
Reasoning About Pattern-Based XML Queries

Amélie Gheerbrant1, Leonid Libkin1, and Cristina Sirangelo2

1 School of Informatics, University of Edinburgh
2 LSV, ENS-Cachan INRIA & CNRS

Abstract. We survey results about static analysis of pattern-based queries over
XML documents. These queries are analogs of conjunctive queries, their unions
and Boolean combinations, in which tree patterns play the role of atomic for-
mulae. As in the relational case, they can be viewed as both queries and incom-
plete documents, and thus static analysis problems can alsobe viewed as finding
certain answers of queries over such documents. We look at satisfiability of pat-
terns under schemas, containment of queries for various features of XML used
in queries, finding certain answers, and applications of pattern-based queries in
reasoning about schema mappings for data exchange.

1 Introduction

Due to the complicated hierarchical structure of XML documents and the many ways in
which it can interact with data, reasoning about XML data hasbecome an active area of
research, and many papers dealing with various aspects of static analysis of XML have
appeared, see, e.g. [1, 6, 12, 16–18,24, 26, 27, 29].

As most querying tasks for XML have to do with navigation through documents,
reasoning/static analysis tasks deal with mechanisms for specifying interaction between
navigation, data, as well as schemas of documents. Navigation mechanisms that are
studied are largely of two kinds: they either describe pathsthrough documents (most
commonly using the navigational language XPath), or they describetree patterns.

A tree pattern presents apartial description of a tree, along with some variables that
can be assigned values as a pattern is matched to a complete document. For instance, a
patterna(x)[b(x), c(y)] describes a tree with the root labeleda and two children labeled
b andc; these carry data values, so that those in thea-node and theb-node are the same.
This pattern matches a tree with roota and childrenb andc with all of them having data
value1, for instance; not only that, such a match produces the tuple(1, 1) of data values
witnessing the match. On the other hand, if in the tree theb and thec nodes carry value
2, there is no longer a match.

We deal with patterns that are naturally tree-shaped. This is contrast with some
of the patterns appearing in the literature [9, 10] that can take the shape of arbitrary
graphs (for instance, such a pattern can say that we have ana-node, that hasb andc
descendants, that in turn have the samed-descendant: this describes a directed acyclic
graph rather than a tree). In many XML applications it is quite natural to use tree-shaped
patterns though. For example, patterns used in specifying mappings between schemas
(as needed in data integration and exchange applications) are such [3, 5, 7]. It is also

natural to use them for defining queries [4, 26] as well as for specifying incomplete
XML data [8].

In database theory, there is a well-known duality between partial descriptions of
databases (or databases withincompleteinformation), andconjunctive queries. Like-
wise for us, patterns can also be viewed as basic queries: in the above example, the
pattern returns pairs(x, y) of data values. Viewing patterns as atomic formulas, we
can close them under conjunction, disjunction, and quantification, obtaining analogs of
relational conjunctive queries and their unions, for instance.

The main reasoning task we deal with iscontainmentof queries. There are three
main reasons for studying this question.

– Containment is the most basic queryoptimizationtask. Indeed, the goal of query
optimization is to replace a given query with a more efficientbut equivalent one;
equivalence of course is testing two containment statements.

– Containment can be viewed as findingcertain answersover incomplete databases,
using the duality between queries and patterns. A patternπ describes an incomplete
database; if, viewed as a query, it is contained in a queryQ, then the certain answer
to Q overπ is true, and the converse also holds. This correspondence iswell known
for both relations and XML.

– Finally, containment is the critical task indata integration, specifically in query
rewriting using views [22]. When a query needs to be rewritten over the source
database, the correctness of a rewriting is verified by checking query containment.

The plan of the survey is as follows. We first explain the basicrelevant notions in
the relational case, particularly the pattern/query duality and the connection with incom-
plete information. We then define tree patterns, present their classification, and explain
the notion of satisfaction indata trees, i.e., labeled trees in which nodes can carry data
values. After that we deal with the basic pattern analysis problem: their satisfiability.
Given that patterns are tree-shaped, satisfiability per se is trivial, but we handle it in the
presence of a schema (typically given by an automaton).

