
Achilles and the Tortoise Climbing Up the

Arithmetical Hierarchy∗

Eugene Asarin
Institute for Information Transmission Problems

19 Bol. Karetnyi per.
101447 Moscow, Russia
asarin@ippi.ras.ru

Oded Maler
Verimag

Centre Equation
2, av. de Vignate

38610 Gières, France
Oded.Maler@imag.fr

Abstract

In this paper we show how to construct for every set P of integers
in the arithmetical hierarchy a dynamical system H with piecewise-
constant derivatives (PCD) such that deciding membership in P can
be reduced to solving the reachability problem between two ratio-
nal points for H. The ability of such apparently-simple dynami-
cal systems, whose definition involves only rational parameters, to

∗A preliminary version of the paper appeared in P.S. Thiagarajan (Ed.), “Proc.
FST/TCS’95”, 471-483, LNCS 1026, Springer, 1995. This research was supported in
part by the European Community projects HYBRID EC-US-043 and INTAS-94-697 as
well as by Research Grants #93-012-884, 97-01-00692 and 96-15-96048 of Russian Foun-
dation for Basic Research. Verimag is a joint laboratory of cnrs, ujf and inpg. Some
of the results were obtained while the first author was a visiting professor at ensimag,
inpg, Grenoble.

1

“solve” highly unsolvable problems is closely related to Zeno’s para-
dox, namely the ability to pack infinitely many discrete steps in a
bounded interval of time.

1 Introduction

This research was initially motivated by recent attempts to apply program
verification methodology to hybrid dynamical systems, i.e. systems combining
discrete and continuous components (see, for example, [1], [2]). In [3] we have
introduced PCD systems, a sub-class of the so-called linear hybrid automata
of [1]. In such systems, Euclidean space is partitioned into convex polyhe-
dra (“regions”) and a constant “slope” is assigned to every region. We have
shown in [3] that for two-dimensional PCD systems the reachability problem
(whether there exists a trajectory between two rational points) is decidable
while the same problem becomes undecidable when we move to three dimen-
sions or more. The undecidability is due to the ability of 3-dimensional PCDs
to simulate any Turing machine.

From the verification point of view, this paper worsens our previous neg-
ative result: it shows that by adding each time few dimensions we can climb
up indefinitely in the arithmetical hierarchy. This means that such hybrid
systems are, at least in the worst-case sense, “very very hard” to analyze.
From the dual perspective of expressiveness, this paper offers an alternative
geometrical model of computation, that is very simple, yet powerful enough
to solve any arithmetical problem. The constructions used in this paper show
some interesting connections between dynamics and computation, and may
contribute to a better understanding of both.

The rest of the paper is organized as follows: in section 2 we introduce the
arithmetical hierarchy and PCD systems and define recognition (acceptance)
by such systems. In section 3 we give a short review of our previous results
concerning the recognition of r.e. sets by 3-dimensional PCDs and draw the
plan for the proof of the main result. In section 4 we prove a key lemma
allowing us to construct from a PCD H that semi-recognizes a set P a PCD
H′ that fully recognizes P . Two additional lemmato and the final result are
presented in section 5, followed by a discussion in section 6.

2

2 Preliminaries

Let X = Rd for some d. We use boldface letters to denote points (vectors)
taken from X. A convex polyhedral set is a subset of X consisting of all x
satisfying a finite number of inequalities of the form a · x ≤ b or a · x < b. If
all the a’s and b’s are rational then the polyhedral set is said to be rational.

PCD Systems

Definition 1 (PCD System) A piecewise-constant derivative (PCD) sys-
tem is a dynamical system H = (X, f) where X is the state-space and f is a
(possibly partial) function from X to X such that the range of f is a finite
set of rational vectors C ⊂ X, and for every c ∈ C, f−1(c) is a finite union
of convex rational polyhedral sets.

A trajectory of H starting at some x0 ∈ X is a solution of the differential
equation

d+x

dt
= f(x) (1)

with initial condition x = x0, that is, a continuous function ξ : R+ → X
such that ξ(0) = x0 and for every t, f(ξ(t)) is defined and is equal to the
right derivative of ξ(t).

