
Timed Regular Expressions

Eugene Asarin Paul Caspi Oded Maler∗

November 29, 2001

Abstract

In this paper we define timed regular expressions, a formalism for specifying discrete behav-
iors augmented with timing information, and prove that its expressive power is equivalent to the
timed automata of Alur and Dill. This result is the timed analogue of Kleene Theorem and, simi-
larly to that result, the hard part in the proof is the translation from automata to expressions. This
result is extended from finite to infinite (in the sense of Büchi) behaviors. In addition to these
fundamental results, we give a clean algebraic framework for two commonly-accepted formalism
for timed behaviors, time-event sequences and piecewise-constant signals.

1 Introduction

The theory of automata, by now about half a century old, constitutes the foundation for many branches
in Computer Science. In essence, it is a theory about sequences of discrete events occurring one after
the other and about formalisms for describing sets of such sequences, most notably by finite-state
transition systems (automata) that generate or accept them. Since automata can model computer
programs, digital circuits and many other discrete-event dynamical systems, they can be used for
simulation, verification and synthesis of such systems.

Classical automata theory deals only with a qualitative notion of time: a sequence of events
specifies the ordering of their occurrence times, but not the distance between them in terms of “real”
time. While this level of abstraction has proven to be very useful for the analysis of certain systems,
many application domains require more detailed models that include timing information. For example,
we might want to refine a specification of the form “every a is followed by b” into “every a is followed
by b within 5 seconds”. Likewise, we might want to augment automaton models of systems with
information concerning the time it takes to complete a transition. To this end a timed theory of
automata and sequential behaviors needs to be developed, in which timed extensions of the ingredients
of the classical theory can be investigated.

Timed automata [AD94], automata equipped with clocks, have been studied extensively in recent
years as they provide a rigorous model for reasoning about quantitative time. Together with other for-
malisms such as real-time logics, real-time process algebras and timed Petri nets, they constitute an
underlying theoretical basis for the specification and verification of real-time systems. The main at-
traction of timed automata is due to their suitability for modeling certain time-dependent phenomena,
and the decidability of their reachability (or empty language) problem, a fact that has been exploited
in several verification tools, e.g. Kronos [Yov97] and Uppaal [LPY97].

∗VERIMAG, Centre Equation, 2 av. de Vignate 38610, Gières, France, Eugene.Asarin, Paul.Caspi,

Oded.Maler@imag.fr

1

On the theoretical front, however, the results are somewhat less satisfactory. The classical theory
of automata is extremely simple and elegant. It establishes, for example, that the expressive power
of finite automata is equivalent to that of a plethora of other formalisms such as regular expressions,
monadic second-order logic, linear language equations, rational formal series, finite monoids as well
as sequential digital circuits. Almost none of these facts has been proven for the general class of timed
automata.1

In this paper we try to follow the spirit of [Tra95], where a call was formulated to “lift” the classical
results of automata theory to deal with timed automata. We investigate a timed version of one of
the cornerstones of the classical theory, namely Kleene Theorem, which states that the recognizable
sets (those accepted by finite non-deterministic automata) are exactly the regular (or rational) sets
(those definable by regular expressions). An infinitary version of this theorem shows that regular
sets of infinite sequences are exactly those recognized by Büchi ω-automata [Büc60, McN66]. To
prove the timed analogues of these results we define timed regular and timed ω-regular expressions
and show that they denote exactly what timed automata can recognize. As in the classical theorem
one direction, the construction of automata from expressions, is rather straightforward, while the
proof of the other direction, from automata to expressions, is much more involved. In order to match
the expressive power of timed automata we use expressions that employ, in addition to the standard
operators and a time-specific operator, two additional constructs, namely, intersection and renaming.
In the preliminary version of this paper [ACM97] we have proved the necessity of intersection and
conjectured the necessity of renaming — a fact proved later by Ph. Herrmann [Her99]. The idea of
using regular expressions to represent the behavior of hybrid systems (for which timed automata are
a special case) was developed independently by [LTJ+98] who proposed a formalism called hybrid
regular expressions, to which some very restricted classes of hybrid automata can be translated. Other
related formalisms and results by [BP99, BP01] are discussed in Section 8. The rest of the paper is
organized as follows.

Section 2 : We discuss two commonly-used models for timed behaviors, namely time-event se-
quences and piecewise-constant signals, and show how they can be obtained by combining
the free monoid (Σ∗, ·,ε) of event sequences with the commutative monoid (R+,+,0) of time
passage. This short algebraic excursion can be skipped by those who can live without it.

Section 3 : We introduce the syntax of timed regular expressions. The main novelty with respect
to classical expressions is in the use of the time restriction operator 〈ϕ〉[l,u] that restricts the
time-event sequences in ϕ to be of metric length in the interval [l,u]. Several classes of these
expressions are introduced and relations between them are explored. In particular the proof
that the special ◦ and � operators, which correspond to non-resetting automaton transitions,
can be eliminated from expressions is an important contribution to the understanding of timed
behaviors.

Section 4 : Timed automata as acceptors of sets of finite time-event sequences are defined.

Section 5 : The easy part of the timed Kleene Theorem, the transformation of expressions into timed
automata is proved.

Section 6 : In this section we prove the harder direction of the main result, the translation of timed
automata into expressions. We first remind the readers of the language equations used to prove

1In fact, already in [AD94] it was proved that the class of languages accepted by timed automata is not closed under
complementation and hence no simple logical characterization of this class exists.

2

the classical Kleene Theorem, and explain the difficulty in applying them to timed automata.
Then we prove a useful lemma, stating that any language accepted by a timed automaton can be
written as a morphic image of a finite intersection of languages accepted by one-clock timed au-
tomata. This allows us to do the rest of the proof using one-clock automata, which are relatively
simpler. The one-clock automaton is transformed into a system of quasi-linear language equa-
tions which is solved using a variant of Gaussian elimination (these equations were first defined
in [Asa98]). Collecting everything together we obtain our main result — Kleene Theorem for
timed automata.

Section 7 We move on to infinite time-event sequence, define timed ω-regular expressions and timed
ω-automata, and prove the correspondence between them (Büchi-McNaughton Theorem).

Section 8 We summarize the results and compare them with related work.

2 Monoids, Event Sequences and Signals

2.1 The Monoids Σ∗ and R+

There are two basic approaches for enriching sequential discrete behaviors with metric timing infor-
mation, one is, so to speak, event-based and the other is state-based.

• Time-event sequences: these are sequences where non-negative time durations are inserted be-
tween events. Time-event sequences allow two events to happen at the same metric time instant
(without any time passage between them) but still one after the other in the discrete sense. Time-
event sequences are equivalent to the commonly used timed traces in which a non-decreasing
sequence of time stamps is attached to an event sequence.

• Signals: similarly to sequences that can be viewed as functions from an initial segment of N

to an alphabet Σ, signals are functions from an initial segment [0,r) of the non-negative real
line R+ to Σ satisfying some additional sanity condition, e.g. [0.r) can be decomposed into a
finite number of left-closed right-open intervals such that the value of the signal is constant on
each interval. Such piecewise-constant signals are used extensively in modeling the behavior of
digital circuits and in presentation of solutions to scheduling problems.

In order to cast these objects in an algebraic framework, we need to consider the algebraic char-
acterization of their two components, discrete events and time passage, and then mix them together.

A monoid is a triple (M,�,e) where M is a set, � is an associative binary operation on M and e is
the identity element of M satisfying e�m = m�e = m for every m ∈ M. The set of all finite sequences
of elements taken from a set Σ is a monoid under the concatenation operation · and the empty word
ε is its identity element. Such a monoid is called the free monoid generated by Σ and is denoted by
(Σ∗, ·,ε), or Σ∗ for short. Note that Σ need not be finite nor countable: we can define, for example,
R∗ as the monoid of all finite sequences of real numbers. The free monoid is the primary object
for describing behaviors of discrete-event systems and its subsets are the subject matter of formal
language theory. We will sometimes write m1m2 instead of m1 �m2 or m1 ·m2.

If we express the passage of time using numbers, then the significant operation is addition: if
r1 seconds pass and then additional r2 seconds pass, the total elapsed time is r1 + r2 seconds. Sets
such as N, Q+ or R+ are monoids under addition, with 0 serving as the identity element. It is worth
mentioning that they are commutative, that is, they satisfy m1 + m2 = m2 + m1. We will concentrate
on the more general monoid (R+,+,0) for which N and Q+ are sub-monoids.

3

2.2 Mixing Monoids

We want to create a monoid, whose elements consist of an interleaving of time passages and events
(or of time passages of different sorts, when we consider signals). We use the following construction
which allows to put elements of two monoids in a sequence:

The free shuffle of two monoids (A,�a,ea) and (B,�b,eb) is the monoid M = (A�B)∗, namely the
free monoid generated by the disjoint union of both A and B. An element of M may look like this:

a1 ·a2 ·b1 · ea ·b2 ·a3 · eb ·b3 (1)

In order to obtain a canonical form, in which there is always an alternation of elements of the two
monoids, we define a congruence relation2 generated by the following equalities:

ai ·a j = ai �a a j

bi ·b j = bi �b b j

ea = eb = ε
(2)

These rules allow to replace two adjacent elements in the sequence, which come from the same
monoid, by one element, and to get rid of “dummy” identity elements. Applying these rules, we
can reduce any element of an equivalence class into a canonical form which is an alternating sequence
of elements of A and B. For example, the sequence in (1) can be reduced to

(a1 �a a2) · (b1 �b b2) ·a3 ·b3

We call ∼ the reduction congruence on (A�B)∗. The set of congruence classes of ∼, also known as
the quotient M/∼, is a monoid as well. This is a well-known construction on monoids (see [How95])
and on algebraic structures in general:

Definition 1 (Free Products of Monoids) Let (A,�a,ea) and (B,�b,eb) be two monoids. Their free
product is A�B = (A�B)∗/ ∼ where ∼ is the reduction congruence.

The properties of A � B can be described in a category-theoretic setting, where it is termed the
co-product of A and B. There are two canonical morphisms ia : A → A�B and ib : B → A�B which
insert elements of A and B respectively into A�B. Any pair of morphisms θa : A →C, and θb : B →C
to a third monoid C, induces a morphism θ = θa �θb from A�B to C (the co-product of θa and θb),
as can be visualized by the following commutative diagram:

A A�B B

C

�ia

�
θa

�

θ

� ib

�
θb

In particular, to project A�B onto A, let θa be the identity Ida : A → A and let θb be the constant
function ea : B → A which maps B to the identity element of A. This way we obtain the canonical
projection πa : A�B → A:

2A congruence is an equivalence relation ∼, which is closed under the monoid operation, that is m ∼ m′ implies m1 ·m ·
m2 ∼ m1 ·m′ ·m2 for every m1,m2 ∈ M.

4

A A�B B

A

�ia

�
Ida

�

πa

� ib

�
ea

2.3 Time-Event Sequences

Definition 2 (The Time-Event Monoid) The time-event monoid over a set Σ of events is the free
product T (Σ) = Σ∗ � R+ of the free monoid over Σ and the monoid of non-negative real numbers
under addition.

