Reasoning About Pattern-Based XML Queries

Amélie Gheerbrant Leonid Libkin', and Cristina Sirangefo

1 School of Informatics, University of Edinburgh
2 LSV, ENS-Cachan INRIA & CNRS

Abstract. We survey results about static analysis of pattern-basedeguover
XML documents. These queries are analogs of conjunctiveegieheir unions
and Boolean combinations, in which tree patterns play the @b atomic for-
mulae. As in the relational case, they can be viewed as bahegiand incom-
plete documents, and thus static analysis problems camealsizwed as finding
certain answers of queries over such documents. We lookisfiahility of pat-
terns under schemas, containment of queries for variouarésaof XML used
in queries, finding certain answers, and applications depatbased queries in
reasoning about schema mappings for data exchange.

1 Introduction

Due to the complicated hierarchical structure of XML docuisend the many ways in
which it can interact with data, reasoning about XML datalbexsome an active area of
research, and many papers dealing with various aspectatiaf ahalysis of XML have
appeared, see, e.g.[1,6,12,16-18, 24, 26,27, 29].

As most querying tasks for XML have to do with navigation thgh documents,
reasoning/static analysis tasks deal with mechanismpémifying interaction between
navigation, data, as well as schemas of documents. Navigatechanisms that are
studied are largely of two kinds: they either describe p#thsugh documents (most
commonly using the navigational language XPath), or thegideetree patterns

A tree pattern presentgartial description of a tree, along with some variables that
can be assigned values as a pattern is matched to a comptetaelot. For instance, a
patterna(z)[b(x), c(y)] describes a tree with the root labelednd two children labeled
b andc; these carry data values, so that those inittde and thé-node are the same.
This pattern matches a tree with recénd childrerb andc with all of them having data
valuel, for instance; not only that, such a match produces the {uple of data values
witnessing the match. On the other hand, if in the treetaied thec nodes carry value
2, there is no longer a match.

We deal with patterns that are naturally tree-shaped. Ehiontrast with some
of the patterns appearing in the literature [9, 10] that ke tthe shape of arbitrary
graphs (for instance, such a pattern can say that we havenade, that hag andc
descendants, that in turn have the salescendant: this describes a directed acyclic
graphrather than a tree). In many XML applications it is guiatural to use tree-shaped
patterns though. For example, patterns used in specifyagpmngs between schemas
(as needed in data integration and exchange applicatioesguzgh [3,5, 7]. It is also

natural to use them for defining queries [4, 26] as well as pac#gying incomplete
XML data [8].

In database theory, there is a well-known duality betweetigtalescriptions of
databases (or databases withompleteinformation), andconjunctive queriesLike-
wise for us, patterns can also be viewed as basic queriebeialiove example, the
pattern returns pairér,y) of data values. Viewing patterns as atomic formulas, we
can close them under conjunction, disjunction, and quaatitin, obtaining analogs of
relational conjunctive queries and their unions, for insta

The main reasoning task we deal withdgntainmenof queries. There are three
main reasons for studying this question.

— Containment is the most basic queaptimizationtask. Indeed, the goal of query
optimization is to replace a given query with a more efficieat equivalent one;
equivalence of course is testing two containment statesnent

— Containment can be viewed as findiogrtain answer®ver incomplete databases,
using the duality between queries and patterns. A pattele@scribes an incomplete
database; if, viewed as a query, it is contained in a q@ethen the certain answer
to Q overr is true, and the converse also holds. This correspondenedliknown
for both relations and XML.

— Finally, containment is the critical task mhata integration specifically in query
rewriting using views [22]. When a query needs to be rewritbeer the source
database, the correctness of a rewriting is verified by dhgakuery containment.

The plan of the survey is as follows. We first explain the baslevant notions in
the relational case, particularly the pattern/query dyald the connection with incom-
plete information. We then define tree patterns, preseirtdtessification, and explain
the notion of satisfaction idata treesi.e., labeled trees in which nodes can carry data
values. After that we deal with the basic pattern analysibiem: their satisfiability.
Given that patterns are tree-shaped, satisfiability pes s#vial, but we handle it in the
presence of a schema (typically given by an automaton).

We then introduce pattern-based queries, specifically ogsabf conjunctive
queries, their unions, and Boolean combination, and surgsylts on their contain-
ment. Using those results, we derive bounds on finding ceataswers for queries over
incomplete documents. Finally, we deal with reasoningddskpattern-based schema
mappings, which also rely on a form of containment statement

2 Relational patterns and pattern-based queries

Tableaux and naive databasefelational patterns are known under the name of
tableauxf one views them as queries, andrave tablesf one views them as data. The
instance below on the left is a usual relation, and the onéemnight is a tableau/naive
table:

Some of the constant entries in relations can be replacediigblesin tableaux. For-
mally, we have two domaing; of constants and of variables, and a relational vo-
cabularyo. A relational instance is an instanceobverC, and a naive database is an
instance ove€ U V. In case of a single relation, we talk about naive tabldserahan
naive databases.