We then introduce pattern-based queries, specifically analogs of conjunctive
queries, their unions, and Boolean combination, and surveyresults on their contain-
ment. Using those results, we derive bounds on finding certain answers for queries over
incomplete documents. Finally, we deal with reasoning tasks for pattern-based schema
mappings, which also rely on a form of containment statement.

2 Relational patterns and pattern-based queries

Tableaux and naı̈ve databasesRelational patterns are known under the name of
tableauxif one views them as queries, and asnäıve tablesif one views them as data. The
instance below on the left is a usual relation, and the one on the right is a tableau/naı̈ve
table:

1 2 3 4
5 6 7 8

1 x 3 z
5 y 7 x

Some of the constant entries in relations can be replaced byvariablesin tableaux. For-
mally, we have two domains,C of constants andV of variables, and a relational vo-
cabularyσ. A relational instance is an instance ofσ overC, and a naı̈ve database is an
instance overC ∪ V . In case of a single relation, we talk about naı̈ve tables rather than
naı̈ve databases.

A tableau has a list of variables, among those used in it, selected as ‘distinguished’
variables; that is, formally it is a pair(D, x̄), whereD is a naı̈ve database and̄x is a
tuple of variables among those mentioned inD.

As we already mentioned, there is a natural duality between incomplete databases
and conjunctive queries. Each tableau(D, x̄) can be viewed as a queryQD(x̄) =
∃ȳ

∧

D whereȳ is the list of variables inD exceptx̄, and
∧

D is the conjunction
of all the facts inD. For instance, ifD is the naı̈ve table in the above picture, the query
associated with(D, x) is Q(x) = ∃y∃z D(1, x, 3, z) ∧ D(5, y, 7, x). Likewise, every
conjunctive queryQ has a tableautab(Q) which is obtained by viewing conjuncts in it
as a database, and making the list of free variables its distinguished variables.

HomomorphismsA key notion for naı̈ve databases and tableaux is that of ahomomor-
phism. Given two naı̈ve databasesD1 andD2, a homomorphismh between them is a
mappingh fromV to C ∪ V defined on all the variables inD1 so that, ifR is a relation
symbol in the vocabulary and̄a is a tuple in the relationR in D1, thenh(ā) is a tuple
in the relationR in D2. Of courseh(a1, . . . , an) stands for(h(a1), . . . , h(an)), and we
assumeh(c) = c wheneverc ∈ C.

If h is a homomorphism fromD1 to D2, we writeh : D1 → D2. Such a map is a
homomorphism of two tableaux(D1, x̄1) and(D2, x̄2) if, in addition,h(x̄1) = x̄2. If
we need to state that there is a homomorphism, but it is not important to name it, we
will simply write D1 → D2.

Homomorphisms can also be used to give semantics of incomplete databases. It is
assumed that a naı̈ve databaseD represents all complete databasesD′ (i.e., databases
over C) such that there is a homomorphismh : D → D′. The set of all suchD′ is
denoted byJDK.

Note that the satisfiability problem for relational patterns expressed via naı̈ve
databases – whether the setJDK is not empty – is trivial, the answer is always yes. In
the presence of constraints on the schema it can become a fairly complicated problem,
sometimes even undecidable.

Containment Containment asks if for two queries,Q1 and Q2, the result ofQ1 is
contained in the result ofQ2 on every input; equivalence asks if the results are always
the same. We writeQ1 ⊆ Q2 andQ1 = Q2 to denote containment and equivalence. Of
course equivalence is just a special case of containment:Q1 = Q2 iff Q1 ⊆ Q2 and
Q2 ⊆ Q1.

The containment problem for conjunctive queries is solved via homomorphisms.
Given two conjunctive queriesQ1 andQ2, we haveQ1 ⊆ Q2 iff there is a homomor-
phismh : tab(Q2) → tab(Q1); this makes the problem NP-complete [13].

In addition to conjunctive queries (sometimes abbreviatedas CQs), we shall con-
sider their unions and Boolean combinations. The former class, denoted by UCQs
sometimes, is obtained by closing CQs under union (i.e., ifQ1, Q2 are UCQs produc-
ing relations of the same arity, thenQ1 ∪ Q2 is a UCQ). For Boolean combinations of

conjunctive queries (abbreviated BCCQs), the additional closure rules are thatQ1∩Q2,
Q1 ∪ Q2, andQ1 − Q2 are BCCQs.