When the alphabet Σ is clear from the context we will use T instead of T (Σ). A typical element of
the free shuffle will look like:

0.7 ·a ·b ·3 ·5.4 ·ab · c ·0 ·a · ε ·5.4 ·a ·0.2

and after reduction into canonical form as:

0.7 ·ab ·8.4 ·abca ·5.4 ·a ·0.2

For completeness sake we mention that as a timed trace, this sequence (without the last term 0.2) will
be written as:

(a,0.7),(b,0.7),(a,9.1),(b,9.1),(c,9.1),(a,9.1),(a,14.5)

Time-event sequences seem to be conceptually clearer than timed traces as the same type of concate-
nation applies to events and time durations. The philosophy behind time-event sequences is the one
employed in the timed automata literature: a behavior is an alternating sequence of time passages and
of events, which occur at certain time points and consume no time. There are two natural projections
on T , one that ignores the events and one that ignores the metric information:

Definition 3 (Untime and Length) Let T = Σ∗ �R+

• The length morphism λ : T → R+ is the projection on R+ obtained by mapping elements of Σ∗

to 0.

• The untime morphism µ : T → Σ∗ is the projection on Σ∗ obtained by mapping elements of R+
to ε .

Clearly λ (u) is the duration of the time-event sequence u, while µ(u) is the sequence of all the
discrete events in u without timing information. For example:

λ (0.7 ·ab ·8.4 ·abca ·5.4 ·a ·0.2) = 14.7

and
µ(0.7 ·ab ·8.4 ·abca ·5.4 ·a ·0.2) = ababcaa.

In this paper we use T as the underlying set for timed languages on which we prove Kleene
theorem. For the sake of completeness we will formalize below the equally important and intuitive
concept of continuous-time, piecewise-constant signals. The appropriate timed automata for accepting
signals were described in [ACM97] along with a proof of their corresponding Kleene theorem.

5

2.4 Signals

The main difference between signals and time-event sequences is that in signals discrete values are
associated directly with time durations: a signal may have one value inside a time interval of length
r1, then another value for a duration of r2, etc. This motivates the idea of multi-sorted time formalized
as follows.

Definition 4 (The Signal Monoid) Let Σ be an m-element set, and let {aR+ : a ∈ Σ} be m distinct
copies of the monoid R+. The signal monoid over Σ is the free product S (Σ) = �

a∈Σ
aR+

It is convenient to use exponential notation for elements of aR+. For example, 3.2 ∈ bR+ can be
written as b3.2 and read as “b during 3.2 time units”. Using this notation, a typical element of the free
shuffle for Σ = {a,b,c} would be

a5 ·b2 ·b4.2 ·a2.5 ·b0 · c7

whose normal form after reduction is
a5 ·b6.2 ·a2.5 · c7.

Two features distinguish signals from time-event sequences:

1. Filtering of zero-duration events: with signals it is impossible to express a phenomenon such as
“the signal value was a for some time, then switched to b and then immediately to c” because of
the elimination of b0. This conforms to the usual semantic interpretation of signals as functions
from R+ to Σ, which have a unique value at every time instant.3

2. Stuttering: two consecutive elements ar and as are reduced in the normal form to ar+s. Hence,
the untiming of a signal should be a non-stuttering sequence (a sequence without two consecu-
tive occurrences of the same letter) or, equivalently, the stuttering closure of such a sequence.

In order to define the untiming of signals we need to introduce the stuttering-closed monoid generated
by Σ, which is Σ♥ = Σ∗/ ≈, where ≈ is the congruence generated by the equalities of the form

aa = a

for every a ∈ Σ. Hence, a sequence such as abac stands for the equivalence class a+b+a+c+.

Definition 5 (Untime and Length for Signals) Let S (Σ) = �
a∈Σ

aR+

• The length morphism λ : S → R+ is obtained as a co-product of m morphisms of the form
θa : aR+ → R+.

• The untime morphism µ : S → Σ♥ is obtained as a co-product of m morphisms of the form
θa : aR+ → Σ♥, which map a0 to ε and ar (with r > 0) to a.

The reader can verify that these are the intuitive meanings of length and qualitative behavior
associated with signals. For example,

λ (a5 ·b6.2 ·a2.5 · c7) = 20.7

3If zero durations are not eliminated one has to resort to constructs such as “super-dense” lexicographically ordered time
in order to maintain the notion of a behavior as a function from time to states, see, e.g. [MMP92].

6

and
µ(a5 ·b6.2 ·a2.5 · c7) = abac.

The framework of mixing monoids allows to define easily an algebraic structure for the most
general situation where both piecewise-constant behaviors and discrete events can occur in the same
system. For completeness we give a definition:

Definition 6 (Signal-Event Monoid) Let Σ1 and Σ2 be finite sets (signal alphabet and events alpha-
bet). Let aR+,a ∈ Σ1 be distinct copies of the monoid R+. The signal-events monoid over Σ1,Σ2 is the
free product ST (Σ1,Σ2) = �

a∈Σ1
aR+ �Σ∗

2.

For example, for Σ1 = {a,b,c} and Σ2 = {x,y,z} typical element of the signal-event monoid would be

a5 · xy ·b6.2 ·a2.5 · z · c7 · y.

2.5 Timed Languages and Operations

From now on we restrict ourselves to the monoid T of time-event sequences and its subsets which we
call timed languages. We denote the concatenation operation by ·, and define an additional concatena-
tion operation, specific to timed languages. Before introducing the syntax we need some preliminary
definitions.

Definition 7 (Left Derivative) For every two sequences u and v the left derivative of u by v is a
partial function defined as:

v\u =
{

w if ∃w u = vw
⊥ otherwise

In other words, v\u is defined if v is a prefix of u, and in that case v is removed.

Definition 8 (Absorbing Concatenation) The partial operator ◦ on T is defined as:

u◦ v = u · (λ (u)\v)

that is, u◦ v is defined only if v starts with a time duration of at least λ (u), and in that case λ (u) time
is removed from the front of v before concatenation.

For example, (a · 5 · b) ◦ (3 · c) = ⊥ and (a · 5 · b) ◦ (7 · c) = a · 5 · b · 2 · c. Note that λ (u ◦ v) = λ (v)
whenever u ◦ v is defined. The ◦ operation is motivated, as we shall see later, by timed automaton
transitions that do not reset a clock. This operation, similarly to concatenation, can be extended to
an operation on timed languages by letting L1 ◦ L2 = {u ◦ v : u ∈ L1 ∧ v ∈ L2}. Figure 1 illustrates
absorbing concatenation in comparison with the standard one.

In order to prove that languages accepted by timed automata can be expressed using timed regular
expressions, we will need sometimes to split the alphabet of the automaton, define the expression on
the extended alphabet and than map it back to the original alphabet using the following operation.

Definition 9 (Renaming) Let Σ1 and Σ2 be two alphabets. A renaming from Σ1 to Σ2 is a function
θ : Σ1 → Σ2∪{ε}. We will use the same symbol for the natural extensions of θ to sequences, θ : Σ∗

1 →
Σ∗

2, and time-event sequences, θ : (Σ∗
1 �R+) → (Σ∗

2 �R+) .

7

w1

w2

w1 ◦w2

w1 ·w2

Figure 1: Two concatenation operations.

3 Timed Regular Expressions

An integer-bounded interval is either [l,u], (l,u], [l,u), or (l,u) where l ∈ N and u ∈ N∪{∞} such
that l ≤ u. We exclude ∞] and use l for [l, l]. In the following definition we introduce several classes
of regular expressions, each using another subset of the expression formation rules.

Definition 10 (Timed Regular Expressions) Timed regular expressions over an alphabet Σ (also re-
ferred to as Σ-expressions) are defined using the following families of rules.

1. a for every letter a ∈ Σ and the special symbol ε are expressions.

2. If ϕ ,ϕ1 and ϕ2 are Σ-expressions and I is an integer-bounded interval then 〈ϕ〉I , ϕ1 ·ϕ2, ϕ1∨ϕ2,
and ϕ∗ are Σ-expressions.

3. If ϕ ,ϕ1 and ϕ2 are Σ-expressions then ϕ1 ◦ϕ2, ϕ� are Σ-expressions.

4. If ϕ1 and ϕ2 are Σ-expressions, ϕ0 is a Σ0-expression for some alphabet Σ0, and θ : Σ0 →Σ∪{ε}
is a renaming, then ϕ1 ∧ϕ2 and θ(ϕ0) are Σ-expressions.

Expressions formed using rules 1 and 2 are called timed regular expressions and denoted by E (Σ).
If, in addition, rule 3 is applied we call them extended timed regular expression and denote them
by EE (Σ). Rules 1,2,4 yield generalized timed regular expressions denoted by GE (Σ). Finally, the
generalized extended expressions (GEE) are obtained using all the four rules.

The semantics of (generalized extended) timed regular expressions, [[]] : GEE (Σ) → 2T , is given by:

8

[[ε]] = {ε}
[[a]] = {r ·a : r ∈ R+}
[[〈ϕ〉I]] = [[ϕ]]∩{u : λ (u) ∈ I}
[[ϕ1 ∨ϕ2]] = [[ϕ1]]∪ [[ϕ2]]
[[ϕ1 ·ϕ2]] = [[ϕ1]] · [[ϕ2]]
[[ϕ∗]] =

⋃∞
i=0([[ϕ · · · · ·ϕ︸ ︷︷ ︸

i times

]])

[[ϕ1 ◦ϕ2]] = [[ϕ1]]◦ [[ϕ2]]
[[ϕ�]] =

⋃∞
i=0([[ϕ ◦ · · · ◦ϕ︸ ︷︷ ︸

i times

]])

[[ϕ1 ∧ϕ2]] = [[ϕ1]]∩ [[ϕ2]]
[[θ(ϕ)]] = {θ(u) : u ∈ [[ϕ]]}

The novel features here with respect to untimed regular expressions are the meaning of the atom
a which represents an arbitrary passage of time followed by an event a and the 〈ϕ〉I operator which
restricts the metric length of the time-event sequences in [[ϕ]] to be in the interval I. We will show
in the next section that the absorbing concatenation ◦ and the absorbing iteration � can always be
eliminated and hence timed regular expressions and extended timed regular expression have the same
expressive power. We call the corresponding class of languages timed regular languages. Unfortu-
nately this class does not match the expressive power of timed automata which requires both renaming
and intersection.

We will use the following shorthands:

a = 〈a〉0; ϕ+ = ϕ ·ϕ∗; ϕ⊕ = ϕ ◦ϕ�; ϕ◦i = ϕ ◦ · · · ◦ϕ︸ ︷︷ ︸
i times

Operations ∨, · and ∗ satisfy well-known properties of Kleene algebra (see [Con71]). We state some
simple additional algebraic properties involving absorbing concatenation.

Proposition 1 (Algebraic Properties of Absorbing Concatenation) The ◦ operation satisfies the fol-
lowing equalities:

• ∨-distributivity: (α ∨β)◦ γ = α ◦ γ ∨β ◦ γ and α ◦ (β ∨ γ) = α ◦β ∨α ◦ γ

• associativity: (α ◦β)◦ γ = α ◦ (β ◦ γ)

• mixed associativity: α ◦ (β · γ) = (α ◦β) · γ if β ∩R+ = /04.