A tableau has a list of variables, among those used in itctaleas ‘distinguished’
variables; that is, formally it is a paiD, z), whereD is a naive database ands a
tuple of variables among those mentionedin

As we already mentioned, there is a natural duality betweeomplete databases
and conjunctive queries. Each table@, z) can be viewed as a quep(z) =
3y A D wherey is the list of variables inD exceptz, and A D is the conjunction
of all the facts inD. For instance, ifD is the naive table in the above picture, the query
associated witfD, x) is Q(z) = Jy3z D(1,x,3,2) A D(5,y,7,x). Likewise, every
conjunctive queryy has a tableatab(Q) which is obtained by viewing conjuncts in it
as a database, and making the list of free variables its\digghed variables.

HomomorphismsA key notion for naive databases and tableaux is thatwiaomor-
phism Given two naive databasé¥ and Dy, a homomorphismk between them is a
mappingh fromV to C U V defined on all the variables iR, so that, ifR is a relation
symbol in the vocabulary andis a tuple in the relatio® in D,, thenh(a) is a tuple
in the relationR in D. Of courséi(ay, .. ., ay) stands fofh(aq), .. ., h(ay)), and we
assume:(c) = ¢ whenever € C.

If his @ homomorphism fron; to Do, we writeh : D; — D>. Suchamap is a
homomorphism of two tableawD, z1) and (D2, =) if, in addition, h(z1) = Zo. If
we need to state that there is a homomorphism, but it is nobiitapt to name it, we
will simply write Dy — D».

Homomorphisms can also be used to give semantics of incoengidgabases. It is
assumed that a naive databd%eepresents all complete databag&g(i.e., databases
overC) such that there is a homomorphigm: D — D’. The set of all suclD’ is
denoted by DJ.

Note that the satisfiability problem for relational patterexpressed via naive
databases — whether the $&1] is not empty — is trivial, the answer is always yes. In
the presence of constraints on the schema it can becoméyectainplicated problem,
sometimes even undecidable.

Containment Containment asks if for two querie§); and @Q», the result ofQ; is
contained in the result @), on every input; equivalence asks if the results are always
the same. We writ€); C @2 and@; = @, to denote containment and equivalence. Of
course equivalence is just a special case of containmignt= Q- iff Q1 C Q2 and

Q2 C Q1.

The containment problem for conjunctive queries is solviedhomomorphisms.
Given two conjunctive querie@; and@-, we have); C Q- iff there is a homomor-
phism# : tab(@Q2) — tab(@); this makes the problem NP-complete [13].

In addition to conjunctive queries (sometimes abbreviate€Qs), we shall con-
sider their unions and Boolean combinations. The formessgldenoted by UCQs
sometimes, is obtained by closing CQs under union (i.€);ifQ> are UCQs produc-
ing relations of the same arity, théh, U Q)5 is a UCQ). For Boolean combinations of

conjunctive queries (abbreviated BCCQs), the additiolosire rules are th&), NQ2,
Q1 U Q2, and@; — Q2 are BCCQs.

For these classes containment is still decidable, and tmplexity stays in NP for
UCQs given explicitly as unions of CQs, and goes upifbcomplete for BCCQs [28].

Certain answers and naive evaluatiomNow suppose we have a naive datab&sand
a queryQ); assume thaf) is Boolean. The standard notion of answering a query on an
incomplete database is thatadrtain answers

certairiQ. D) = \{Q(D)| D' € [D]}

Let @ be a conjunctive query. Then, for an arbitrary databiaseve haveD’ = Q iff
there is a homomorphisii : tab(Q)) — D’. Thus, for an incomplete databaBg we
have the following easy equivalences:

certaif@Q, D) =true & VD' € [D]: tab(Q) — D' & tab(Q) = D & D EQ

Thus, to compute certain answers, all one needs to do is @aquery on the incomplete
database itself. This is referred torag@ve evaluationNote that thedata complexityf
finding certain answers is tractable, as it is the same agatiaih of conjunctive queries.

The fact that naive evaluation works for Boolean conjwsotjueries extends in two
ways: to UCQs, and to queries with free variables [21]. Insavay (for the semantics
we considered) the result is optimal within the class oftiefeal algebra queries [23].
In particular, naive evaluation doest work for BCCQs (even though it was shown
recently that data complexity of finding certain answerdf6CQs remains polynomial
[19]).

3 Trees, patterns

3.1 Datatrees

Data trees provide a standard abstraction of XML documeittsdata. First we define
their structural part, namely unranked trees. A finite ukeghtree domain is a non-
empty, prefix-closed finite subsét of N* (words oveN) such thats - ¢ € D implies

s-j € Dforall j < iands € N*. Elements of unranked tree domains are called nodes.
We assume a countably infinite sétof possible labels that can be used to label tree
nodes. An unranked tree is a structgfg |, —, \), where

— D is afinite unranked tree domain,

— | isthe child relations | s-ifors-i € D,

— — is the next-sibling relations -7 — s- (i + 1) fors- (i + 1) € D, and
— A : D — Listhe labeling function assigning a label to each node.

We denote the reflexive-transitive closure|aby |* (descendant-or-self), and the
reflexive-transitive closure of> by —* (following-sibling-or-self).