In other words, a PCD system consists of partitioning the space into
convex polyhedral sets (“regions”), and assigning a constant derivative c
(“slope”) to all the points sharing the same region (see figure 1). The tra-
jectories of such systems are broken lines, with the breakpoints occurring on
the boundaries of the regions. A PCD is bounded if the domain of f is a
bounded subset of X.

It is important to emphasize that since we assume that all constants in the
system’s definition are rational, the expressive power of PCD is not achieved
using the introduction of some uncomputable real numbers.

The Arithmetical Hierarchy

We review here some classical definitions from recursion theory (see [6]). The
arithmetical hierarchy consists of the classes Σ1,Σ2, . . . and Π1,Π2, . . . of sets
of integers defined inductively as follows: Σ1 consists of all the sets P ⊆ N
such that there exists a Turing machine that halts on an input n if and only
if n ∈ P . The class Πi consists of all the sets P such that P ∈ Σi and Σi+1 is

3

����

Figure 1: A 2-dimensional PCD system with 4 regions and an initial segment
of a trajectory from x to x′.

the class of all sets P defined as P = {n : ∃m 〈m,n〉 ∈ P ′} for some P ′ ∈ Πi,
where 〈〉 is some computable pairing function (i.e. a bijection from N×N to
N, a standard way to encode two dimensions using one).

The arithmetical hierarchy is infinite and it satisfies the strict inclusions
Πi ⊂ Σi+1 and Σi ⊂ Πi+1. The class Σ1 is sometimes called the class of
recursively enumerable (r.e.) sets. Due to the undecidability of the halting
problem for Turing machines, membership in some P ∈ Σ1 is only semi-
decidable, i.e., there is an algorithm which is guaranteed to terminate (and
say yes) whenever n ∈ P , but no algorithm will terminate for every n and
tell whether n ∈ P or not.

Recognition by PCDs

We will use PCD systems as recognizers of sets of integers as follows:

Definition 2 (Recognition by PCDs) A PCD recognizer is a tuple Ĥ =
(Rd, f, I, r,xa,xr) where:

• H = (Rd, f) is a PCD,

• I = [0, 1]×{0}d−1 is a one-dimensional subset of X (the “input port”),

• r : N → [0, 1] ∩Q is a recursive injective coding function, and

4

• xa,xr ∈ Qd−I are two distinct points (accepting and rejecting states).

We assume that f(xa) = f(xr) = 0.

The system Ĥ semi-recognizes a set P ⊆ N iff for every n, the trajectory
starting at (r(n), 0, . . . , 0) can continue forever (which means that it always
stays inside the domain of definition of f , and that it can continue from every
point) and that it eventually reaches xa iff n ∈ P . We say that Ĥ (fully)
recognizes P when, in addition, this trajectory reaches xr iff n 6∈ P .

In other words, every integer n is encoded into a distinct rational point
on the input port, and the membership of n in P is indicated by whether
the trajectory starting at this point settles in the accepting (rejecting) point
after a finite amount of time.
Remark: This notion of recognition is not much different from recognition
(acceptance) of sets by Turing machines. A TM is nothing but a discrete
dynamical system whose state-space is the set of all its configurations (state,
tape, head position). This system accepts an input n if the trajectory starting
at a configuration where n is encoded on the tape eventually reaches the
halting state.

3 PCDs Realize TMs

In this section we review some of the definitions and results of [3] concerning
the realization of Turing machines by PCD systems, or more generally the
realization of discrete transition systems by continuous dynamical systems.
By a transition systems we mean A = (Q, δ) where Q is a countable set of
states and δ : Q→ Q is a transition function.

Definition 3 (Realization of Transition Systems) A PCD H = (X, f)
realizes a transition system A = (Q, δ) if there exists an injective and surjec-
tive partial function π : X → Q such that δ(q) = q′ iff there is a trajectory
of H from π−1(q) to π−1(q′) that does not intersect the domain of π between
these two points.

The realization result uses the equivalence between TMs and two-stack
machines. A stack is an element of Γ∗ where Γ = {0, 1}. We define the
following two functions: push: Γ × Γ∗ → Γ∗ and pop: Γ∗ → Γ × Γ∗ as
push(v, S) = vS and pop(vS) = (v, S), where vS denotes the concatenation
of the symbol v and the string S.