The situation with mixed associativity is not as good as it could be: typically α · (β ◦ γ) �= (α ·β)◦ γ.

4The meaning of this restriction is that every u ∈ β contains at least one discrete event a ∈ Σ. It can be also written as
ε �∈ µ(β). Without this restriction we have, e.g. 5◦ (3 ·7) = 10 while (5◦3) ·7 = /0.

9

We illustrate the semantics of the expressions and some obvious properties via examples. The first
examples demonstrate the interaction between time restriction and standard concatenation. Let

ϕ1 = 〈a〉[1,2]
ϕ2 = 〈a〉[1,2] · 〈b〉[2,4]
ϕ3 = 〈a ·b〉[3,6]

The semantics of these expressions is the following:

[[ϕ1]] = {r ·a : r ∈ [1,2]}
[[ϕ2]] = {r1 ·a · r2 ·b : r1 ∈ [1,2]∧ r2 ∈ [2,4]}
[[ϕ3]] = {r1 ·a · r2 ·b : r1 + r2 ∈ [3,6]}

Expression ϕ1 allows a to occur anywhere in the [1,2] interval. Similarly ϕ2 allows b to occur
between 2 and 4 time units after the occurrence of a, while ϕ3 constrains b to occur in the interval
[3,6] and after the occurrence of a. Clearly [[ϕ2]] ⊆ [[ϕ3]].

Putting time restriction outside the Kleene star, we can express constraints involving an unbounded
number of time durations. The expression

〈a∗〉[1,2]

denotes the set

{r1 ·a · r2 ·a · · ·rk ·a : k ∈ N∧
k

∑
i=1

ri ∈ [1,2]}.

The role of intersection is to express “unbalanced parentheses” like in the expression

(〈a ·b〉3 · c)∧ (a · 〈b · c〉3)

denoting the set
{r1 ·a · r2 ·b · r3 · c : (r1 + r2 = 3)∧ (r2 + r3 = 3)}.

In [ACM97] we showed that this language, recognizable by a simple timed automaton with two clocks,
cannot be expressed without intersection (see also [Her99] for another proof).

The role of renaming in the translation from automata to expressions will be elaborated in Sec-
tion 6.2. Using the syntax we have chosen for time-event sequences, it is impossible to express
without renaming sets containing any time-event sequence which does not terminate with an event,
i.e. sequence of the form w · r such that r > 0. Using renaming it can be expressed as the image of
w · 〈a〉r where a is mapped to ε . Such time-event sequences can be expressed using a richer syntax
which allows to specify arbitrary timed durations without events (we do not use them because they
complicate other proofs). However renaming remains necessary even for such a richer syntax (and for
signals). The language

{r1 ·a · · ·rk ·a : 1 < j < k and
j

∑
i=1

ri =
k

∑
i= j

ri = 1}

over the alphabet {a} can be expressed as the image of the {a,b}-language given by the expression

〈a+ ·b〉1 ·a+∧a+ · 〈b ·a+〉1

via the morphism θ : a �→ a,b �→ a. It was proved in [Her99] that this language cannot be expressed
without renaming, although it can be recognized by a timed automaton.

10

The rest of this section is devoted to the non-standard ◦ and � operations which facilitate the
translation from automata to expressions but, as we show in the sequel, do not contribute to the
expressive power of timed regular expressions. We start with some examples.

The ◦ operation acts like standard concatenation whenever the second operand denotes a language
without a restriction on the duration of time before the first event. For example

a◦b = a ·b

On the other hand consider the expression

〈a〉[1,4] ◦ 〈b〉[2,3]

Using ◦ means that the time spent in 〈a〉[1,4] is taken into account in 〈b〉[2,3], which is equivalent to
pushing the first sub-expression inside the parentheses of the second to get the expression

〈〈a〉[1,4] ·b〉[2,3]

whose semantics is the set
{r ·a · s ·b : r ∈ [1,4]∧ r + s ∈ [2,3]}

Since r + s ≤ 3 implies r ≤ 3, this is equivalent to the expression

〈〈a〉[1,3] ·b〉[2,3]

In general, occurrences of the ◦ operation can be transformed into · by moving parentheses, however
the first time restriction of the second operand should be isolated and made explicit. In case that the
second operand starts with an iteration, the first occurrence should be pulled out from the scope of ∗,
for example:

a◦ (〈b〉5)∗ = a◦ (ε ∨〈b〉5 · (〈b〉5)∗) = a◦ ε ∨a◦ (〈b〉5 · (〈b〉5)∗) =
〈a〉0 ∨ (a◦ 〈b〉5) · (〈b〉5)∗ = 〈a〉0 ∨〈a ·b〉5 · (〈b〉5)∗

The case of � is more complicated. Consider the expression

(〈a〉[1,3])
� =

∞∨
i=0

(〈a〉[1,3])
◦i

and take one of the components of the infinite union

(〈a〉[1,3])
◦4 = 〈a〉[1,3] ◦ 〈a〉[1,3] ◦ 〈a〉[1,3] ◦ 〈a〉[1,3]

which, by pushing parentheses, can be rewritten as

〈〈〈〈a〉[1,3] ·a〉[1,3] ·a〉[1,3] ·a〉[1,3]

The corresponding semantics is

{r1 ·a · r2 ·a · r3 ·a · r4 ·a : r1 ∈ [1,3]∧
r1 + r2 ∈ [1,3]∧
r1 + r2 + r3 ∈ [1,3]∧
r1 + r2 + r3 + r4 ∈ [1,3]}

11

As one can see, the first and last inequalities imply, due to convexity, the other “internal” inequalities
and thus

(〈a〉[1,3])
◦4 = 〈〈a〉[1,3] ·a ·a ·a〉[1,3]

and, more generally
(〈a〉[1,3])

� = ε ∨〈〈a〉[1,3] ·a∗〉[1,3]

The convexity argument is the main idea behind the elimination of �. Due to the additivity of time it
is sufficient to test the length after the first occurrence (for the lower-bound) and the last occurrence
(for the upper-bound). For the occurrences in between we can apply ∗ to an “untimed” version of the
expression without worrying. The next two examples demonstrate the special role of timing bounds
appearing at the beginning of the expression under �.

Consider first the expression
(〈a〉I · 〈b〉J)�

for some intervals I and J. In this case

(〈a〉I · 〈b〉J)◦3 = (〈a〉I · 〈b〉J)◦ (〈a〉I · 〈b〉J)◦ (〈a〉I · 〈b〉J)

and by pushing parentheses we get the expression

〈〈〈a〉I · 〈b〉J ·a〉I · 〈b〉J ·a〉I · 〈b〉J

whose semantics is:

{r1 ·a · s1 ·b · r2 ·a · s2 ·b · r3 ·a · s3 ·b : r1 ∈ I∧
s1 ∈ J∧
r1 + s1 + r2 ∈ I∧
s2 ∈ J∧
r1 + s1 + r2 + s2 + r3 ∈ I∧
s3 ∈ J}

Here the convexity argument applies only to 〈a〉I and the length of each and every b should be in J:

(〈a〉I · 〈b〉J)� = ε ∨〈〈a〉I · (〈b〉J ·a)∗〉I · 〈b〉J

On the other hand, in the expression

(〈a〉I ◦ 〈b〉J)� = (〈〈a〉I ·b〉J)�

both a and b are in the scope of timing restrictions that appear at the beginning of the expression.
Taking

(〈〈a〉I ·b〉J)◦3 = (〈〈a〉I ·b〉J)◦ (〈〈a〉I ·b〉J)◦ (〈〈a〉I ·b〉J)

and pushing all the parentheses forward, we obtain

〈〈〈〈〈〈a〉I ·b〉J ·a〉I ·b〉J ·a〉I ·b〉J

The semantics of this expression is:

{r1 ·a · s1 ·b · r2 ·a · s2 ·b · r3 ·a · s3 ·b : r1 ∈ I∧
r1 + s1 ∈ J∧
r1 + s1 + r2 ∈ I∧
r1 + s1 + r2 + s2 ∈ J∧
r1 + s1 + r2 + s2 + r3 ∈ I∧
r1 + s1 + r2 + s2 + r3 + s3 ∈ J}

12

As before, only the first two and the last two inequalities are informative and the rest are redundant:

(〈〈a〉I ·b〉J)� = ε ∨〈〈a〉I ·b〉J ∨〈〈〈〈a〉I ·b〉J(ab)∗ ·a〉I ·b〉J

This is the intuition underlying the fact that ◦ and � can be eliminated altogether. The proof of this
fact will use induction on the weight of the regular expression, which, informally speaking, denotes
the number of 〈·〉I operations appearing at the “front” of the expression, i.e. in the sub-expressions
that denote the beginning of the time-event sequences in the corresponding language.

Definition 11 (Weight of a Regular Expression) The weight is a function ζ : E → N defined induc-
tively as:

ζ (a) = 0

ζ (ε) = 0

ζ (δ1 ∨δ2) = ζ (δ1)+ζ (δ2)

ζ (δ1 ·δ2) =
{

ζ (δ1)+ζ (δ2) if ε ∈ [[δ1]]
ζ (δ1) if ε �∈ [[δ1]]

ζ (δ ∗) = ζ (δ)
ζ (〈δ 〉I) = ζ (δ)+1

The rule for δ1 ∨δ2 is due to the fact that its front consists of the fronts of δ1 and δ2. If δ1 contains ε
then δ2 is part of the front of δ1 ·δ2. The rule for δ ∗ (for δ �� ε) follows from the identity δ ∗ = δ ·δ ∗∨ε .
It should be noted that the weight is a measure on the syntax and not on the semantics: 〈δ1 ∨δ2〉I has
a smaller weight than 〈δ1〉I ∨〈δ2〉I although they are equivalent.

As usual in the theory of formal languages, special attention should be paid to the membership of
ε in a given language (e.g. testing this membership is needed in order to compute the weight function).
The next lemma allows to test this membership and to remove ε when necessary without changing the
weight.

Lemma 2 (Testing and Removing ε) For a timed regular expression γ it can be effectively tested
whether or not ε ∈ [[γ]]. An expression ν(γ) such that [[ν(γ)]] = [[γ]]−{ε} can be effectively con-
structed. The operation ν preserves the weight.

Both a Boolean-valued function τ testing whether ε ∈ γ and the operator ν (removing ε) can be
defined recursively as follows.

τ(a) = 0 ν(a) = a
τ(ε) = 1 ν(ε) = /0

τ(δ1 ∨δ2) = τ(δ1)∨ τ(δ2) ν(δ1 ∨δ2) = ν(δ1)∨ν(δ2)

τ(δ1 ·δ2) = τ(δ1)∧ τ(δ2) ν(δ1 ·δ2) =
{

ν(δ1) ·δ2 ∨ν(δ2) if τ(δ1) = 1
δ1 ·δ2 if τ(δ1) = 0

τ(δ ∗
1) = 1 ν(δ ∗

1) = ν(δ1) ·δ ∗
1

τ(〈δ1〉I) = τ(δ1)∧ (0 ∈ I) ν(〈δ1〉I) = 〈ν(δ1)〉I

We leave the proof of weight-preservation to the reader.
The next result gives a characterization of expressions of weight 0 and a single weight-increasing

rule allowing to obtain any regular language. We will call expressions of the form
∨

i ai · ϕi slow
expressions — in these expressions (whose weight is zero) there is no upper-bound on the occurrence
time of the first event. An expression is ε-free if its semantics does not contain ε .