In data trees, nodes can carry not only labels butddta valuesGiven a domaii®
of data values (e.qg., strings, numbers, etcdata trees a structure = (D, |, —, A, p),
where(D, |, —, A\) is an unranked tree, and: D — C assigns each node a data value.
Note that in XML documents, nodes may have multiple attébubut this is easily
modeled with data trees.

3.2 Patterns

To explain our approach to defining tree-shaped pattermsider first data trees re-
stricted just to the child relation, i.e., structukds, |, A, p). They can be defined recur-
sively: a node labeled with € £ and carrying a data value € C is a data tree, and
if ¢t1,...,t, are trees, we can form a new tree by making them children ofla mdth
labela and data value.

Just like in the relational case, patterns can also useblasidrom)’. So our sim-
plest case of patterns is defined as:

m=a(x)[r, ..., 7 1)

with ¢ € £ andxz € C U V. Here the sequence |n..] could be empty. In other words,
if m1,...,m, IS a sequence of patterns (perhaps emptyg, £ andz € C UV, then
a(x)[m,...,my,] is a pattern. Ifz is the list of all the variables used in a patternwe
write 7(z).

We denote patterns from this class byt (]). As with conjunctive queries, the
semantics can be defined via homomorphisms of their treeseptations [8, 19], but
here we give it in a different, direct way. The semantics @f) is defined with respect
to adatatree = (D, |, —, A, p), anodes € D, and a valuatiow : z — C as follows:
(t,s,v) Ealx)[m(Z1),...,m(Tn)] iff

— A(s) = a (the label ofs is a);
v(z) if xisavariable
T if x is a data valug
— there exist not necessarily distinct childretiy, . . ., s-4,, of sso that(t, s-i;,v) |=
7;(Z;) for eachj < n (if n = 0, this last item is not needed).

- p(s) =

We write (¢,v) = «(z) if there is a nodes so that(t,s,v) = «(Z) (i.e., a pattern
is matched somewhere in the tree). Als@it= v(z), we writet |= «(v) instead of
(t,v) = n(Z). We also writer (¢) for the set{v | t = 7 ()}.

A natural extension for these simple patterns is to incluath kertical and horizon-
tal navigation, resulting in the clagaT(|, —):

7

W
with a € £ andz € CUV (and the sequences, as before, could be empty). The semantic
is given by:

m— ... T

= (t,s8,v) E a(x)[pu1(Z1), ..., un(Zn)] if a(x) is satisfied ins by v as before and

there exist not necessarily distinct childret,, . . ., s-i,, of s so that(t, s-i;,v) =
w;(Z;) for eachj < n.
- (t,s,v) E m(Z1) — ... — 7nm(T,) if there existconsecutivesiblingss; —

S92 — ... — Sy, With s; = s, so that(t, s;, v) | m;(Z;) for eachi < m.

Next we consider more expressive versions with transitiveure axeg* (descen-
dant) and—* (following sibling). As in [3, 19], we define general pattefoy the rules:

= a(@) [, pl /s 3)

PWI=ET~s o~ T

Herea,x andn are as before, and stands for a sequence of trees, i.e., a forest such
that the roots of its trees asequentiakiblings in a tree, and eaeh is either— or —*.

The class of such patterns is denotedray ({}, =), with |} we use both types of
downward navigation|(and |*) and=- meaning that we use both types of horizontal
navigation (- and—*). The semantics is extended as follows.

- (t,8,v) = al@)p, ..., 1l /11, - - -, 1] if the satisfaction ofi(x) in nodes is as

before, and there exist not necessarily distinct children, . .., s,, of s such that
(t,si,v) = w; foreachi < n, and there exist not necessarily distinct descendants
sh,...,s) of ssuchtha(t, s}, v) = p for eachi < k.

- (t,s,v) E m(ZT1) ~ ...~ m,(Zn,) if there is a sequence, . . ., s, of nodes
with s; = s so that(¢, s;,v) | m;(Z;) for eachi < m, ands; — s;+1 whenever
theith~» is —, ands; —* s;5.1 whenever théth ~» is —*.

Notice that the semantics of patterns allows differento be mapped into the same
nodes in atree.

We also consider a clagaT({}) of patterns which is a restriction of the most general
patterns to downward navigation only. These are defineddgthmmar

m=a(x)[n,...,7/)/[r, ..., 7 4)

where each of the sequences of patterns can be empty.
We shall be using standard shorthand notatiaiis) /= stands fora(x)[x], while
a(x)//m denotesy(z)//[r], anda(x) /7 //7’" stands fow(x)[x]//[7'].

Finally, we also look at patterns withildcard. In those patterns, we assume that
labels come fronL U {_}, where_is a new wildcard label that matches every label in a
data tree. That is, if is a variable,(z) is true in(¢, s, v) if v(z) = p(s), andifcis a
constant, (c) is true in a node of a treet if p(s) = c. In other words, wildcard allows
us to disregard the label matching condition. We shall write(c, _) for patterns that
use axes frorr and wildcard.

4 Basic analysis of patterns

We now look at the satisfiability of patterns. For a set off axes we look at the problem
SAT(o): its input is a pattermr € PAT(o), and the question is whethett) # 0 for
some data treg i.e., whether there is a data tresuch that = (o) for some valuation
v of free variables ofr. In other words, we want to know whether a pattern is realezab
in some data tree.