5

Definition 4 (2PDA) A deterministic two-stack pushdown-automaton (2PDA)
is a transition system A = (Q × Γ∗ × Γ∗, δ) for some Q = {q1, . . . qn} such
that δ is defined using a finite collection of statements of one of the following
two forms:

qi: Sα :=push(v, Sα);
goto qj

qi: (v, Sα) :=pop(Sα);
if v = 0 goto qi0;
if v = 1 goto qi1;

where α ∈ {1, 2}.

The contents of a stack is denoted by S = s1s2 . . . where s1 is the top of
the stack. We define an encoding function ρ : Γ∗ → [0, 1] as

ρ(S) =

|S|∑

i=1

si2
−i.

It is easily verified that the stack operations have arithmetic counterparts
that operate on the representation:

S ′ = push(v, S) iff ρ(S ′) = (ρ(S) + v)/2

(S ′, v) = pop(S) iff ρ(S ′) = 2ρ(S)− v

Remark: We present here a simplified version of the construction in [3],
omitting some tedious details concerning the encoding of rational numbers
using bottom-less stacks.

Theorem 1 (Realization of 2PDAs [3]) Every 2PDA can be realized by
a 3-dimensional bounded PCD system.

Sketch of Proof: For sake of simplicity we will sketch only the 4-dimensional
construction. In [3] we introduced additional tricks to avoid the fourth di-
mension, but this paper deals with the infinite and small constants do not
matter.

We show first how one-stack PDAs are realized. Consider the three two-
dimensional sub-systems depicted in figure 2 and a trajectory segment start-
ing at x = (x, 0), x ∈ [0, 1] and ending at x′ = (x′, 1). It can be verified that
either:

6

�

����� 	 �������� �����
������

� � � � ����� �
��
������ ��
������ �����

Figure 2: The basic elements.

x′ = (x+ 1)/2 push 1
x′ = x/2 push 0
x′ = 2x− 1/2 pop

If x = ρ(S) at the “input port” (y = 0) of a push element, then x′ =
ρ(S ′) at the “output port” (y = 1) of that element where S ′ is the resulting
stack. For the pop element we have two output ports −1/2 ≤ x < 1/2
and 1/2 ≤ x < 3/2. If the top of the stack was 0 the trajectory reaches
the left port with x′ = ρ(S ′) − 1/2, otherwise it goes to the right port with
x′ = ρ(S ′)+1/2. In both cases the value of x′ (relative to the “origin” of the
port) encodes the new content of the stack.

Thus, in order to simulate a PDA we pick for every qi an element cor-
responding to its stack operation, place it with the origin in position, say,
(2i, 0, 0) and use the third dimension in order to connect the output ports
back to the input ports according to the goto’s (see figure 3). Finally the
state-mapping is defined as π(x, y, z) = (qi, S) iff y = z = 0, 2i ≤ x < 2i+ 1
and ρ(S) = x− 2i.

This construction generalizes naturally to 2PDAs. We define an encoding
function ρ̄ : Γ∗ × Γ∗ → [0, 1] × [0, 1] by letting ρ̄(S1, S2) = (ρ(S1), ρ(S2)).
This way every configuration of the two stacks can be encoded by a point
x = (x1, x2, 0) in a two-dimensional input port. The elements that simulate
the stack operations push(v, S1), push(v, S2), pop(S1) and pop(S2) operate
on the appropriate dimension according to the stack involved, and leave
the other dimension intact. As an example, an element corresponding to
push(0, S1) appears in figure 4. From this we can immediately conclude that
a 2PDA can be realized by a 4-dimensional PCD. ¥

7

�

��������� �"! #%$ #'& (

)

Figure 3: Simulating a PDA with 2 states, defined by: q1 : S :=push(1, S);
goto q2; q2 : (v, S) :=pop(S); if v = 1 then goto q2 else goto q1.

*+�,

+.-
/ +.-%01+�,�2

/ +43 - 05+�,�2

Figure 4: An element simulating the operation push(0, S1).

8

Corollary 2 (PCD and Σ1) Every Σ1 set P is semi-recognized by some
3-dimensional bounded PCD.