13

Lemma 3 (Special Form of Expressions)

1. Any expression of weight 0 is equivalent either to γ or to γ + ε where γ is a slow expression.

2. Any expression γ of a non-zero weight can be rewritten as

γ = 〈α〉I ·ϕ ∨β (3)

where α ,β ,ϕ ∈ E (or β is empty), α is ε-free, and ζ (γ) = ζ (α)+ζ (β)+1

In other words, this lemma says that starting from slow expressions and using only the inductive rule
(3), we can build expressions for all regular languages. The proofs of the two statements are similar
and we prove here only the second, more complicated one.

The idea of the proof is simple: since ζ (γ) > 0, γ is not atomic and there is at least one 〈〉I operator
in its front. Making this operator explicit gives the required representation. Formally, we proceed by
induction over the structure of γ , considering the following cases:

γ = δ1 ∨δ2 : Then at least one of δ1,δ2 should have a positive weight. Suppose w.l.o.g. that it is δ1.
By inductive hypothesis δ1 = 〈α1〉I ·ϕ1∨β1. Hence γ = 〈α1〉I ·ϕ1∨ (β1∨δ2) and we obtain the
required decomposition (3) with α = α1, ϕ = ϕ1 and β = β1 ∨δ2.

γ = δ1 ·δ2 : If ζ (δ1) > 0, then by inductive hypothesis δ1 = 〈α1〉I ·ϕ1 ∨β1. Then the representation

γ = 〈α1〉I · (ϕ1 ·δ2)∨ (β1 ·δ2)

has the required form (3) with α = α1, ϕ = ϕ1 ·δ2 and β = β1 ·δ2.

Otherwise if ζ (δ1) = 0, then, according to the definition of ζ (δ1 ·δ2), ε ∈ δ1 and ζ (δ2) = ζ (γ)
is positive. By inductive hypothesis δ2 = 〈α2〉I ·ϕ2∨β2. In this case the required representation
is

γ = (ε ∨ν(δ1)) ·δ2 = δ2 ∨ν(δ1) ·δ2 = 〈α2〉I ·ϕ2 ∨ (β2 ∨ν(δ1) ·δ2)

γ = δ ∗
1 : In this case ζ (δ1) = ζ (γ) is positive and by the inductive hypothesis δ1 = 〈α1〉I ·ϕ1∨β1 with
α1 ε-free. We can represent γ as follows:

γ = ν(δ1) ·δ ∗
1 ∨ ε = 〈α1〉I · (ϕ1 ·δ ∗

1)∨ (ν(β1) ·δ ∗
1 ∨ ε),

which is in the required form.

γ = 〈δ 〉I : If δ is ε-free, then γ is already in the required form with α = δ and ϕ = ε . Otherwise if
ε ∈ δ , then either γ = 〈ν(δ)〉I · ε ∨ ε or γ = 〈ν(δ)〉I · ε ∨ /0 depending on whether or not 0 ∈ I.

The reader can verify that in all the cases the equality ζ (γ) = ζ (α)+ζ (β)+1 is preserved.
The proof of elimination of absorbing concatenation and iteration proceeds by induction on the

weight of the expression. The following two lemmata establish the base case (slow expressions of
weight 0) and the inductive step.

Lemma 4 (Elimination for Slow Expressions) If γ is slow then

δ ◦ γ = δ · γ; δ ◦ (ε ∨ γ) = δ ◦ ε ∨δ ◦ γ = 〈δ 〉0 ∨δ · γ (4)

and
γ� = γ∗; (ε ∨ γ)� = γ∗ (5)

14

The inductive step in based on the following identities:

Lemma 5 (Elimination by Weight Reduction) For any three languages α ,ϕ ,β , such that α is ε-
free, and any interval I, the following equalities hold:

δ ◦ (〈α〉I ·ϕ ∨β) = 〈δ ◦α〉I ·ϕ ∨δ ◦β (6)

and

(〈α〉I ·ϕ ∨β)� = β�∨
〈β� ◦α〉I ·ϕ ◦β�∨ (7)

〈〈β� ◦α〉I ·ϕ ◦ (α ·ϕ ∨β)� ◦α〉I ·ϕ ◦β�

Equation (6) follows immediately from the definition of absorbing concatenation and from Proposition
1. The first line of equation (7) corresponds to the case when α ·ϕ never occurs in the sequence, the
second line — to the case when it occurs only once. The last line corresponds to the case when it
occurs twice or more. For this case it is sufficient to restrict to the interval I only the termination times
of the first and the last occurrences of α . By virtue of the convexity of I this guarantees that all other
occurrences of α between them also fit in this interval.

Proposition 6 (Elimination of Absorbing Concatenation and Iteration) Let M and L be regular
timed languages, i.e. defined by expressions in E . Then:

1. The language L◦M is regular.

2. The language L� is regular.

The regular expressions for these languages can be obtained algorithmically.

The proof of both facts is by induction on the weight, where the base case is covered by Lemma 4.
The inductive step for ◦ can be made as follows. Given an expression γ of a non-zero weight, we
convert it according to Lemma 3 to the form γ = 〈α〉I ·ϕ ∨β with ζ (α),ζ (β) < ζ (γ) and ε �∈ α . Now
we use the identity (6) of Lemma 5. The regularity of the right-hand follows from the inductive hy-
pothesis since both δ ◦α and δ ◦β have smaller weight. This proves the first statement of Proposition
6.

Using this proposition and Lemma 5 the inductive step for � is immediate: given an expression
γ of a non-zero weight we take its representation γ = 〈α〉I ·ϕ ∨β . Then we apply the identity (7).
Its right-hand side is regular by inductive hypothesis, since � is applied there only to expressions of
weight smaller than γ . Hence L is regular and this concludes the proof of proposition 6. Clearly,
recursive algorithms for elimination of ◦ and � can be derived from this proof.

The following result is now immediate.

Theorem 1 EE (Σ) has the same expressive power as E (Σ).

As an example let us eliminate ◦ from

δ = 〈d〉3 ◦ (〈〈a〉[1,6] ·b〉8 · c)∗

First transform the second term to the form:

(〈〈a〉[1,6] ·b〉8 · c)∗ = 〈〈a〉[1,6] ·b〉8 · c · (〈〈a〉[1,6] ·b〉8 · c)∗ ∨ ε

15

q1 q2

x1 ≥ 1/x2 := 0

true/x1,x2 := 0

Figure 2: A timed automaton.

and then compute

δ = 〈〈d〉3 ◦ (〈a〉[1,6] ·b)〉8 · c · (〈〈a〉[1,6] ·b〉8 · c)∗ ∨ 〈〈d〉3〉0

= 〈〈〈d〉3 ·a〉[1,6] ·b〉8 · c · (〈〈a〉[1,6] ·b〉8 · c)∗

An example of elimination of absorbing iteration (applied to the language of a timed automaton) can
be found at the end of Section 6.6.

4 Timed Automata and their Languages

This section introduces timed automata as recognizers of timed languages, starting with an informal
illustration of the structure and the behavior of timed automata. Consider the timed automaton of
figure 2. It has two states and two clocks x1 and x2. Suppose it starts operating in the configuration
(q1,0,0) where the last two coordinates denote the values of the clocks. When the automaton stays at
q1, the values of the clocks grow at a uniform rate. After one second, the condition x1 ≥ 1 (the guard
of the transition from q1 to q2) is satisfied and the automaton can move to q2 while resetting x2 to 0.
Having entered q2 at a configuration (q2, t,0) for some t, the automaton can either stay there or can
unconditionally move to q1 and reset the two clocks. By fixing some initial and final states, and by
assigning letters from Σ to some transitions, we can turn timed automata into generators or acceptors
of timed languages, i.e. sets of time-event sequences. The definition below is a minor modification of
the original definition in [AD94].

Definition 12 (Timed Automaton) A timed automaton is a tuple A = (Q,C,∆,Σ,s,F) where Q is a
finite set of states, C is a finite set of clocks, Σ is an input (or event) alphabet, ∆ is a transition relation
(see below), s ∈ Q an initial state and F ⊂ Q a set of accepting states.The transition relation consists
of tuples of the form (q,φ ,ρ,a,q′) where q and q′ are states, a ∈ Σ∪{ε} is a letter, ρ ⊆C and φ (the
transition guard) is a boolean combination of formulae of the form (x ∈ I) for some clock x and some
integer-bounded interval I.

A clock valuation is a function v : C → R+, or equivalently a |C|-dimensional vector over R+.
We denote the set of all clock valuations by H . A configuration of the automaton is hence a pair
(q,v) ∈ Q×H consisting of a discrete state (sometimes called “location”) and a clock valuation.
Every subset ρ ⊆ C induces a reset function Resetρ : H → H defined for every clock valuation v
and every clock variable x ∈C as

Resetρ v(x) =
{

0 if x ∈ ρ
v(x) if x �∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the other clocks unchanged. We use 1 to
denote the unit vector (1, . . . ,1) and 0 for the zero vector.

16

Definition 13 (Steps, Runs and Acceptance) A step of the automaton is one of the following:

• A discrete step:
(q,v) a−→ (q′,v′),

where a ∈ Σ∪ {ε} and there exists δ = (q,φ ,ρ,a,q′) ∈ ∆, such that v satisfies φ and v′ =
Resetρ(v).

• A time step:
(q,v) t−→ (q,v+ t1),

where t ∈ R+.

A finite run of a timed automaton is a finite sequence of steps

(q0,v0)
z1−→ (q1,v1)

z2−→ ·· · zn−→ (qn,vn).

The trace of a run is the time-event sequence z1 · z2 · · ·zn. A trivial run is just a configuration (q,v),
and its trace is ε .
An accepting run is a run starting from the initial configuration (s,0) and terminating by a discrete
step to a final state, i.e. qn ⊂ F and zn is a discrete step.
The language of a timed automaton, L(A), consists of all the traces of its accepting runs.

A slight modification of this definition is needed in order to accept signals (or signal-event se-
quences), namely to associate an element of the signal alphabet to each state of the automaton
[ACM97]. Note also that we insist on a single initial configuration, because otherwise we can have a
non-countable number of initial states and the language equations developed in Section 6 should be
parametrized by clock values and the construction becomes much more complicated.

5 From Expressions to Timed Automata

Here we prove the easy part of the timed version of Kleene Theorem, namely, every timed regular
language can be recognized by a timed automaton. Similarly to the untimed construction in [MY60],
automata are built from expressions by induction on the structure of the expression. We make this
construction in the most general settings, namely, for the class GEE , and show that an accepting
timed automaton can be built for every language defined by a (generalized extended) timed regular
expression.

Before giving the formal definition let us explain the construction intuitively (see also Figure 3).
The automaton for a can make, at any non-negative time, an a-transition from the initial state to the
final state. For the union of two languages we choose non-deterministically between the two automata.
To concatenate two languages, we add transitions to the initial state of the second automaton for every
accepting transition of the first automaton. For standard concatenation, such transitions reset the
clocks, while for absorbing concatenation the clocks are not reset. Likewise for the ∗ operations we
add transitions to the initial state and reset all the clocks.