Since our patterns are essentially tree-shaped, the pnaddeformulated above is
trivial for them: the answer is trivially yes as one just i@ pattern into a tree. What
is more interesting for us is satisfiability withsehema

As common in the study of XML [25], we abstract a schema asramanked tree
automaton Such an automaton over trees labeled with letters from & fadphabet”
isatupled = (S, X, 4, F), where:

— S is afinite set of states,

— F C Sisthe set of final states, and

-0 : 8 x X — 257 is a transition function; we require thats, a)’s be regular
languages ove$ for all s € S anda € Y. For reasoning about complexity, we
represent values of the transition function by NFAs.

Arun of A over atreg = (D, |, —, \) (note that automata do not talk about data
values) is a functiop 4 : D — S such that for each nodewith n childrenv -0, ..., v-

(n — 1), the wordpa(v - 0)---pa(v - (n—1))isin the languagé(p(v), A(v)). Of
course, for a leaf labeleda this means that could be assigned statdff the empty
word e is in §(s,a). A run is accepting ifo4(e) € F, i.e., if the root is assigned an
accepting state. A treeis accepted byA if there exists an accepting run gf on .
The set of all trees accepted byis denoted byL(A). A data tree is inL(.A) iff its
“data-free” part is inL(.A) (i.e., the tree obtained by simply dropping the data-value
assigning functiom).

The problem we look at now SAJi(o): its input consists of a patterne PAT (o)
and an automatos, and the question is whether there is a ttee L(.A) such that
m(t) # 0.

There are different versions of this problem depending and the features allowed
in the automatord; essentially all of them are known to be NP-complete. Thésilte
has appeared several times in the literature in differegarimations [5, 7—10]. For the
definition of patterns as given here, the directly applieadoie is the following result
from [8].

Theorem 1. The problemSATu(o,) is in NP. Moreover, the problen$ATay(]) is
already NP-complete, as is the proble®AT..(|, —,-) restricted to patters without
variables.

In fact the results hold if automata are given as DTDs, ixgreded context-free
grammars (and rather simple ones, see [8]). The case of gATrestricted to trees
without variables is tractable though, as such a pattermeafficiently translated into
an automaton, and the problem is reduced to checking noiregsptof the product of
two automata.

The upper NP bound is proved by a “cutting” technique: it showat if there is a
data tree € L(.A) in which the pattermr is satisfied, then there is one which is not too
large in terms ofr and.A (a low degree polynomial).

5 Pattern-based queries

The most fundamental static analysis question is querywatgnce/containment. As in
the relational case, we consider conjunctive queriesy thdons, and Boolean com-
binations. However, now the role of atomic formulae is pthyy patterns. That is,
pattern-based conjunctive XML queries are obtained byimdppatterns by conjunc-
tion and existential quantification. Since we have difféx@asses of patterrsar (o),
we have different classes of conjunctive queries denote@®yo). More precisely,
CQ(o) queries are of the form:

Q) = Iy _/\Wz'(ii) (5)

where eachr; is aPAT (o) pattern, and each; is contained inz, §. The semantics is
standard{t,v) E Q(z) if there is an extension’ of valuationv to variablesy such
that (¢,v') | m(z;) for everyi < n. That is to say, one evaluates all thgt¢) and
then combines the results as prescribed by the conjunctig¢b)j using the standard
relational semantics. We also writé= Q(?) if (¢,v) E Q(Z) with v(Z) = ¥ and, as
usual,Q(t) for {v | t E Q(?)}.

Observe that if the set of axes containg* then we can restriad€Q(o, -) to the
conjunctive queries which use a single pattern, i.e. qaesfehe form3gn(z, 7). In
fact any query inCQ(c,) is equivalent to a single-pattefiQ(o,) query: it suffices
to connect all patterns,, ..., of the query as descendants of a common wildcard-
labeled root.

As in the relational case, we extefif)s by taking their union (to the clagsCQ)
and Boolean combinations (to the cl&SCQ). Formally, a query fronrUCQ(o) is of
the formQ(z) = Q1(Z)U...UQn(Z), where eacl); (Z) is aCQ(o) query. It returns
the union of answers to thg;’s.

Queries in the clasB8CCQ(o) are obtained as follows: take some queries
Q1(Z),...,Qm(Z) from CQ(c) and consider a Boolean combination of them, i.e.,
close CQs under operationsN Q’, Q U Q’, and@ — Q'. The semantics is extended
naturally, with operations interpreted as intersectionion, and set difference, respec-
tively.

The answer to a quer§)(z), from any of the above classes, on a data trée
defined ag)(t) = {v(z) | (t,v) E Q(Z)}. Note that our definitions of query classes
ensure thaf)(¢) is always finite.

The containment problem is formally stated as follows:

PROBLEM: CONTAINMENT-CQ(0)

INPUT: queriesR(z), Q'(z") in CQ(o);
QUESTIONiISQ C Q'?

If instead of queries ilCQ(c) we use queries iIVCQ(c), we refer to the prob-
lem CONTAINMENT-UCQ(o) and, if we use queries froBCCQ(c), we refer to the
problemCcONTAINMENT-BCCQ(0).