Proof: We take the 2PDA associated with P and assume w.l.o.g. that when-
ever it halts, it halts at a given configuration (q, S1, S2). By constructing H
as in the proof of theorem 1, encoding N into the input port and letting
xa = π(q, S1, S2) we obtain a semi-recognizing PCD. ¥

Computing a function by a PCD is a natural extension of deciding mem-
bership in a set. You just introduce an output port and use r−1 to decode
the result.

Corollary 3 (PCD and Recursive Functions) Every recursive function
ϕ : N× N → N can be computed by a 3-dimensional bounded PCD.

Proof: We take the 2PDA that computes ϕ where the inputs are written
each on one stack and the output is written on S1 and use theorem 1. ¥

Corollary 2 gives us the basis for climbing up the hierarchy. In order to
continue we need the following lemmata ordered according to their decreasing
difficulty:

1. From a PCD that semi-recognizes P one can construct a PCD that
recognizes P .

2. From a PCD that recognizes P one can construct

(a) a PCD that semi-recognizes {x : ∃y 〈x, y〉 ∈ P}, and

(b) a PCD that recognizes P .

4 From Semi-recognition to Recognition

The intuitive idea behind the first lemma is the following. Suppose H semi-
recognizes P . The trajectory corresponding to some n 6∈ P is wandering
forever in Rd without reaching xa. We will create a higher dimensional PCD
H′ such that H′ “mimics” H (in the projection) for a unit interval, then
it goes to some other regions, and comes back after having divided all the
variables by 2. Then it mimics H again on a smaller scale for a temporal
interval of length 1/2, then divides the variables by 2 and so on. Clearly
every diverging trajectory in H will reach the origin (0, . . . , 0) in H′ after a

9

6.7

6�8

Figure 5: A 2-dimensional trajectory in H and the projection of its “Zenon-
ified” corresponding trajectory in H′.

finite amount of time (and an infinite number of region switchings) and thus
H′ fully recognizes P (see figure 5). This resembles a Turing machine which
doubles its speed every step.

In order to gain some intuition for “PCD programming” let us first build
a PCD that divides a single variable x by 2 using an auxiliary variable y ini-
tialized to 0. The system is depicted graphically in figure 6 and its syntactic
description is given by the following set of “guarded commands”:

A : x > 0 ∧ y ≥ 0 −→ ẋ = −1, ẏ = 1/2
B : x ≤ 0 ∧ y > 0 −→ ẋ = −1, ẏ = −1
C : x < 0 ∧ y ≤ 0 −→ ẋ = 1, ẏ = −1
D : x ≥ 0 ∧ y < 0 −→ ẋ = 1, ẏ = 1

It can be easily verified that whenever started at some point (x, 0), the
system completes one cycle and returns to (x/2, 0). The time to complete
such a cycle is 2.5x and if we make k cycles we arrive at (2−kx, 0) within

2.5x
k−1∑
i=0

2−i time. If we let f(0, 0) = (0, 0), the trajectory starting at (x, 0),

spiralling infinitely many times in A,B,C,D during the temporal interval
[0, 5x) and staying in (0, 0) in the interval [5x,∞), is indeed a valid trajectory

10

9

:

;

< =

>

Figure 6: A 2-dimensional PCD for dividing a 1-dimensional quantity.

of the system according to definition 1, i.e. a solution to the initial value
problem of the differential equation (1). As we will see later, this can be
generalized to d variables using 4d regions and d+ 1 dimensions.

The functionality of the division system can be captured by the following
informal sequential pseudo-code:

repeat
A: y := x/2; x := 0
B: x := −y; y := 0
C: y := x; x := 0
D: x := −y; y := 0

until x = 0 ∧ y = 0

The last construction we need before we prove the main lemma is the
homogenization of a PCD (and a dynamical system in general). A dynamical
system is homogenous if it has the following property: if there is a trajectory
segment from x to x′ which takes t time, then, for every k ∈ (0, 1] there
exists a similar (in the geometrical sense) trajectory from kx to kx′ which
takes kt time.

Any PCD H = (Rd, f) can be converted into a homogenous system H0 =
(Rd+1, f 0) such that H-reachability from x to x′ implies H0-reachability from
(xd+1x, xd+1) to (xd+1x

′, xd+1) for every xd+1 ∈ [0, 1]. (We slightly abuse
notations: for x = (x1, . . . , xd) we use (x, xd+1) to denote (x1, . . . , xd, xd+1).)