The construction of the automaton for ϕ� is better understood using an extension of timed au-
tomata where upon a transition a clock can be assigned the value of another clock. The basic idea is
that for every new iteration of ϕ we need the values of all clocks to represent the total time elapsed
in the previous iterations. We achieve this by adding a new clock x which is never reset to zero and
transitions to the initial state in which all clocks get the value of x (see Figure 3). Our construction

17

a a

ε
ε,x = 0

ϕ1 ∨ϕ2

ϕ1

ϕ1

ε

ε

ϕ1 ·ϕ2

ϕ1 ϕ2

C2 := 0

ϕ1 ◦ϕ2

ϕ1 ϕ2

ϕ+
1

ϕ1

a,φ

a,φ ,C1 := 0

ϕ⊕
1

ϕ1

a,φ

a,φ ,C1 := x

〈ϕ1〉I

ϕ1

a,φ

a,φ ∧ x ∈ I

ϕ1 ∧ϕ2

a,φ5 b,φ6

b,φ7 a,φ8

a,φ1

b,φ2

b,φ3

a,φ4

a,φ1 ∧φ5

b,φ2 ∧φ6 b,φ3 ∧φ7

a,φ4 ∧φ8

Figure 3: Constructing automata from expressions.

18

below “simulates” these automata using ordinary timed automata that keep track of the clocks that
have been reset. References in the guards to those clocks which have not been reset are replaced by
references to x. For the 〈ϕ〉I operator we introduce a new clock x and add a test (x ∈ I) to the guard of
every transition leading to f . For intersection we do the usual Cartesian product (taking special care
of ε-transitions). Finally for renaming we just rename the transition labels.

Definition 14 (Automata from Expressions) Let A1 = (Q1,C1,∆1,Σ,s1,F1) and A2 = (Q2,C2,∆2,Σ,s2,F2)
be the timed automata accepting the languages [[ϕ1]] and [[ϕ2]] respectively. We assume that Q1 and
Q2 as well as C1 and C2 are disjoint.

• The automaton for [[ε]] is ({s, f},{x},∆,Σ,s,{ f}), where the transition relation is ∆ = {(s,x =
0, /0,ε, f)}.

• The automaton for [[a]], a ∈ Σ is ({s, f}, /0,∆,Σ,s,{ f}), where the transition relation is ∆ =
{(s, true, /0,a, f)}.

• The automaton for [[ϕ1 ∨ϕ2]] is (Q1 ∪Q2 ∪{s},C1 ∪C2,∆,Σ,s,F1 ∪F2), where ∆ is constructed
by adding to ∆1∪∆2 two new ε-transitions (s,x = 0, /0,ε,si), where x is any clock and i ∈ {1,2}
(if there is no clock in the automata we should add one).

• The automaton for [[ϕ1 ∧ϕ2]] is (Q1 ×Q2 ∪{ f},C1 ∪C2,∆,Σ,〈s1,s2〉,{ f}), where ∆ contains

– a transition {(〈q1,q2〉,φ1 ∧φ2,ρ1 ∪ρ2,a,〈q′1,q′2〉) for any (q1,φ1,ρ1,a,q′1) ∈ ∆1 and any
(q2,φ2,ρ2,a,q′2) ∈ ∆2};

– a transition {(〈q1,q2〉,φ1∧φ2,ρ1∪ρ2,a, f) for any (q1,φ1,ρ1,a, f1)∈∆1 and any (q2,φ2,ρ2,a, f2)∈
∆2} where f1 ∈ F1 and f2 ∈ F2;

– a transition {(〈q1,q2〉,φ1,ρ1,ε,〈q′1,q2〉) for any (q1,φ1,ρ1,ε,q′1) ∈ ∆1};

– a transition {(〈q1,q2〉,φ2,ρ2,ε,〈q1,q′2〉) for any (q2,φ2,ρ2,ε,q′2) ∈ ∆2}
• The automaton for [[ϕ1 ·ϕ2]] is (Q1∪Q2,C1∪C2,∆,Σ,s1,F2) where ∆ is constructed from ∆1∪∆2

by inserting for every transition of the form (q1,φ ,ρ,a, f1) in ∆1 with f1 ∈ F1 a new transition
(q1,φ ,C2,a,s2). The automaton for [[ϕ1 ◦ϕ2]] is the same except for the fact that the new tran-
sition is of the form (q1,φ , /0,a,s2).

• The automaton for [[ϕ+
1]] is A = (Q1,C1,Σ,∆,s1,F1) where ∆ is constructed from ∆1 by adding

for every transition of the form (q,φ ,ρ,a, f1) in ∆1 with f1 ∈ F1 a transition of the form
(q,φ ,C1,a,s1).

• The automaton for [[ϕ⊕
1]] is A = (Q1 × 2C1 ,C1 ∪{x},Σ,∆,(s1, /0),F1 × 2C1). The second com-

ponent of the state records which clocks have been reset during the current iteration of [[ϕ1]].
There are two types of transitions in ∆:

– Transitions simulating those of A : for every transition of the form (q,φ ,ρ,a,q′) in ∆1

and every D ⊂C1 the relation ∆ contains ((q,D),φD,ρ,a,(q′,D∪ρ))

– Looping transitions: for every transition of the form (q1,φ ,ρ,a, f1) in ∆1 with f1 ∈ F1 and
every D ⊂C1 the relation ∆ contains ((q1,D),φD,ρ,a,(s1, /0)).

Here φD is obtained by replacing in φ all occurrences of clocks not belonging to D by x.

19

• The automaton for [[ϕ∗
1]] (respectively [[ϕ�

1]]) is obtained by the union construction from the
automaton for {ε} and the automaton for [[ϕ+

1]] (respectively for [[ϕ⊕
1]]).

• The automaton for [[〈ϕ1〉I]] is A = (Q1 ∪{ f},C1 ∪{x},∆,Σ,s1,{ f}) where ∆ is obtained from
∆1 by introducing for every transition of the form (q,φ ,ρ,a, f1) in ∆1 with f1 ∈ F1 a new tran-
sition (q,φ ∧ (x ∈ I),ρ,a, f).

• The automaton for [[θ(ϕ1)]] and θ : Σ → Σ′ is A = (Q1,C1,∆,Σ′,s1,F1) where ∆ is obtained
from ∆1 by replacing every transition of the form (q,φ ,ρ,a,q′) in ∆1 by (q,φ ,ρ,θ(a),q′).

This concludes the construction that gives one side of Kleene theorem:

Theorem 2 (Expressions ⇒ Automata) Every timed language defined by a (generalized extended)
regular expression is accepted by a timed automaton.

6 From Timed Automata to Expressions

6.1 The Approach

Our proof of the other (and harder) side of Kleene theorem is modeled after the proof of the classical
theorem given in [MY60], which constructs from an automaton a system of linear language equations
of the form:

Xi = αi ∨
n∨

j=1

βi j ·Xj i = 1, . . . ,n (8)

where the Xi stand for unknown languages and αi,βi j — for given regular coefficients. Each unknown
Xi of the system corresponds to the language accepted by the automaton starting from state qi. As an
example consider the first (untimed) automaton on Figure 4. The languages associated with its states
satisfy the following self-explanatory system of equations:

X3 = a∨b ·X3

X2 = b∨a ·X3

X1 = a ·X2 ∨b ·X3

(9)

Using the well-known fact [Ard60] that any equation of the form

X = α ∨β ·X

admits a minimal solution
X = β ∗ ·α

it can be proved that any system of equations such as (8) has a regular minimal solution and a cor-
responding regular expression can be found effectively from the coefficients. If, in addition, ε �∈ βi j

then the solution is unique. For example, the solution for (9) is:

X3 = b∗ ·a
X2 = b∨a ·b∗ ·a
X1 = a · (b∨a ·b∗ ·a)∨b+ ·a

Adapting this proof to timed automata is problematic as the timed automaton of Figure 4 shows.
In this automaton the transition from q1 to q2 resets the clock and hence a fragment of the equation

20

q1 q2

q3 Accept

a

b a b

a

b

q1 q2

q3 Accept

a,x = 5/x := 0

b,x = 2
a,x < 10

b,x > 7

a,x = 8

b,x = 5/x := 0

Figure 4: A timed and an untimed automaton

for q1 will be X1 = 〈a〉5 ·X2 ∨ . . ., however, we cannot do the same and use 〈b〉2 ·X3 for that part of
X1 accepted via q3, because after completing action b the automaton enters state q3 with a clock value
other than zero. To tackle this problem we could associate a language with every configuration of the
timed automaton, i.e. let Xi,v denote the language accepted starting from state qi and clock valuation
v. This would lead to an infinite number of variables and equations. We use an alternative solution,
namely associate Xi with the language accepted from (qi,0) and use the absorbing concatenation for
non-resetting transitions. The system of equations for the automaton is thus

X3 = 〈a〉8 ∨〈b〉5 ·X3

X2 = 〈b〉(7,∞)∨〈a〉[0,10) ◦X3

X1 = 〈a〉5 ·X2 ∨〈b〉2 ◦X3

Such “quasi-linear” equations, which use both kinds of concatenation, can be written for any one-
clock automaton. However, when an automaton A has several clocks, the set of transitions cannot
be partitioned into resetting and non-resetting ones, and we need first to split the automaton into
several one-clock automata, the intersection of their languages gives the language of A . For each
such automaton we define the corresponding equations and by showing how such equations can be
solved the proof of Kleene theorem will be completed.

6.2 From Timed Automata to One-Clock Automata

The reduction into one-clock automata starts with a language-preserving transformation on the au-
tomaton, which eliminates undesirable features as a preparation for the translation into expressions.
Then we “determinize” the automaton by assigning a distinct letter to every transition outgoing from
any state. Having done that we can split the automaton into several one-clock automata from which
language equations are constructed.

An automaton is disjunction-free if for every transition (q,φ ,ρ,a,q′), the formula φ is a conjunc-
tion of simple tests (x∈ I) and their negations. An automaton is strongly-deterministic if it contains no
ε-transitions and for any state q and any letter a the transition relation contains at most one outgoing
transition from q labeled by a. Note that strong determinism is a syntactic property which is sufficient

21

but not necessary for determinism — the latter can be implied by empty intersections of guards for
two transitions labeled by the same letter.

Lemma 7 (Disjunction-free and Strongly-deterministic Automata) From any timed automaton A
over Σ one can construct a disjunction-free and strongly-deterministic automaton A ′ over Σ′, and a
renaming θ : Σ → Σ′ such that L(A) = θ(L(A ′)).

To get rid of disjunctions we first convert every transition guard into a disjunctive normal form
(DNF) φ = φ1 ∨ φ2 ∨ . . .φk where every φi is a conjunction. We then replace every transition δ =
(q,φ ,ρ,a,q′), where φ = φ1 ∨ φ2 ∨ . . .φk by k transitions of the form (q,φi,ρ,a,q′), i = 1, . . . ,k.
Clearly, this automaton accepts L(A). Any disjunction-free automaton A = (Q,C,∆,Σ,s,F) can
be converted into a strongly-deterministic automaton A ′ = (Q,C,∆′,Σ×{1..M},s,F), where M is
the maximal number of transitions with the same label outgoing from the same state, ∆′ is obtained
from ∆ by replacing any transition (q,φ ,ρ,a,q′) by (q,φ ,ρ,(a, i),q′), choosing a different i compo-
nent for each transition a going from state q. For the renaming θ : (Σ∪{ε})×{1..M} → Σ∪{ε}
defined by the formula θ(a, i) = a we have the language equality θ(L(A ′)) = L(A).

