SN , and any n, 0 ≤ n ≤ N − 1, we define
the cyclic restriction σ of ω to [[n]]: it is defined by taking a cyclic represen-
tation of ω and removing there all elements ≥ n (this construction does not
depend on the chosen cyclic representation) Clearly, this does not increase
the number of cycles of ω, and if ω is circular, so is σ.

2. For i = 0, . . . , n−1, let s(i) denote the smallest positive exponent such

that ωs(i)(i) ∈ [[n]]. This exponent exists by the definition of σ. Then one
has

σ(i) = ωs(i)(i) for any i = 0, . . . , n− 1.

B. We first prove the theorem in the case where α is rational. Write
α = r/N , in reduced form. Since the computations are modulo 1, we may
assume that α ∈ [0, 1); then r < N , and we also have n < N by the
hypothesis.

1. As was illustrated in the running example, we multiply everything by
N : instead of considering the sequence iα mod 1, i = 0, . . . , n − 1 in [0, 1],
we consider the sequence ir mod N in [0, N ], together with the number N ,
and we obtain n intervals of [0, N ]. Reordering this sequence, we denote
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the new sequence by xj , j = 0, . . . , n − 1; we define kj ∈ [[n]] as the unique
number in [[N ]] such that xj ≡ kjr mod N . We also let xn = N . Then the
distances in the theorem are the numbers xi+1 − xi, i = 0, . . . , n− 1.

2. Let q ∈ [[N ]] be the inverse of r modulo N . We define a permutation
ω ∈ SN : it is the addition by q modulo N . Thus one has

ωi(0) ≡ qi

modulo N , for all i.
We see that ω is a circular symmetric exchange of two intervals in SN .

Indeed, ω sends the interval {0, . . . , N − q − 1} (resp. {N − q, . . . , N − 1})
increasingly onto the interval {q, . . . , N − 1} (resp {0, . . . , q − 1}). Thus ω
is associated with the composition (N − q, q).

3. We let σ denote the cyclic restriction of ω to [[n]] and show that

xi = rσi(0) for any i = 0, . . . , n− 1.

Note indeed that the sequence xi, i = 0, . . . , n − 1 is increasing, and that
the underlying set of this sequence is {ir, i = 0, . . . , n− 1}, where the com-
putations are modulo N . Moreover, these two properties characterize the
sequence.

Hence it is enough to show that the sequence rσi(0), i = 0, . . . , n− 1 has
these two properties.

By definition of σ, its cycle form (0, σ(0), . . . , σn−1(0)) is obtained from
the cycle form (0, ω(0), . . . , ωN−1(0)) of ω by removing in the latter the ele-
ments ωi(0) satisfying n ≤ ωi(0), i = 0, . . . , N−1. Hence the sequence σi(0),
i = 0, . . . , n− 1, is a subsequence of the sequence ωi(0), i = 0, . . . , N − 1. It
follows that the sequence rσi(0) mod N , i = 0, . . . , n−1, is a subsequence of
rωi(0) mod N , i = 0, . . . , N−1. But rωi(0) ≡ riq ≡ i mod N , since q is the
inverse of r modulo N ; hence the sequence rσi(0) mod N , i = 0, . . . , n− 1,
is a subsequence of 0, 1, . . . , N−1, and it is therefore an increasing sequence,
which proves the first property.

Now, the set of numbers σi(0), i = 0, . . . , n− 1, coincides with [[n]]; hence
{rσi(0) mod N, i = 0, . . . , n − 1} = {jr modN, j = 0, . . . , n − 1}, which
proves the second property.

4. For the argument below, it is useful to have the following definition:
let a0, a1, . . . , aN−1 be a sequence with subsequence b0, b1, . . . , bn−1, with
a0 = b0. Call gap each subsequence bj = ai, ai+1, . . . , ak−1, where ak = bj+1,
or k = N in the case where j = n− 1. We call gap-length the length of this
latter subsequence.

We know that the distances in the theorem are the numbers xi+1 − xi,
i = 0, . . . , n − 1. In other words, they are the gap-lengths determined
by the subsequence 0 = x0, x1, . . . , xn−1 of the sequence 0, 1, . . . , N − 1.
Since xi = rσi(0), we see, by multiplying by q modulo N , that these gap-
lengths are identical for the subsequence of 0, σ(0), . . . , σn−1(0) of the se-
quence 0, ω(0), . . . , ωN−1(0). Hence, the sequence of these gap-lengths is
s(σi(0)), i = 0, . . . , n − 1 (with s defined in A.2.), which is therefore the
sequence of distances.

5. We now claim that σ is a circular symmetric discrete exchange of two
or three intervals. The claim will follow from Lemma 2 given after the proof.
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Let (c1, c2, c3) be the composition corresponding to σ, with c1, c3 > 0, and
c2 ≥ 0 (the case c2 = 0 corresponding to the case where σ is an exchange
of two intervals). As done in our running example, we let be I1, I2, I3 the
successive intervals of [[n]] of length c1, c2, c3. We then have (1).