Geometrically H0 is obtained from H by choosing a point as the origin
and replacing every d-dimensional region by a d+ 1-dimensional “pyramid”

11

Figure 7: A homogenization of a 1-dimensional system (left) and a 2-
dimensional system (right).

rooted at that point (see figure 7). Syntactically all you do is replace every
inequality of the form a · x ≤ b in H by

(a, 0) · (x, xd+1) ≤ bxd+1

and add the conjunct 0 ≤ xd+1 ≤ 1 to every definition of a region. Finally
every slope c is replaced by (c, 0).

Lemma 4 (Semi-Recognition ⇒ Recognition) From a bounded PCDH =
(Rd, f, I, r,xa,xr) semi-recognizing P one can construct a bounded PCD
H′ = (Rd+3, f ′, I ′, r′,x′a,x′r) that recognizes P .

Proof: Without loss of generality we can assume that our PCDs always
work in a bounded subset of Rd

+ sufficiently far from the origin (because of
boundedness the whole system can be translated to the positive side). We
augment the system with three additional variables: xd+1, h and y. The
first of these variables, xd+1, serves for homogenization and is treated as any
other xi during the division phase. The overall behavior of the system can
be captured using the following pseudo-code:

12

repeat
SimulateH;
if (result=Accept)
then return(Accept);

DivideXby2;
until x = 0;
return(Reject)

SimulateH stands for the simulation of the behavior of a homogenized version
of H for a duration determined by xd+1, using h as a timer to measure that
time. If H reaches its accepting state, the simulation terminates, returning
a positive result. Otherwise, DivideXby2 divides all the variables by 2 and
simulates H for xd+1/2 time and so on. The division procedure, described
using the pseudo-code below, uses the auxiliary variable y:

{initially x = x0, y = 0 }
for k := 1 to d+ 1

do
Ak: y := (−1)k+1xk/2;xk := 0;
Bk: xk := (−1)ky; y := 0;

od;
{now x = −x0/2, y = 0 }
Z: h := 0; {reset the “timer” h }
for k := 1 to d+ 1

do
Ck: y := (−1)d+k+1xk/2;xk := 0;
Dk: xk := (−1)d+ky; y := 0;

od;
{finally x = x0/2, y = 0, h = 0 }

The regions of H′ are constructed as follows. Every original region of H
is homogenized and the conditions y = 0 and h < xd+1 are added. All these
regions also satisfy x1, . . . , xd+1 > 0. In addition to the original derivatives
we have (ẋd+1, ḣ, ẏ) = (0, 1, 0). Therefore, whenever the system enters such
a region with xd+1 = c it simulates the original system for c time (see the
first phase, denoted by H, in the signal diagram of figure 8). The detailed
definition of the new regions is given below for every k, 1 ≤ k ≤ d+ 1 (only
non-zero derivatives are written down):

13

Ak :





x1, . . . , xk−1 < 0
xk+1, . . . , xd+1 > 0

xk > 0
(−1)ky ≤ 0

−→ ẋk = −1, ẏ = (−1)k+1/2

Additional condition for A1 : h = xd+1

Bk :





x1, . . . , xk−1 < 0
xk+1, . . . , xd+1 > 0

xk ≤ 0
(−1)ky < 0

−→ ẋk = −1, ẏ = (−1)k

Ck :





x1, . . . , xk−1 > 0
xk+1, . . . , xd+1 < 0

xk < 0
(−1)d+k+1y ≤ 0

−→ ẋk = 1, ẏ = (−1)d+k+1

Additional condition for C1 : h = 0

Dk :





x1, . . . , xk−1 > 0
xk+1, . . . , xd+1 < 0

xk ≥ 0
(−1)d+k+1y > 0

−→ ẋk = 1, ẏ = (−1)d+k

In addition we add a special region Z (for resetting h to 0):

Z :





x1, . . . , xd+1 < 0
y = 0
h > 0

−→ ḣ = −1

For every k, a passage through the sequence of regions Ak, Bk, Ck, Dk

would result in dividing xk by 2. However we do firstA1, B1, A2, B2, . . . , Ad+1, Bd+1

making all variables negative, then we enter Z, reset h to zero and then com-
plete C1, D1, C2, D2, . . . , Cd+1, Dd+1.