Theorem 3 (Reduction to one-clock automata) Let A be a timed automaton with k clocks. One
can build k one-clock automata A1, . . . ,Ak and a renaming θ such that

L(A) = θ

(
k⋂

i=1

L(Ai)

)
.

Proof: First we transform A into a disjunction-free and strongly-deterministic form A ′ = (Q′,C,∆′,Σ′,s′,F ′)
and find a renaming θ such that L(A) = θ(L(A ′)). Let C = {x1, . . . ,xk}. We separate A ′ into k au-
tomata Ai = (Q′,{xi},∆′

i,Σ′,s′,F ′) such that for every (q,φ ,ρ,a,q′) ∈ ∆′ there is (q,φi,ρi,a,q′) ∈ ∆i

such that ρi = ρ ∩{xi} and φi is obtained from φ by substituting true in every occurrence of x j ∈ I or
of x j �∈ I for every j �= i. In other words, every Ai respects only the constraints imposed by the clock
xi and ignores the rest of the clocks. Since the automaton A ′ is strongly-deterministic, every accepted
sequence is a trace of exactly one run, and this is the same run in every Ai. A run is possible in every
Ai iff it is possible in A ′.
An example of the translation appears in Section 6.6.

6.3 Equations for Timed Automata

From one-clock automata we derive timed language equations involving the ◦ operation and whose
solutions involve also the � operation. Both can later be eliminated using the procedure described in
section 3.

Definition 15 (Quasilinear Equations) A system of quasilinear timed language equations has the
following form:

Xi = αi ∨
n∨

j=1

βi j ·Xj ∨
n∨

j=1

γi j ◦Xj, i = 1, . . . ,n, (10)

where Xi stand for unknown timed languages and the coefficients αi,βi j,γi j — for given timed lan-
guages.

22

To avoid some complication with non-unique solutions (and non-associative multiplication) we con-
sider only normal systems of equations where all coefficients satisfy

βi j ∩R+ = /0; γi j ∩R+ = /0; (11)

that is, any sequence in any coefficient language except the αi’s should contain at least one discrete
event from Σ.

Definition 16 (From One-Clock Automata to Equations) Let A = (Q,{x},∆,Σ,s,F) be a one-clock
automaton. The system of equations associated with A is (10) with an unknown Xi for every qi ∈ Q.
The coefficient αi is the disjunction of expressions 〈a〉I for all the transitions (qi,x ∈ I,ρ,a, f) ∈ ∆
with f ∈ F. The coefficients βi j, γi j are constructed from the transitions in ∆ as follows:

Transition Coefficient
(qi,x ∈ I,{x},a,q j) βi j = 〈a〉I

(qi,x ∈ I, /0,a,q j) γi j = 〈a〉I

Note that if the transition guard of the transition is true, then the corresponding coefficient is just a.
The following self-evident lemma specifies the connection between the language of a timed au-

tomaton and the constructed equations.

Lemma 8 Let Li be the language accepted by the automaton from configuration (qi,0). Then X1 =
L1, . . . ,Xn = Ln is a solution of equations (10).

6.4 Solving Quasilinear Equations

The rest of this section is devoted to the description of the solution algorithm, which is an adaptation
of the standard Gaussian elimination procedure used for linear equations.

The following lemma gives a solution to a single equation with only one operation.

Lemma 9 Let α ,β ,γ be timed languages.

1. The smallest solution to X = α ∨ γ ◦X is X0 = γ� ◦α;

2. The smallest solution to Y = α ∨β ·Y is Y 0 = β ∗ ·α;

3. If β and γ satisfy the normality condition (11) then these solutions are unique.

The proof is similar to the proof of the same result for untimed equations, we give a sketch only for
the absorbing concatenation.

First we verify that X0 is a solution by substituting it into the right-hand side of the equation:

α ∨ γ ◦X0 = α ∨ γ ◦ γ� ◦α = (ε ∨ γ⊕)◦α = X0.

The minimality proof proceeds as follows. Let X1 be a solution, i.e X1 = α ∨ γ ◦X1. The inclusion
X0 = γ� ◦ α ⊂ X1 follows from the following statement which can be proved by straightforward
induction over n:

∀n (γ◦n ◦α ⊂ X1).

23

In order to prove uniqueness (under normality hypothesis) we introduce the discrete length η of
time-event sequences. The morphism η : T → N is defined by η(r) = 0 for all r ∈ R+ and η(a) = 1
for all a ∈ Σ. Note that η(u◦ v) = η(u)+η(v) whenever u◦ v is defined.

The proof of the inclusion X1 ⊂ X0 uses the normality condition on γ and proceeds by contra-
diction. Suppose the inclusion does not hold and let w be a sequence in X1 −X0 with the minimal
possible discrete length η(w). Since X1 is a solution, w ∈ α ∨ γ ◦X1. The sequence w cannot belong
to α ⊂ X0. Hence w admits a decomposition v = u◦v with u ∈ γ and v ∈ X1. The normality condition
guarantees that η(u) > 0, hence η(v) = η(w)−η(u) < η(w). Since η(w) is minimal in X1−X0, this
implies that v ∈ X0, hence

w = u◦ v ∈ γ ◦X0 = γ ◦ γ� ◦α = γ⊕ ◦α ⊆ X0,

which contradicts the hypothesis on w and concludes the proof.
In the sequel we use this lemma in a specific situation when α can depend on X . To justify such a

usage we prove the following statement.

Corollary 10 Suppose that β and γ satisfy the normality condition (11), and h(X) is any language-
valued expression depending on X. Then

• the equation X = h(X)∨ γ ◦X is equivalent to X = γ� ◦h(X);

• the equation Y = h(X)∨β ·Y is equivalent to Y = β ∗ ·h(X).

The proofs of the two statements are similar and we give only the first one. Let X0 be a timed language.
It is a solution of the first equation whenever it satisfies X0 = h(X0)∨γ ◦X0, or, equivalently, whenever
it is a solution of the equation X = h(X0)∨ γ ◦X . The language X0 is a solution of this equation if
and only if it is equal to its unique solution provided by Lemma 9, i.e X0 = γ� ◦ h(X0). The last
equality holds if and only if X0 is a solution to the equation X = γ� ◦h(X). This concludes the proof
of equivalence of the two equations

Theorem 4 A normal system of quasilinear equations has one and only one solution. This solution is
regular. Its regular expression can be obtained algorithmically from expressions for the coefficients.

The algorithm for solving the system (10) consists in iterated applications of Corollary 10. It has
four stages, the first two treat the ◦ operation and the next two — the standard concatenation.

At the first stage we use the first equation and Corollary 10 to express X1 as

X1 = γ�
11 ◦ (α1 ∨

n∨
j=1

β1 j ·Xj ∨
n∨

j=2

γ1 j ◦Xj).

Notice that only the occurrence of ◦X1 is eliminated, while those of ·X1 remain in the equation. By
opening the parentheses (using Proposition 1, whose assumptions are satisfied because the system is
normal) this equation is transformed to the form

X1 = α ′
1 ∨

n∨
j=1

β ′
1 j ·Xj ∨

n∨
j=2

γ ′1 j ◦Xj

We substitute this expression into the ◦X1 occurrence of X1 in the second equation, solve it for X2 and
so on until Xn for which we find an expression that contains only occurrences of unknowns of the form

24

·X and not ◦X . Then the second stage starts by going backwards, putting the expression for Xn into
equation number n−1. This allows to find for Xn−1 an expression free from occurrences of ◦Xn, until
we reach X1 once again. Now the system has a standard ◦-free form

Xi = α ′′
i ∨

n∨
j=1

β ′′
i j ·Xj (12)

which is the starting point of the standard solution procedure for equations over Kleene algebra. We
repeat the same procedure by expressing X1 as

X1 = β
′′∗
11 · (α ′′

1 ∨
n∨

j=2

β ′′
1 j ·Xj),

put the result into the second equation, find X2 and so on. The fourth (and last) stage consists in going
backwards putting the expression for Xn into equation n−1 and so on. This ends up with finding an
extended regular expression for every Xi and concludes the algorithm and the proof of Theorem 4.

Corollary 11 From a one-clock automaton one can construct an extended timed regular expression
that denotes its language.

6.5 Main Results

Since EE are equivalent to E (and hence languages defined by extended timed regular expression are
regular), corollary 11 concludes the new proof of the following important result.

Theorem 5 The language accepted by any one-clock automaton is regular.

Together with the reduction of Theorem 3 this gives:

Theorem 6 (Automata ⇒ Expressions) Every language accepted by a timed automaton can be rep-
resented by the expression

θ

(
k∧

i=1

ϕi

)
,

where θ is a renaming and ϕi are timed regular expressions.

We have proved the main result of this paper:

Theorem 7 (Kleene Theorem for Timed Automata) Timed automata and generalized timed regu-
lar expressions have the same expressive power.

6.6 From Automata to Expressions: an Example

Consider the automaton A in Figure 5. Getting rid of disjunctions we obtain A ′. By splitting a into
d and e, and labeling the ε-transition by c we get the strongly deterministic automaton A ′′ which is
separated into two one-clock automata A1 and A2. Hence,

L(A) = L(A ′) = θ(L(A ′′)) = θ(L(A1)∩L(A2)). (13)

25

A .

x = 0

a,x > 3∨1 < y < 9

b/x := 0

A ′.

x = 0 a,x > 3

a,1 < y < 9

b/x := 0

A ′′.

θ :

c �→ ε
d �→ a
e �→ a
b �→ b

c,x = 0 d,x > 3

e,1 < y < 9

b/x := 0

A1.

U V

W

c,x = 0 d,x > 3

e

b/x := 0

A2.

X Y

Z

c d

e,1 < y < 9

b

Figure 5: Constructing an expression from an automaton.

26

To find the expression for L(A1) we write the language equations

U = (〈d〉[3,∞)∨ e)◦V ∨ c◦W ∨ c
V = b ·U
W = /0

After substituting b ·U instead of V and /0 instead of W we obtain:

U = ((〈d〉[3,∞)∨ e)◦b) ·U ∨ c

which can be immediately solved using Lemma 9:

L(A1) = U = ((〈d〉[3,∞)∨ e)◦b)∗ · c
For A2 the equations are

X = (d∨〈e〉(1,9))◦Y ∨ c◦Z∨ c
Y = b◦X
Z = /0

and after substitution we get
X = ((d∨〈e〉(1,9))◦b)◦X ∨ c,

whose solution is
L(A2) = X = ((d∨〈e〉(1,9))◦b)� ◦ c.

Together with equation (13) it gives a GEE -class expression for L(A):

L(A) = θ
(
(((〈d〉[3,∞)∨ e)◦b)∗ · c)∧ (((d∨〈e〉(1,9))◦b)� ◦ c)

)
If we want to avoid ◦ and � operations, elimination algorithms from section 3 should be applied.