For these classes containment is still decidable, and the complexity stays in NP for
UCQs given explicitly as unions of CQs, and goes up toΠp

2 -complete for BCCQs [28].

Certain answers and naı̈ve evaluationNow suppose we have a naı̈ve databaseD and
a queryQ; assume thatQ is Boolean. The standard notion of answering a query on an
incomplete database is that ofcertain answers:

certain(Q, D) =
∧

{Q(D′) | D′ ∈ JDK}

Let Q be a conjunctive query. Then, for an arbitrary databaseD′, we haveD′ |= Q iff
there is a homomorphismh : tab(Q) → D′. Thus, for an incomplete databaseD, we
have the following easy equivalences:

certain(Q, D) = true ⇔ ∀D′ ∈ JDK : tab(Q) → D′ ⇔ tab(Q) → D ⇔ D |= Q

Thus, to compute certain answers, all one needs to do is to runa query on the incomplete
database itself. This is referred to asnäıve evaluation. Note that thedata complexityof
finding certain answers is tractable, as it is the same as evaluation of conjunctive queries.

The fact that naı̈ve evaluation works for Boolean conjunctive queries extends in two
ways: to UCQs, and to queries with free variables [21]. In some way (for the semantics
we considered) the result is optimal within the class of relational algebra queries [23].
In particular, naı̈ve evaluation doesnot work for BCCQs (even though it was shown
recently that data complexity of finding certain answers forBCCQs remains polynomial
[19]).

3 Trees, patterns

3.1 Data trees

Data trees provide a standard abstraction of XML documents with data. First we define
their structural part, namely unranked trees. A finite unranked tree domain is a non-
empty, prefix-closed finite subsetD of N

∗ (words overN) such thats · i ∈ D implies
s · j ∈ D for all j < i ands ∈ N

∗. Elements of unranked tree domains are called nodes.
We assume a countably infinite setL of possible labels that can be used to label tree
nodes. An unranked tree is a structure〈D, ↓,→, λ〉, where

– D is a finite unranked tree domain,
– ↓ is the child relation:s ↓ s · i for s · i ∈ D,
– → is the next-sibling relation:s · i → s · (i + 1) for s · (i + 1) ∈ D, and
– λ : D → L is the labeling function assigning a label to each node.

We denote the reflexive-transitive closure of↓ by ↓∗ (descendant-or-self), and the
reflexive-transitive closure of→ by→∗ (following-sibling-or-self).

In data trees, nodes can carry not only labels but alsodata values. Given a domainC
of data values (e.g., strings, numbers, etc.), adata treeis a structuret = 〈D, ↓,→, λ, ρ〉,
where〈D, ↓,→, λ〉 is an unranked tree, andρ : D → C assigns each node a data value.
Note that in XML documents, nodes may have multiple attributes, but this is easily
modeled with data trees.

3.2 Patterns

To explain our approach to defining tree-shaped patterns, consider first data trees re-
stricted just to the child relation, i.e., structures〈D, ↓, λ, ρ〉. They can be defined recur-
sively: a node labeled witha ∈ L and carrying a data valuev ∈ C is a data tree, and
if t1, . . . , tn are trees, we can form a new tree by making them children of a node with
labela and data valuev.

Just like in the relational case, patterns can also use variables fromV . So our sim-
plest case of patterns is defined as:

π := a(x)[π, . . . , π] (1)

with a ∈ L andx ∈ C ∪ V . Here the sequence in[. . .] could be empty. In other words,
if π1, . . . , πn is a sequence of patterns (perhaps empty),a ∈ L andx ∈ C ∪ V , then
a(x)[π1, . . . , πn] is a pattern. If̄x is the list of all the variables used in a patternπ, we
write π(x̄).

We denote patterns from this class byPAT(↓). As with conjunctive queries, the
semantics can be defined via homomorphisms of their tree representations [8, 19], but
here we give it in a different, direct way. The semantics ofπ(x̄) is defined with respect
to a data treet = 〈D, ↓,→, λ, ρ〉, a nodes ∈ D, and a valuationν : x̄ → C as follows:
(t, s, ν) |= a(x)[π1(x̄1), . . . , πn(x̄n)] iff

– λ(s) = a (the label ofs is a);

– ρ(s) =

{

ν(x) if x is a variable

x if x is a data value;
– there exist not necessarily distinct childrens ·i1, . . . , s ·in of s so that(t, s ·ij , ν) |=

πj(x̄j) for eachj ≤ n (if n = 0, this last item is not needed).