The reader should verify the example in figure 8 for d = 1, where (x1, x2)
starts the division phase at (1, 1) and terminates it at (1/2, 1/2), ready to

14

simulate the (scaled-down) behavior of H, now for 1/2 time interval. Clearly
the trajectory of H′ converges in finite time to (0, . . . , 0) which we can con-
sider as the rejecting point x′r. We should take care of not treating accepting
trajectories (those that reach xa in H) this way. This is done by adding the
condition x 6= xaxd+1 to each of the H-regions defined above. Then when
x = xaxd+1 we have two additional regions: if h > 0 we just lower h to zero.
When h = 0 we let ẋ = xa and ẋd+1=1 until xd+1 = 1. This way we reach
the point (xa, 1, 0, 0) which is the new accepting point x′a. ¥

5 Quantifier Elimination

Lemma 5 (Quantifier Elimination) Let H be a bounded PCD in Rd that

recognizes a set P . Then one can construct a bounded PCD H̃ in Rd+2 that
semi-recognizes the set P̃ = {n : ∃m〈n,m〉 ∈ P}.

Proof: The idea of the proof is standard: given n we just test one after the
other all the possible values of m and use the PCD H with inputs 〈n,m〉

to verify whether these inputs belong to P . For any input n ∈ P̃ we will
eventually find a good m while for n 6∈ P̃ the process will continue forever.
This is captured by the pseudo-code:

input(n);
m := 0;
repeat

if H(〈n,m〉) =Accept

then
return(Accept)

else
m := m+ 1

forever

In order to avoid an unreadable collection of linear inequalities we will
describe the PCD H̃more schematically – see figure 9. Bold line segments and
squares in the figure stand for one- and two-dimensional ports respectively;
arrows denote connections. Ellipses stand for PCDs that compute various
recursive integer functions (based on corollary 3).

The only block that needs a special description is C. This block is a
direct product of H and the line segment I = [0, 1]. When an input (s, s′) is

15

?.@

?�A

B

C

D E @ FG@
H I J K L M N

I
I�O�J

I�O�J

I
I�O�J
H
P I�O�J

H

P I�O�J

P I�O�J

H

I

H

Q AR AQ @R @SFTAE A
U

D
V

Figure 8: An initial part of the behavior of H′ when d = 1. The regions
through which the system passes are written below (H denotes any region in
which H′ simulates H).

16

W

XZY%["\
]

^`_ba cd^

e

fhgikj�fbl5m"n

f
oqp [sr�t

u ^%l ^ _�v

w

x

^

^ _
^

y

^zc|{ Y ps} t

j~f�l5�hn�gikj~f�l1���d��n

^�c�j~f�l5��n

� ���

� �.�b� xh�

� � � � x��

Figure 9: The PCD H̃ semi-recognizing P̃ = {n : ∃m〈n,m〉 ∈ P}.

provided to this block the variable s is preserved unchanged (for future use)
and s′ is used as an input for a copy of H. So the trajectory exits C either
at {xa} × I (if H accepts s′) or at {xr} × I otherwise.

Let us describe the trajectory entering H̃ through the input port at a
point r(n). First s = 〈n, 0〉 is calculated by A. The block B creates another
copy of s denoted by s′ (that is, the trajectory exits B through its two-
dimensional output port at the point (r(s), r(s))). This copy is used as input
for the original PCD H in block C. Meanwhile s is preserved for further use.
If 〈n, 0〉 ∈ P , the trajectory exits C at {xa} × I and then goes to the new

accepting point x̃a. In the case when 〈n, 0〉 6∈ P further search is necessary
and the trajectory goes from {xr}×I to the block D which transforms 〈n, 0〉
to 〈n, 1〉. This last value is used at the next iteration of the loop ad infinitum.
Recall that all these blocks are recursive and can be realized according to
corollary 3.

If n ∈ P̃ then an m satisfying 〈n,m〉 ∈ P exists and the mth iteration of

the main loop the PCD H̃ will stop in the accepting point x̃a. Otherwise
H̃ will check all the natural m’s in turn and will never halt. Hence H̃ does
semi-recognize the set P̃ . The system H̃ fits in d+ 2 dimensions. In fact its
largest block is C which uses d dimensions for H, one dimension for s and
one more dimension for merging incoming and outgoing connections. ¥

17

Lemma 6 (Complementation) From a PCD that recognizes P one can
construct a PCD that recognized N− P .