It is easy for the first language:

L(A1) = ((〈d〉[3,∞)∨ e) ·b)∗ · c
but less so for the second:

L(A2) = (db∨〈e〉(1,9)b)�c

= (db)�c∨
〈(db)� ◦ e〉(1,9)b)◦ (db)�c∨
〈〈(db)� ◦ e〉(1,9)b)◦ (db∨ eb)� ◦ e〉(1,9)b◦ (db)�c

= (db)∗c∨
〈(db)∗e〉(1,9)b)(db)∗c∨
〈〈(db)∗e〉(1,9)b)(db∨ eb)∗e〉(1,9)b(db)∗c.

7 Infinitary Timed Languages

7.1 Infinite Sequences, ω-Languages and ω-Automata

For untimed sequences and automata, the theory of ω-languages (languages whose elements are infi-
nite sequences) is not as nicely algebraic as the theory of finitary languages. The situation is aggra-
vated when we move to time-event sequences where we have two notions of infinitude, metric and
logical, which do not coincide.

27

In the finitary case an element of T (Σ) can be viewed as an alternating finite sequence u1 ·u2 · · ·un

of elements in R+ ∪Σ∗. The logical length of such a sequence is the sum of finitely many integers
and its metric length is a sum of finitely many real numbers. One possibility to move to infinitary
language is to define an ω-time-event sequence over Σ as an infinite alternating sequence u1 ·u2 · · · of
elements from R+ ∪Σ∗. Ideally we would like both logical and metric length to be infinite but this is
not easy to guarantee in a simple way.

Concerning logical length, note that already in the untimed case, if a language L contains ε , then
Lω , the language consisting of all infinite concatenations of elements from L, might contain finite
strings. Moreover, an infinite sequence might become finite under a length-reducing renaming that
maps some letters to ε . Similarly, the image of an infinite time-event sequence such as

1 ·a · (1 ·b)ω = 1 ·a ·1 ·b ·1 ·b ·1 ·b · · ·

under a renaming which maps b to ε is the logically-finite time-event sequence 1 · a ·∞. So to keep
our languages closed under renaming, and to account for runs of timed automata with infinitely many
ε-transitions, we allow time-event sequences with infinite metric length but with finitely many events.

Infinite metric length cannot be guaranteed locally due to the existence of converging sequences
of reals. For example, the infamous infinite sequence

a ·1 ·a ·1/2 ·a ·1/4 · · ·

due to Zeno of Elea has a finite metric length. Consequently, if L is a language in which there is no
positive lower-bound on the metric length of its elements, e.g. L = 〈a〉(0,r], the set Lω contains Zeno
behaviors. Our design choice is to exclude explicitly such Zeno behaviors from the languages that we
consider.

Definition 17 (ω-Time-Event Sequences and Timed ω-Languages) An ω-time-event sequence is
an alternating (finite or infinite) sequence

ξ = u1 ·u2 · · ·

of elements in R+ −{0}∪Σ+, such that λ (ξ) (the sum of the real elements) is infinite. When the
sequence is finite, the last element must be ∞. The set of all such sequences is denoted by Tω(Σ) and
its subsets are called (timed) ω-languages.

The concatenation v · ξ where v ∈ T (Σ) and ξ ∈ Tω(Σ) is defined almost as before, resulting
in an ω-time-event sequence. For an infinite sequence v1,v2, . . . of time-event sequences such that

∑∞
i=1 λ (vi) = ∞, their infinite concatenation

∞·
i=1

is defined in the natural way. When extending this

definition to ω-languages, by letting

∞·
i=1

Li = { ∞·
i=1

vi : vi ∈ Li}

we do not allow an arbitrary choice of vi’s but only those, whose sum of lengths diverges.

Definition 18 (Timed ω-Regular Expressions) Timed ω-regular expressions over an alphabet Σ (also
referred to as ω-Σ-expressions) are constructed from (finitary) regular expressions using the following
families of rules.

1. If ϕ is a Σ-expression then ϕω is an ω-Σ-expression.

28

2. If ϕ is a Σ-expression and ψ ,ψ1,ψ2 are ω-Σ-expressions then ϕ ·ψ and ψ1 ∨ψ2 are ω-Σ-
expressions.

3. If ψ1,ψ2 are ω-Σ-expressions and ψ0 is an ω-Σ0 expression for some alphabet Σ0, and θ : Σ0 →
Σ is a renaming then ψ1 ∧ψ2 and θ(ψ0) are ω-Σ-expressions.

Expressions formed using rules 1 and 2 are called timed ω-regular expressions and denoted by Eω(Σ).
If in addition rule 3 is applied we call them generalized timed ω-regular expression and denote them
by GEω(Σ).

The semantics of these expressions is defined via the function [[]]ω : GEω(Σ) → 2Tω (Σ) as:

[[ϕω]]ω =
∞·

i=1
[[ϕ]]

[[ϕ ·ψ]]ω = [[ϕ]] · [[ψ]]ω
[[ψ1 ∨ψ2]]ω = [[ψ1]]ω ∪ [[ψ2]]ω
[[ψ1 ∧ψ2]]ω = [[ψ1]]ω ∩ [[ψ2]]ω
[[θ(ψ)]]ω = θ([[ψ]]ω)

A timed ω-automaton is a tuple A = (Q,C,∆,Σ,s,F) where all the components are as in finitary
timed automata. An infinite run of the automaton is an infinite sequence of steps

(q0,v0)
z1−→ (q1,v1)

z2−→ ·· ·

such that the sum of the durations of the steps diverges. The trace of a run is the ω-time-event
sequence z1 · z2 · · ·. An accepting run is a run starting from the initial configuration (s,0) and visiting
F infinitely many times, that is qi ∈ F for infinitely many discrete steps. The ω-language of a timed
automaton, Lω(A), consists of all the traces of its accepting runs. Note that due to ε-transitions the
trace can be a finite sequence.

7.2 From ω-expressions to ω-automata

As in the finitary case the inductive construction is rather straightforward. As a basis we take the
automaton for any finitary timed regular expression. From the proof of Theorem 2 we can assume
that timed regular languages are accepted by automata without transitions outgoing from accepting
states. The automaton for ϕω is similar to that for ϕ+. The accepting state is visited infinitely-often
in the ω-automaton iff infinitely many finite prefixes of the time-event sequence lead from s to f in
the finitary automaton. The concatenation of a language and an ω-language, as well as the union
of two ω-languages and the renaming are almost identical to the finitary case. Intersection requires
some more details, because, unlike finite words which have to reach accepting states of both automata
simultaneously at the end of the run, the visits of an ω-time-event sequence in such accepting states
need not be synchronized. All the constructions are minor adaptations of their untimed analogues (see
[Tho90]).

Definition 19 (ω-Automata from Expressions) Let A = (Q,C,∆,Σ,s,F) be the timed automaton
accepting the language [[ϕ]], and let A1 = (Q1,C1,∆1,Σ,s1,F1) and
A2 = (Q2,C2,∆2,Σ,s2,F2) be the timed ω-automata accepting the ω-languages [[ψ1]]ω and [[ψ2]]ω
respectively.

29

• The automaton for [[ϕω]]ω is (Q∪{ f ′},C,Σ,∆′,s,{ f ′}) where ∆′ is obtained from ∆ by adding
for each transition (q,φ ,ρ,a, f)∈∆ with f ∈ F, a new transition (q,φ ,C,a, f ′). Another transi-
tion (f ′,(x = 0), /0,ε,s), where x is any clock, is also added (if there is no clock in the automaton
we should add one).

• The automaton for [[ϕ ·ψ2]] is (Q∪Q2,C∪C2,∆′,Σ,s,F2) where ∆′ is ∆∪∆2 augmented with
transitions of the form (q,φ ,C2,a,s2) for every transition (q,φ ,ρ,a, f) in ∆ with f ∈ F.

• The automaton for [[ψ1∨ψ2]]ω is (Q1∪Q2∪{s},C1∪C2,∆,Σ,s,F1∪F2), where ∆ is constructed
from ∆1 ∪∆2 by adding two ε-transitions (s,x = 0, /0,ε,si), where x is any clock and i ∈ {1,2}
(if there is no clock in the automata we should add one).

• The automaton for [[ϕ1 ∧ ϕ2]]ω is (Q1 ×Q2 ×{1,2,3},C1 ∪C2,∆,Σ,〈s1,s2,1〉,F) where ∆ is
constructed from ∆1 and ∆2 in the following way:

– for every (q1,φ1,ρ1,a,q′1)∈ ∆1 and (q2,φ2,ρ2,a,q′2)∈ ∆2 the relation ∆ contains the tran-
sitions (〈q1,q2, i〉,φ1∧φ2,ρ1∪ρ2,a,〈q′1,q′2, j〉) whenever i = 3 and j = 1, or i∈ {1,2} and
j = i, or i = 1, q′1 ∈ F1 and j = 2, or i = 2, q′2 ∈ F2 and j = 3.

– for every (q1,φ1,ρ1,ε,q′1) ∈ ∆1 the relation ∆ contains the transitions
(〈q1,q2, i〉,φ1,ρ1,ε,〈q′1,q2, j〉) whenever i = 3 and j = 1, or i ∈ {1,2} and j = i, or i = 1,
q′1 ∈ F1 and j = 2;

– for every (q2,φ2,ρ2,ε,q′2) ∈ ∆2 the relation ∆ contains the transitions
(〈q1,q2, i〉,φ2,ρ2,ε,〈q1,q′2, j〉) i = 3 and j = 1, or i ∈ {1,2} and j = i, or i = 2, q′2 ∈ F2

and j = 3.

The accepting set is F = Q1 ×Q2 ×{3}.

• The automaton for [[θ(ψ1)]]ω , where θ : Σ → Σ′, is (Q1,C1,∆,Σ′,s1,F1) with ∆ obtained from
∆1 by replacing every transition of the form (q,φ ,ρ,a,q′) in ∆1 by (q,φ ,ρ,θ(a),q′).

With this construction we have the first part of Büchi-McNaughton theorem.

Theorem 8 (ω-Expressions ⇒ ω-Automata) Every (generalized) timed ω-regular language can be
accepted by a timed ω-automaton.

7.3 From ω-Automata to ω-Expressions

This construction is based on Theorem 6 and on the proof of the untimed theorem (see [Büc60,
McN66]). We assume that the automaton has gone through all the transformation described in Sec-
tion 6.2 and also converted in a state-reset form, as described below.

A one-clock timed automaton is state-reset if the transitions entering a given state either all reset
the clock, or all do not reset it. In order to make a one-clock automaton state-reset we split every state
not satisfying this property into two copies and redirect the resetting incoming transitions to the first
state and non-resetting to the second. This transformation can double the number of states and does
not affect the language accepted.

Let A = (Q,{x},∆,Σ,s,F) be a one-clock ω-automaton. Clearly

Lω(A) =
⋃
f∈F

Lω(A f),

30

where A f = (Q,{x},∆,Σ,{s},{ f}). Hence it is sufficient to prove regularity for automata with one
accepting state F = { f}. If f is a resetting state we can use the same expression as in untimed
automata:

Lω(A f) = Ls f · (Lf f)ω

where Ls f is the regular language consisting of all time-event sequences leading from s to f and
Lf f is the regular language consisting of the time-event sequences inducing a cycle from f to f .
However, when f is not resetting, this will not work directly because f can be entered with different
clock valuations. The following technical lemma introduces several languages related to one-clock
automata and states their regularity.