Note that one can look at satisfiability problesys-cQ, SAT-UCQ, andSAT-BCCQ,
where the input is a quer from a class and the question is whetldggit) # 0 for
some tree. For the same reason as for patterns, the proklemsqQ and SAT-ucQ
are trivial: such queries are always satisfiable. The pmidaT-8ccq is the same
as CONTAINMENT-BCCQ. Indeed, given 8CCQ(o) queryQ, it is not satisfiable iff
@ is contained i) — Q. Conversely, given twBCCQ(o) queriesQq, Q2, we have
Q1 C Q. iff Q1 — Q2 is not satisfiable. The latter connection is actually imaotfor
providing upper bounds for containment as we shall deal satisfiability instead.

6 Containment of pattern-based queries

We now look at the containment problems described in theiguevsection and start
with a general upper bound. The following was shown in [14].

Theorem 2. The problenCONTAINMENT-BCCQ({}, =, _) is in IT5.

The proof shows that the probleanT-BCCQ({, =, -) is in II%. Satisfiability of
BCCQs can easily be reduced to simultaneous satisfiabflayGQ andunsatisfiability
of a UCQ. For this, we need to guess a witness#yéiegen satisfiability of a CQ can be
done in NP and unsatisfiability of a UCQ @oNP, giving us the bound. One can still
use the cutting technique to reduce the size of this treeghexythis time the size is
not polynomial but rather exponential. However, the onljeots of exponential size are
long non-branching paths in the tree, so they can be cayefdlabeled and encoded
by polysize objects in a way that checking satisfiability osatisfiability of CQs and
UCQs can still be done with the same complexity as before.

The next obvious question is about matching lower boundsyTan be shown
with the simplest form of navigation, or, alternativelytwiall the navigation but just
for CQs [14].

Theorem 3. — The problenCONTAINMENT-BCCQ(]) is I15-complete.
— The problenCONTAINMENT-CQ({}, =) is IT5-complete.

Thus, we already see a big difference in the containmeni@nofor XML pattern-
based conjunctive queries, which/i§ -hard, and relational CQs, for which the problem
isin NP. The question is then when we can lower the compleXitpntainment to NP,
to match the relational case.

One way to do so is to use the standard homomorphism techidgiknow it will
not work for all patterns due to complexity mismatch, butyagrs it will work for some.
With eachCQ(o) query @, we can associate a tabletab(Q) which is essentially
an incomplete tree obtained by parsing the pattern@.imThe full (and completely
expected) definition is given in [14]; here we just give aunstrating example. Suppose
we have a pattern(z)[b(y) — c(z)]//d(y). The tableau is an incomplete tree with
four nodessy, s9, s3, s4 labeleda, b, ¢, d, respectively. The functiop assignsr to s;
andss, andy to s, andsy. Finally the following hold:s; | so, s1 | s3, s2 — s3,and
s1 1" s4.

Without transitive-closure axes, the standard connedi&ween containment and
tableaux homomorphism continues to work.

Theorem 4. For queries fromCQ(]) and CQ(|, —), we haveR; C Q- iff there is
a homomorphism from t&f),) to tab(Q;). In particular, bothCONTAINMENT-CQ(|)
andCONTAINMENT-CQ(/, —) are NP-complete.

Itis also possible to show that these results extend to UG§psg techniques in the
spirit of [28].

We know thatCONTAINMENT-CQ({},=) cannot be in NP (otherwise NP and
CONP would be the same). But it turns out thabNTAINMENT-CQ({}, —) does
stay in NP. This, however, cannot be shown by exhibiting a drorphism from
tab(@2) to tab(@,). Consider, for instance, queri€y = 3z a(x)//b(x)[c(x)] and
Q2 = 3z a(x)//c(x). While itis easy to see th&); C Q», there is no homomorphism
from tab(Q-) to tab(Q1). However, if we defingab*(Q) by replacing relation * in
tab(Q) by the transitive closure of the union ofand | *, we do get a homomorphism
from tab*(Q2) totab™(Q1). In fact, [14] showed:

Proposition 1. For queries fromCQ({}, —), we havel; C Qs iff there is a homomor-
phism from tab(Q-) to tab*(Q;). In particular, CONTAINMENT-CQ({}, —) remains
NP-complete.

When wildcard is added, things change dramatically. Camsir instance, two
Boolean querie®); = r[a,b] and@Q, = r[- — _]. We know@; C Q- but there is
no homomorphism between the tableau asain(),) the relation— is empty. It is
possible to recover the result abaubdNTAINMENT-CQ(|) and CONTAINMENT-CQ(]
,—) when wildcard is useéxceptat the root of the pattern (by again modifying the
tableau and establishing a homomorphism) but beyond tilatis known. In fact in
the presence of wildcard existing results do not extend t@QE€ven with restriction
on the use of wildcard: the proble@ONTAINMENT-UCQ(|, —, -) is II}-complete, as
iS CONTAINMENT-UCQ({}) with wildcard used anywhere except the root.