Proof: Exchange xa and xr. ¥

From this we conclude:

Theorem 7 (Main Result) Every set P in the arithmetical hierarchy can
be recognized by a PCD system of finite dimension and a finite number of
regions.

The number of dimensions used to recognize P ∈ Σi ∪ Πi is 5i+ 1.

6 Discussion

What is the significance of this result? On the one hand we have a rather
simple class of dynamical systems which are “locally effective” in the follow-
ing sense: Given a description of the system, and a rational initial point x,
there exists some positive ε > 0 such that, for every ∆t, 0 < ∆t < ε, one can
calculate precisely the point x′ which a trajectory starting at x will reach af-
ter time ∆t. This is unlike more general continuous dynamical systems where
one can only approximate trajectories numerically. On the other hand these
systems give rise to highly undecidable reachability problems. The reasons
for this “expressiveness excess” of the model should worry researchers in hy-
brid systems and urge them to find ways to tackle these problems, either by
restricting the models or by changing the questions. One common solution is
to exclude Zeno trajectories from the semantics of the system which brings
back the reachability problem into the level Σ1 of simple undecidability: you
just need to simulate the system forward (as described in [3] for the two-
dimensional case) and see whether the target point is reached within a finite
number of discontinuities. Other approaches, such as “robust” (in the sense
of insensitivity to small perturbations) realizations of transition systems by
PCDs are currently investigated.

Beside the negative results, PCDs suggest an interesting model of compu-
tation which could theoretically (if we ignore physical limitations concerning
the intrinsic imprecision of measurements) decide every statement in first-
order arithmetics, i.e., solve every open problem in Number theory. This
model which is more geometrical and topological in nature, may bring new
insights on computability and synchronization and promote a new style of

18

analog computation. The art of PCD programming is to ensure that regions
do not overlap and that the derivatives takes you where you want, usually
using other variables as timers (or loop delimiters). For example, parallel
sorting of n numbers can be implemented in linear time by PCDs using
3n/2 + 1 dimensions.

As the reader might have noticed, the construction of lemma 4 involves
an increase in the ordinality of the number of discontinuities in a trajec-
tory. Higher levels of the hierarchy will lead to trajectories whose number
of breakpoints are higher ordinals. This fact connects our work with other
investigations in higher recursion theory (see [7]). Recently, O. Bournez [4],
showed that the ordinality of the number of intersections with boundaries in
a PCD system is bounded by a function of the number of dimension, and
hence gave a lower bound on the number of dimensions needed to realize each
level in the hierarchy (in fact, this holds only for PCDs whose limit points are
always rational; otherwise, Bournez has shown [5] that all the hierarchy can
be realized in 5 dimensions). This shows, in particular, that 3-dimensional
PCDs capture exactly the r.e. sets.
Acknowledgement This paper answers a question posed to us by Philippe
Darondeau.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The Algorithmic Analysis
of Hybrid Systems, Theoret. Comput. Sci. 138 (1995), 3–34.

[2] P. Antsaklis, W. Kohn, A. Nerode and S. Sastry (Eds.), “Hybrid Systems
II”, Lecture Notes in Comput. Sci., Vol. 999, Springer, 1995.

[3] E. Asarin, O. Maler and A. Pnueli, Reachability Analysis of Dynamical
Systems having Piecewise-Constant Derivatives, Theoret. Comput. Sci.
138 (1995), 35–66.

[4] O. Bournez, Some Bounds on the Computational Power of Piecewise Con-
stant Derivative Systems, in , “Proc. ICALP’97” (P. Degano, R. Gorrieri
and A. Marchetti-Spaccamela, Eds.), Lecture Notes in Comput. Sci., Vol.
1256, Springer, 1997, 143–153.

19

[5] O. Bournez, Achilles and the Tortoise Climbing Up the Hyper-
arithmetical Hiearchy, Theoret. Comput. Sci. (1999), to appear.

[6] H. Rogers, “Theory of Recursive Functions and Effective Computability”,
McGraw-Hill, 1967.

[7] G.E. Sacks, “Higher Recursion Theory”, Springer, 1990.

20