Lemma 12 Let A = (Q,{x},∆,Σ,s,{ f}) be a one-clock automaton with m ∈ N being the largest
constant appearing in the guards, and let p,q ∈ Q be two states. The following timed languages are
regular:

• The language R◦
pq consisting of traces of all the runs of A starting in (p,0) and terminating by

a transition to q and including only non-resetting transitions.

• The language R→m
pq consisting of traces of all the runs of A starting in (p,0) and terminating

by a transition to (q,x) with some x > m.

• The language Rm→
pq consisting of traces of all the runs of A starting in (p,x), x > m, never

resetting x and terminating by a transition to q.

The regularity proof for the first two is by a straightforward construction of one-clock sub-
automata of A accepting these languages and by application of Theorem 5. For the third, we just
erase resetting transitions and substitute m+1 instead of x in all the guards and hence transform each
of them into either true of false. Note that the expression obtained for this language contains no
timing restrictions.

Suppose now that f is non-resetting. All the accepting runs split into two categories: those with
finitely many resets (whose traces form the language Lfin) and those with infinitely many resets (lan-
guage L∞). We will prove regularity of both these languages.

Finitely many resets. Let m denote the maximal constant occurring in the guards of A . Any ac-
cepting run ξ with finitely many resets eventually stops resetting the clock and hence the clock value
crosses m and remains greater than m ever after. Hence such a run can be decomposed into a prefix
containing all the resets and leading for the first time after that to f with x > m, and an infinite suffix
making cycles from f to f with x always greater than m. Because timing does not play a role after
x > m, the languages accepted from (f ,x) and from (f ,x′) for x,x′ > m are identical and hence we can
write:

Lfin = R→m
s f · (Rm→

f f)ω

which concludes the proof of regularity of Lfin.

Infinitely many resets. Since f is not a resetting state, such an infinite run should visit infinitely
many times a resetting state q. Moreover, there is always a resetting q such that for infinitely many
occurrences, there are no resets between q and the next occurrence of f :

(s,0) → ·· · → (q,0)
no resets→ ·· · → (f ,x1)→ ·· · →(q,0)

no resets→ ·· · → (f ,x2)→ ·· · →(q,0) · · ·

31

Conversely, any run admitting such a decomposition is an accepting run of A .
This immediately gives the following expression for L∞:

L∞ =
⋃

q resetting

Rsq ·
(
R◦

q f ◦Rf q
)ω

which concludes the proof.
Consequently

Claim 13 The ω-language accepted by any one-clock automaton is ω-regular.

This implies:

Theorem 9 (ω-Automata ⇒ ω-Expressions) Every ω-language accepted by a timed ω-automaton
can be represented as

θ

(
k∧

i=1

ψi

)
,

where θ is a renaming and ψi are timed ω-regular expressions.

And we can conclude:

Theorem 10 (Büchi-McNaughton Theorem for Timed Automata) Timed ω-automata and gener-
alized timed ω-regular expressions have the same expressive power.

8 Discussion

In this section we summarize the results of this paper and compare our approach to other relevant
works. In our view there are three major contributions in this paper:

1. Clean algebraic definitions of timed behaviors as elements of the monoids of time-event se-
quences or of signals.

2. The definition of timed regular expressions as a formalism for specifying timed languages.

3. The main results and their proof techniques that shed some light on the structure of timed
automata and timed languages, in particular the separation of clocks and the elimination of ◦
and �.

The algebraic definitions, we feel, are simple and intuitive as they treat the succession of events and
the accumulation of time-passage in a uniform manner using the same monoid operation. In contrast,
timed traces consisting of sequences of time-stamped events do not have this nice monoidal intuition.
Compare our concatenation of r · a and s · b into r · a · s · b with the concatenation of the timed traces
(a,r) and (b,s) into (a,r),(b,r + s).

Our design choices for the expressions are, perhaps, the closest one can get to the spirit of the
untimed theory in the sense that the expressions do not refer to internal mechanisms or hidden vari-
ables of an accepting automaton (states and clocks) but only to externally observable properties of the
languages. The only (unavoidable) deviation from this spirit is the renaming operator. An alternative
formalism which does mention clocks explicitly was proposed in [BP01] where the authors define
regular expressions over an alphabet consisting of tuples of the form (φ ,a,ρ) corresponding to the

32

transitions of the timed automaton, where φ is a condition on clocks and ρ is a reset. For example,
the language defined by our expression

(〈a ·b〉3 · c)∧ (a · 〈b · c〉3)

will be written in their syntax as

(a,x2 := 0) · (x1 = 3,b) · (x2 = 3,c)〉

The formulation and solution of language equations over this alphabet of transitions is as simple as for
untimed automata. A similar idea was phrased in [BP99] in terms of expressions constructed using a
variety of concatenation operators, each corresponding to a subset of clocks being reset (in the case
of one-clock automata this boils down to the · and ◦ operations). Using these formalisms, intersection
and renaming are avoided at the high price of being very close to the timed automata themselves.

An alternative way to get rid of intersection is to use many-sorted parentheses, each corresponding
to another clock. For example, the above language could be written as

〈a · �b〉3 · c�3

The drawback of this formalism is that its syntax does not admit a simple inductive definition and,
likewise, its semantics cannot be inductively defined. Hence it can be seen as a syntactic sugar for
separation of clocks and intersection.

Our result provides a “Computer Science” version of Kleene Theorem: matching the expressive
power of the most commonly-accepted automaton-based formalism for real time by a class of regular
expressions. Within the algebraic theory of automata, Kleene Theorem is viewed as a (rare) instance
of a coincidence between two different notions, recognizability and rationality. Recognizability of a
subset L of a monoid M can be defined in automaton-free terms. Let ∼ be syntactic right congruence
associated with L, namely

u ∼ v iff ∀w ∈ M(u ·w ∈ L ⇐⇒ v ·w ∈ L).

The language L is said to be recognizable if ∼ has finitely many congruence classes (and, according
to Myhill-Nerode Theorem, this is true if and only if L is accepted by a finite automaton). The class
of rational subsets of a monoid M is the rational closure of the finite sets, that is, the smallest class
containing finite sets and closed under ∪, · and ∗. Kleene Theorem states that for the free monoid Σ∗

recognizability and rationality are equivalent (and this is not true for most other monoids of interest).
This work is concerned with the monoid T (Σ) = Σ∗ �R+, for which, due to the density of R+,

these two notions are not very useful. In R+ the only recognizable subsets are /0, {0}, R+ and (0,∞).
A language such as 〈a〉1 · b has uncountably many right-congruence classes because r �∼ s for every
r �= s ∈ [0,1]. These observation were made already in [RT97] and the conclusion is that only “speed-
independent” language, i.e. those invariant under “stretching” are recognizable. Such languages can
be written using expressions that do not use 〈.〉 at all or use it only with intervals [0,∞) or (0,∞).
Hence recognizability in this sense is not a useful concept for quantitative time.

Similarly, rationality for R+ and T (Σ) does not coincide with the expressive needs of timing
analysis. On one hand, the class of rational subsets of R+ contains sets consisting of isolated irrational
(and even uncomputable) numbers which cannot be expressed nor accepted by timed automata or any
other reasonable device. In addition they may contain arithmetical progressions. On the other hand, a
very natural subset of R+ such as [0,1] is not rational since it cannot be generated from finite sets by
a finite number of applications of the algebraic operations.

33

These two problems can be resolved by considering the rational closure of Σ and the set of all
integer bounded variables. This solution eliminates isolated irrational points and allows to express
intervals but the expressive power is still very weak: the set 〈a〉[1,2] · 〈b〉[2,4] is in the rational closure
but the set denoted by 〈a ·b〉[3,6] is not. Such sets correspond to one-clock timed automata that reset
the clock after each transition (see [Dim01]). An interesting option for overcoming this limitation is
to introduce a new shuffle operator, but this is beyond the scope of this paper. We may conclude that
a Kleene theorem (in the strict algebraic sense) for timed monoids is impossible.

References

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed automata. In
Proc. 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages 160–
171, Warsaw, June 1997. IEEE Computer Society.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[Ard60] D. Arden. Delayed-logic and finite-state machines. In Theory of Computing Machine
Design, pages 1–35. Univ. of Michigan Press, 1960.

[Asa98] Eugene Asarin. Equations on timed languages. In Thomas A. Hezinger and Shankar Sastry,
editors, Hybrid Systems: Computation and Control, LNCS 1386, pages 1–12. Springer-
Verlag, 1998.

[BP99] Patricia Bouyer and Antoine Petit. Decomposition and composition of timed automata.
In Jirı́ Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Proc. 26th Int.
Coll. Automata, Languages, and Programming (ICALP’99), LNCS 1644, pages 210–219.
Springer-Verlag, 1999.

[BP01] Patricia Bouyer and Antoine Petit. A Kleene/Büchi-like theorem for clock languages. Jour-
nal of Automata, Languages and Combinatorics, 2001. to appear.

[Büc60] J.R. Büchi. A decision method in restricted second order arithmetic. In E. Nagel, editor,
Proc. Int. Congr. on Logic, Methodology and Philosophy of Science. Stanford University
Press, 1960.

[Con71] John H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, London, 1971.

[Dim01] Cătălin Dima. Real-time automata. Journal of Automata, Languages and Combinatorics,
6(1):3–24, 2001.

[Her99] Philippe Herrmann. Renaming is necessary in timed regular expressions. In Proceedings
FSTTCS’1999, LNCS 1738, pages 47–59. Springer, 1999.

[How95] John M. Howie. Fundamentals of semigroup theory. Clarendon Press , Oxford, 1995.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

34

[LTJ+98] Xuandong Li, Zheng Tao, Hou Jianmin, Zhao Jianhua, and Zheng Guoliang. Hybrid reg-
ular expressions. In Thomas A. Hezinger and Shankar Sastry, editors, Hybrid Systems:
Computation and Control, LNCS 1386, pages 384–399. Springer-Verlag, 1998.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Informa-
tion and Control, 9:521–530, 1966.

[MMP92] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In J.W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in
Practice, LNCS 600, pages 447–484. Springer-Verlag, 1992.

[MY60] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. IRE
Trans. Electronic Computers, EC-9:39–47, 1960.

[RT97] A. Rabinovich and B. Trakhtenbrot. From finite automata toward hybrid systems (extended
abstract). In Bogdan S. Chlebus and Ludwik Czaja, editors, Fundamentals of Computation
Theory, 11th International Symposium, FCT ’97, LNCS 1279, pages 411–422. Springer-
Verlag, 1997.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. Van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191, Amsterdam, 1990. Elsevier.

[Tra95] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logics, nets, automata. In Proc.
Tenth Annual IEEE Symposium on Logic in Computer Science (LICS’95), pages 506–507,
San Diego, 1995. IEEE Computer Society.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. Int. Journal on Software
Tools for Technology Transfer, 1(1–2):123–133, October 1997.

35