As we did before, we can relativize the containment problena tschema ex-
pressed as an unranked tree automaton. Such a problemafedi|gain by subscript
AUT), takes as an input two querié€s , Q2 and an automatos, and checks whether
Q1(t) C Q2(t) for everyt € L(A). The addition of schemas adds one exponent to the
complexity.

Theorem 5. The problenCONTAINMENT-BCCQuu({}, =, -) is in 2EXPTIME. Further-
more,CONTAINMENT-CQq({}, =) is already ExPTIME-hard.

Finally, one can extend queries with inequality comparssohdata values. This
makes the problem undecidable for BCCQs and all the axesy@®s with| and | *
under schemas.

Pattern containment vs XPath containméFtiere has been significant interest in con-
tainment of XPath queries, see, e.g., [29] for a survey. hega, pattern queries con-
sidered here are incompatible with XPath: our queries ndtiples of data values, while
XPath queries return-tuples of nodes, for < 2. However, the cases of Boolean XPath
queries (i.e.n = 0) and Boolean pattern-based queries are indeed compaaableye
offer a comparison here.

The closest language to the classes we consider here isatmént of XPath
calledXP in [27]. Boolean queries fro P (with data variables and existential seman-
tics) are tightly related to Boolean queries frai@Q({, -). In particular, any Boolean
UCQ},-) query (possibly with data inequalities) can be viewed as al&m XP
query. Conversely, any BooleatP query written in disjunctive normal form can be
viewed as a BoolealvCQ({},-) with inequalities, but with an additional restriction
that patterns be evaluated at the root.

It was shown in [27] that Boolean containmentXP without wildcard is inZI?%,
and therefore so iISONTAINMENT-UCQ({}) (even with inequalities) when restricted to
boolean UCQs without wildcard. Moreover Boolean containtwé XP is I75-hard in
some restricted fragments ®f without wildcard, and undecidable in the presence of
wildcard (due to inequalities). However lower bounds do inahediately carry over
to containment of BoolealiCQ({},) queries because, in the presence of disjunction,
XP formulae need not be in disjunctive normal form, and theudisjive normal form

may be exponential in the size of the the origiat query; moreoveKP patterns are
evaluated at the root.

The containment of Boolean queries fré@)({}, -) without variables was also con-
sidered in [26] where it was shown to bedoNP. The problem was also provedNP-
hard for evaluation of patterns at the root. These resulte \\ader extended in [27]
by introducing disjunction in patterns and schemas. Theylynthat containment of
BooleanUCQ({}, -) queries without variables is still ifoONP, while in the presence of
schemas itis in EPTIME.

7 Certain answers over patterns

We have already said that the containment provides a waydceasl the problem of
finding certain answers to queries over incomplete databasehe relational case,
we saw the equivalenaertairi@, D) =t r ue < tab(Q) — D, which is the same as
saying@p C Q. HereQp is the canonical query of the databd3g.e., the conjunction
of all the facts inD preceded by existentially quantifying all the variablesin For
instance, ifD contains tuple¢l, x) and(z, y), thenQp is 33y D(1,z) A D(z,y).

In the case of XML, the standard view of incomplete documénthat of tree
patterns [2, 8]. For instance, a patterrPiT (|) specifies the child relation, but no next-
sibling relation, and nodes may contain incomplete infdiomeas data associated with
them. In a tree iIrPAT({}, =, _), structural information may be missing too. Consider,
for instance, a pattera(1)//b(z)[c(x) —* a(3)]. It represents all trees in which there
is ana-node holding valud, with a b-descendant holding some value, that has two
children: ac-node with the same value, and amode with value3, about which we
also know that it appears after thanode in the sibling order.

Thus, as in the relational case, a patte(s) represents all data treesuch that
t = =(v) for some valuationv of free variablesz. In the above example, a tree
a(1)/b(2)/b(1)[e(1) — ¢(2) — a(3)] is one such tree. By analogy with the relational
case, we writdr] for all the trees represented by a pattern. Also, as in tlaioelal
case, this can be defined via homomorphisms (which now areradse complex as
they have to act on both tree nodes and data values; see [B3taifs).

If we have a quenf)(Z), certain answers over a patterrare defined, as before,
by certaifQ, =) = ({Q(t) | t € [«]}. If Q is Boolean, intersection is replaced by
conjunction, of course.

We are interested in the complexity of finding certain answibat is, checking, for
a query(, a patternr, and a tuple of values, whether € certaif{@,).

As in the relational case, certain answers can be reducdsbtoontainment prob-
lem. If Q is Boolean thercertai{@,) = true iff Q. C Q, whereQ, is simply
Jzx(Z). A similar equivalence holds for arbitrary queries as well.

Thus, it appears that we can lift results for containmentategesults about certain
answers. However, this is only partly true. When we deal withry answering, we are
interested in a finer classification of complexity, namely:

— Data complexitywhen the query) is fixed and onlyr anda are inputs; and
— Combined complexitywvhen@, 7, anda are inputs.

In relational databases, it is common to have an exponeyaialbetween data and
combined complexity: for instance, data complexity of altfiorder queries is very
low (ACY, i.e., a subset of DbGsPACH, while combined complexity is NP-complete
for CQs and BpAcEcomplete for first-order.