Since σ(i) = ωs(i)(i) by A.2., we have σ(i) ≡ i + s(i)q mod N . Since q
is relatively prime to N , we obtain that if i ∈ I1, s(i) is the unique solution
in [[N ]] of s(i)q ≡ c2 + c3 mod N . Precisely, s(i) ≡ r(c2 + c3) mod N by
(1), which, together with the condition s(i) ∈ [[N ]] completely determines
s(i) for i ∈ I1. Similarly, if i ∈ I2, s(i) ≡ r(c3 − c1) mod N , and if i ∈ I3,
s(i) ≡ −r(c1 + c2).

Hence s takes at most three values, and there are at most three interval
lengths. This proves the three distance theorem for α rational.

6. We now use the hypothesis of Theorem 1, namely that there are
exactly three distances. Thus s takes three values, and we let denote them
by s(i) = s1, s2, s3 for i ∈ I1, I2, I3 respectively. Then modulo N one has
s1 + s3 − s2 ≡ r(c2 + c3 − c1 − c2 − c3 + c1) = 0. Since s1 + s2 + s3 < N , we
must have s2 = s1 + s3. In particular, the maximum of s1, s2, s3 is s2.

The sequence of distances is s(σi(0)), i = 0, . . . , n − 1. Since 0 ∈ I1, its
first element s(0) = s1 is not the maximum of the distances, which proves
the first assertion. Moreover, since σi(0) ∈ Ij ⇔ s(σi(0)) = sj , the word
encoding of σ is the word corresponding to the sequence of distances.

C. Suppose now that α is any irrational real number. Let (αk) for k =
0, 1, 2, . . ., be a sequence of rational numbers whose limit is α (in what follows
the limit will be always for k → ∞). We may assume that the smallest
denominators of the αk are all larger then n. For any i = 0, . . . , n − 1, the
limit of iαk mod 1 is iα mod 1 (this is clear for i = 0, and for i 6= 0, iα
is not an integer since α is irrational, so that there is some neighbourhood
of iα where the the function bxc is constant, and where the function x
mod 1 = x−bxc is therefore continuous). It follows that for k large enough,
the relative order of the numbers iαk mod 1, i = 0, . . . , n−1, is the same as
the relative order of the numbers iα, i = 0, . . . , n− 1. Thus, the sequence of
distances in [0, 1] determined by the numbers iαk mod 1, i = 0, . . . , n − 1,
tends to the sequence of distances in [0, 1] determined by the numbers iα
mod 1, i = 0, . . . , n− 1.

To each such sequence, we associate its distance encoding, as done pre-
viously. There are finitely many distinct encodings, since they are are of
length n. Thus we may assume, by taking a subsequence of the αk, that the
distance encoding is the same for any k.

Note that an equality of distances for αk will pass to the limit; this implies
that there are no more distances for α than for αk.

We obtain that there are at most three distances for α, since this is true
for the rational numbers αk, and this proves the three distance theorem for
α irrational.

We assume now that there are exactly three distances for α. Since there
are no more than three distances for the αk, there must be exactly three,
and the distance encoding of α is the same as the one of each αk; it is the
word encoding of some discrete exchange of three intervals, by the first part
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of the proof. Moreover, the longest distance for αk is the sum of the two
others, and this passes to the limit too. This ends the proof of the theorem.

It only remains to prove the following lemma.

Lemma 2. Let ω ∈ SN be a circular discrete exchange of two intervals,
associated with the composition (p, q) with N = p + q. Then its cyclic re-
striction to any [[n]], n < N , is a circular discrete exchange of two or three
intervals.

Proof. Since ω is circular, σ is circular too, as was noted in A.1. For the
same reason, p, q are relatively prime; in particular p 6= q.

Suppose first that p < q. Assume that q < n < N . Then it is read-
ily verified that σ sends increasingly the intervals {0, . . . , n − q − 1}, {n −
q, . . . , p−1}, {p, . . . , n−1} respectively onto the intervals {q, . . . , n−1}, {n−
p, . . . , q − 1}, {0, . . . , n − p − 1}; hence σ is a circular discrete exchange of
three intervals associated with the composition (n− q,N −n, n− p) of n. If
n = q, then σ sends increasingly the intervals {1, . . . , p − 1}, {p, . . . , n − 1}
respectively onto the intervals {n− p, . . . , n− 1}, {0, . . . , n− p− 1}; hence σ
a circular discrete exchange of two intervals associated with the composition
(p, n− p) of n. Now, if n < q, σ is the cyclic restriction to [[n]] of ω′, where
ω′ is the cyclic restriction of ω to [[q]]; by the previous argument, ω′ is a
circular discrete exchange of two intervals, so that by induction on N , σ is
a circular discrete exchange of two or three intervals. The case where p > q
is similar. �

A dynamical viewpoint

Let us revisit the previous notions in dynamical terms by considering
the dynamical system (with discrete time) acting on [[n]] defined by the
permutation σ. Dynamical systems describe the evolution of systems over
time. A discrete time dynamical system (X,T ) consists of a phase space X
and a map T that acts on it and that governs the discrete time evolution of
elements in X. We then consider the orbits (x, T (x), T 2(x), · · · , Tn(x), · · · )
of elements of x. Usually the space X is a compact metric space endowed
with some probability measure and ergodic theory allows the description of
the long-range statistical behaviour of ergodic dynamical systems (see for
instance [VO16]).

We consider here maps (permutations) acting on finite sets. In fact we
work with the dynamical system ([[n]], σ), where σ is a discrete interval
exchange. Our tools were purely combinatorial. However they have contin-
uous and dynamical counterparts when expressed in terms of (continuous)
interval exchange transformations. Such dynamical systems generalise circle
rotation, i.e., maps of the form x 7→ x+ α modulo 1. For interval exchange
transformations, the phase space X is the unit interval [0, 1], divided into a
finite number of subintervals, and the transformation T acts by translation,
by permuting these subintervals. When working with the dynamical system
([[n]], σ), the word encoding is an `-letter word of length n that codes the or-
bit of 0 under the action of the map σ with respect to the partition of [[n]] by
the intervals (Ij)j=1,...,`. Circularity, i.e., the fact that the orbit {0, σ(0), · · · }
of 0 visits every element of [[n]] corresponds to the classical notion of min-
imality in the continuous setting. The cyclic restriction σ of ω to [[n]] is a
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first return map: ω acts on [[N ]] and σ is the permutation encoding the fist
returns of ω to the subset [[n]]; Lemma 2 is then a discrete reformulation of
a classical statement on the induction (that is, on specific choices of first
return maps) for continuous interval exchanges; see e.g. [Rau79]. Note that
induction is a basic tool in the study of interval exchanges which general-
izes the Euclidean algorithm and continued fractions. The study of interval
exchanges is a particularly active and rich subject, which arises e.g. when
studying polygonal billiards and translation surfaces, such as illustrated by
the survey [Yo10].

Perfectly clustering words

We have seen with Theorem 1 that the words encoding the successive
lengths have a description in terms of circular symmetric discrete interval
exchanges. In this final section, we give without proof a further remarkable
characterization of the word encodings of circular symmetric discrete interval
exchanges. For more on this relation, see [FZ13].

The Burrows-Wheeler transform is a mapping BW from words onto words
(of the same length), defined as follows: let v be a word on a totally ordered
alphabet. Consider the matrix whose rows are the conjugates2 of v, ordered
lexicographically, with the smallest in the first row (each entry of the matrix
is a letter). Then BW (v) is the word read on the last column of this matrix
from the first row to the last. This transform has been widely studied, in
particular in information theory for data and text compression.

A word is called perfectly clustering if its image under BW is a decreasing
word. Take as an example the word acacbbc of the previous sections, on the
ordered alphabet {a < b < c}. Its Burrows-Wheeler matrix is

a c a c b b c
a c b b c a c
b b c a c a c
b c a c a c b
c a c a c b b
c a c b b c a
c b b c a c a

Thus BW (acacbbc) = cccbbaa and acacbbc is therefore perfectly clustering.
One recognizes here the interval exchange of our running example when
comparing the first and the last columns of the Burrows-Wheeler matrix.

Perfectly clustering words have a further beautiful description. We first
need a definition. A word w is a Lyndon word if for each proper factorization
w = uv, w is smaller that vu for the lexicographical order; equivalently, w of
length n is a Lyndon word w if and only if it is the first row of its Burrow-
Wheeler matrix, and if the latter has n rows. For more on Lyndon words,
see e.g. [L02] or [REU19]. We now can relate perfectly clustering words and
word encodings of interval exchanges.

Theorem 3. A Lyndon word is perfectly clustering if and only if it is the
word encoding of some circular symmetric discrete interval exchange.

2Two words are conjugate if they may be written uw and wu, for some words u,w; for
example acacbbc and cbbcaca are conjugate.
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This theorem is essentially due to Ferenczi and Zamboni [FZ13] (the case
of a two-letter alphabet was proved earlier by Mantaci, Restivo and Sciortino
[MRS01]); see [BR23] for a direct proof.

Thus the distance encoding word in Theorem 1 is a perfectly clustering
Lyndon word.
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Email address: Reutenauer.Christophe@uqam.ca


	Introduction
	The three-distance theorem
	Circular symmetric discrete interval exchanges and their word encoding
	A theorem
	Proof of the theorem
	A dynamical viewpoint
	Perfectly clustering words
	References