We start with upper bounds. In [8], it was shown, using theirgtechnique, that
data complexity of UCQs is itoNP; the proof yielded non-elementary combined
complexity though. These results were refined in [19] whinbveed:

Theorem 6. For finding certain answers tBCCQs, data complexity is icoNP, and
combined complexity is ifY}.

What about matching lower bounds? It turns out that they @aadhieved quite
easily. The following combines results in [8, 19]. Below ves $hat data complexity of
a class of queries isONP-hard if there exists a query from that class for which data
complexity iscoNP-hard.

Theorem 7. Data complexity of finding certain answersieNP-complete for:

— CQ(],—) queries ovePAT(|);
— UCQ(!,-) queries ovePAT (I}, —);

Furthermore, combined complexity of finding certain ansatetUCQ(], —) queries
overpPAT (|, —) is I15-hard.

We now look at ways of lowering the complexity, especiallfadaomplexity of
finding certain answers. Recall that for Boolean relatidd@k over incomplete docu-
ments, we have the equivalencertaif@, D) = true < D = Q. More generally,
certair{@, D) can be obtained by evaluatidqgon D and then dropping any tuples con-
taining variables. This is referred to asive evaluationand when it computes certain
answers, we say that it works for a particular class of gsaner a class of patterns.

To see when naive evaluation works for XML queries, we defigiel patterns.
These are given by

mi=a(z)[r — ... — 7] (6)

They can also be seen as patterns in (2), wherestbequence appears just once. For
instancea(z)[b(y)[c(z) — d(y)] — b(2) — ¢(3)[d(y) — a(1)]] is a rigid pattern:

it completely specifies the tree structure via thand — relations, leaving only data
potentially incomplete. We writeAT,igiq for the class of rigid patterns. The following
combines results from [8, 15].

Theorem 8. Naive evaluation works foUCQ({}, =, -) queries ovelPAT g4, and for
UCQ({, -) queries ovePAT(]). Thus, in both cases data complexity of finding certain
answers is tractable.

For BCCQs, evenrigid ones, naive evaluation no longer sudfbnetheless, a more
complex tractable algorithm can be devised [19]. In faathsan algorithm first had to
be applied in the relational case (where it had not been knmtih [19]) and then
adapted to the XML case.

Theorem 9. Data complexity of certain answers fdCCQ(|,—) queries over
PATigia iS in PTIME. Their combined complexity 5 -complete, but it drops t&(P-
complete folUCQ(|, —) queries OVePAT giq.

Another question is what happens in the presence of schéimatsis, what happens
if the trees must conform to a schema given by an automdt@nd we defined certain
answers agertaim (Q,7) = ({Q() | t € [x] N L(A)}. We then refer to finding
certain answers under schemas. For talking about data eaityplve assume that only
m is the input. It turns out that there is little hope of findinglibehaved classes:

Proposition 2. Data complexity of finding certain answers under schemaroid P-
complete foIlCQ(]) queries ovePAT (]).

8 Tree patterns in data exchange

As mentioned in the introduction, one area where pattesethaueries are of par-
ticular importance is integration and exchange of data. W& consider the typical
setting of data exchange, cf. [5]. In data exchange, we neadave data between
databases of different schemas. Since we are talking alidut e deal with XML
schemas, given by two automath and A, describing source and target schemas
respectively. The correspondence between them is provigiead setX’s; of pairs of
queries(Qs(z, §), Q¢ (T, z)) from CQ(o).

A schema mappinig then a tripleM = (A, At, Xst). We letSM(o) stand for the
class of schema mappings where all the CQEipare fromCQ(o).

Given two data trees ¢/, we say that’ is asolutionfor ¢ underM if:

1. t e L(As) andt’ € L(Ay)
2. 35Qs(t) C FQu(t).

The semantics of a mapping!, denoted by M], is the set of pairs of tregs, ¢') so
thatt’ is a solution fort.

The second condition is a containment statement, albeit @nbisual one. It does
not say that the CQyQs(z, §) is contained in the CQzQ+(z, §) but rather that the
result of the first CQ onis contained in the result of the second CQtbn

Another, more conventional way, to read that statement fslksvs: for all values
Z,y makingQs true int, there exist values so thatQ(z, z) is true int’.

The basic reasoning tasks about schema mappings relateitactimsistency, or
satisfiability:

— The problem SA¥\ (o) takes &8M(o) mappingM as an input and asks whether
[M] # 0. That is, it checks whether the mapping makes sense.

— The problenvVSATgs\ (o) takes &8M (o) mappingM as an input and asks whether
everytreet € L(As) has a solution, i.e., whether the mapping always makes sense

The following was shown in [7, 11].

Theorem 10. —The problemSATsm (|}, =, -) is in EXPTIME. In fact the problem
SATsm ({)) is alreadyEXPTIME-complete.

— The problemVSATsm (U, =, -) is in II5*". In fact the problenVSATsm({, -) is
already I15*P-complete.

The classII5*® is the second level of the exponential hierarchy; it is toPE
TiME what I} is to PTIME. Being I15*"-complete means being inxXBspPACE and
NExPTIME-hard (incidentally, that was the first bound shown ¥8ATsy (), -) in
[3], which was later improved in [11]).

Among restrictions imposed on schema mappings a common sohe riestrict
schemas to beested-relational DTDsThese specify sequences of labels below a given
one in a tree; they consist of rules likmok — title, author™, chapter, publisher?
saying that éooklabeled node must havetidle child, followed by one or morau-
thor children, followed by zero or morehapterchildren, and possible followed by a
publisherlabeled node.

For instance, [3] showed that when schemas are given bydiesggional DTDs,
the complexity of SAEm (|, =, -) drops to BrPACEcomplete. If, in addition, all the
queries used i, are fromCQ(|), thenVSATsum(]) can be solved in polynomial
time.

Another variation of schema mappings that was considetedsbugmenting CQs
used inX; with explicit equality and inequality comparisons. Whestjequality is
allowed, we talk about the claS31(c, =); if inequalities are allowed too, we talk about
SM(o, =, #). This addition increases the complexity of reasoning tasksnatically

3].

Theorem 11. —BothSATsm(|, —,=) andSATsum(|, —, #) are undecidable.
— BothSATsu (|}, =) andSATsum (I}, #) are undecidable as well.
— When schemas are nested relational DT®ATsw (I, =) is NEXPTIME-complete,
but SATsm(|, —, =) remains undecidable.

Acknowledgment his work was supported by EPSRC grants G049165 and J015377.

References

1. S. Abiteboul, B. Cautis, T. Milo. Reasoning about XML ufelaonstraints. IiPODS’07
pages 195-204.

2. S. Abiteboul, L. Segoufin, and V. Vianu. Representing amekgjng XML with incomplete
information. ACM TODS 31(1):208-254, 2006.

3. S. Amano, L. Libkin, F. Murlak. XML schema mappings.R@®DS’'09 pages 33-42.

4. S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. Padtern query minimization.
VLDB J.11(4): 315-331 (2002).

5. M. Arenas, P. Barceld, L. Libkin, F. MurlalRelational and XML Data Exchangélorgan
& Claypool, 2010.

6. M. Arenas, W. Fan, L. Libkin. On the complexity of verifgirtonsistency of XML specifi-
cations.SIAM J. Comput38(3): 841-880 (2008).

7. M. Arenas, L. Libkin. XML data exchange: consistency andrg answeringl. ACM55(2):
(2008).

8. P. Barceld, L. Libkin, A. Poggi, C. Sirangelo. XML withéomplete informationJ. ACM
58:1 (2010).

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

28

29

. H. Bjorklund, W. Martens, T. Schwentick. Optimizing ¢anctive queries over trees using

schema informationMFCS’08 pages 132-143.

H. Bjorklund, W. Martens, and T. Schwentick. Conjunetfuery containment over trees.
JCSS77(3): 450-472 (2011).

M. Bojanczyk, L. Kolodziejczyk, F. Murlak. Solutions XML data exchange. InCDT
2011 pages 102-113.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. VaRiégular XPath: constraints,
query containment and view-based answering for XML documednLID’08.

A. Chandra and P. Merlin. Optimal implementation of cmajive queries in relational data
bases. I'BTOC 1977pages 77-90.

C. David, A. Gheerbrant, L. Libkin, W. Martens. Contaamhof pattern-based queries over
data trees. INCDT 2013 pages 201-212.

C. David, L. Libkin, F. Murlak. Certain answers for XML euies. InPODS 2010 pages
191-202.

W. Fan, L. Libkin. On XML integrity constraints in the gence of DTDs.J. ACM49(3):
368-406 (2002).

D. Figueira. Satisfiability of downward XPath with datpelity tests PODS’09 197-206.

P. Genevés and N. Layaida. A system for the static asalyXPath.ACM TOIS24 (2006),
475-502.

A. Gheerbrant, L. Libkin, and T. Tan. On the complexitgjaéry answering over incomplete
XML documents.ICDT 2012 169-181.

G. Gottlob, C. Koch, K. Schulz. Conjunctive queries dvees.J. ACM53 (2006), 238-272.
T. Imielihski and W. Lipski. Incomplete information irlational databases.J. ACM
31(4):761-791, 1984.

M. Lenzerini. Data integration: a theoretical perspectin PODS’'02 pages 233-246.

L. Libkin. Incomplete information and certain answergéneral data models. RODS'1],
pages 59-70.

L. Libkin, C. Sirangelo. Reasoning about XML with temglologics and automata..
Applied Logi¢ 8:2, 210-232 (2010).

W. Martens, F. Neven, T. Schwentick. Simple off the shbtractions for XML schema.
SIGMOD Record6(3): 15-22 (2007).

G. Miklau and D. Suciu. Containment and equivalence fisegment of XPath.J. ACM
51(1): 2-45, 2004.

F. Neven, T. Schwentick. On the complexity of XPath cioment in the presence of dis-
junction, DTDs, and variable.MCS 2(3): (2006).

Y. Sagiv, M. Yannakakis. Equivalences among relati@xgressions with the union and
difference operatorsl. ACM27(4): 633-655 (1980).

Th. Schwentick. XPath query containmeBtGMOD Recor®B3(1): 101-109 (2004).