We write (t, ν) |= π(x̄) if there is a nodes so that(t, s, ν) |= π(x̄) (i.e., a pattern
is matched somewhere in the tree). Also ifv̄ = ν(x̄), we write t |= π(v̄) instead of
(t, ν) |= π(x̄). We also writeπ(t) for the set{v̄ | t |= π(v̄)}.

A natural extension for these simple patterns is to include both vertical and horizon-
tal navigation, resulting in the classPAT(↓,→):

π := a(x)[µ, . . . , µ]
µ := π → . . . → π

(2)

with a ∈ L andx ∈ C∪V (and the sequences, as before, could be empty). The semantics
is given by:

– (t, s, ν) |= a(x)[µ1(x̄1), . . . , µn(x̄n)] if a(x) is satisfied ins by ν as before and
there exist not necessarily distinct childrens ·i1, . . . , s ·in of s so that(t, s ·ij , ν) |=
µj(x̄j) for eachj ≤ n.

– (t, s, ν) |= π1(x̄1) → . . . → πm(x̄m) if there existconsecutivesiblingss1 →
s2 → . . . → sm, with s1 = s, so that(t, si, ν) |= πi(x̄i) for eachi ≤ m.

Next we consider more expressive versions with transitive closure axes↓∗ (descen-
dant) and→∗ (following sibling). As in [3, 19], we define general patterns by the rules:

π := a(x)[µ, . . . , µ]//[µ, . . . , µ]
µ := π ❀ . . . ❀ π

(3)

Herea, x andπ are as before, andµ stands for a sequence of trees, i.e., a forest such
that the roots of its trees aresequentialsiblings in a tree, and each❀ is either→ or→∗.

The class of such patterns is denoted byPAT(⇓,⇒), with ⇓ we use both types of
downward navigation (↓ and↓∗) and⇒ meaning that we use both types of horizontal
navigation (→ and→∗). The semantics is extended as follows.

– (t, s, ν) |= a(x)[µ1, . . . , µn]//[µ′
1, . . . , µ

′
k] if the satisfaction ofa(x) in nodes is as

before, and there existn not necessarily distinct childrens1, . . . , sn of s such that
(t, si, ν) |= µi for eachi ≤ n, and there existk not necessarily distinct descendants
s′1, . . . , s

′
k of s such that(t, s′i, ν) |= µ′

i for eachi ≤ k.
– (t, s, ν) |= π1(x̄1) ❀ . . . ❀ πm(x̄m) if there is a sequences1, . . . , sm of nodes

with s1 = s so that(t, si, ν) |= πi(x̄i) for eachi ≤ m, andsi → si+1 whenever
theith ❀ is→, andsi →∗ si+1 whenever theith ❀ is→∗.

Notice that the semantics of patterns allows differentµi to be mapped into the same
nodes in a tree.

We also consider a classPAT(⇓) of patterns which is a restriction of the most general
patterns to downward navigation only. These are defined by the grammar

π := a(x)[π, . . . , π]//[π, . . . , π] (4)

where each of the sequences of patterns can be empty.
We shall be using standard shorthand notations:a(x)/π stands fora(x)[π], while

a(x)//π denotesa(x)//[π], anda(x)/π//π′ stands fora(x)[π]//[π′].

Finally, we also look at patterns withwildcard. In those patterns, we assume that
labels come fromL∪{ }, where is a new wildcard label that matches every label in a
data tree. That is, ifx is a variable, (x) is true in(t, s, ν) if ν(x) = ρ(s), and ifc is a
constant, (c) is true in a nodes of a treet if ρ(s) = c. In other words, wildcard allows
us to disregard the label matching condition. We shall writePAT(σ,) for patterns that
use axes fromσ and wildcard.

4 Basic analysis of patterns

We now look at the satisfiability of patterns. For a set ofσ of axes we look at the problem
SAT(σ): its input is a patternπ ∈ PAT(σ), and the question is whetherπ(t) 6= ∅ for
some data treet, i.e., whether there is a data treet such thatt |= π(v̄) for some valuation
v̄ of free variables ofπ. In other words, we want to know whether a pattern is realizable
in some data tree.

Since our patterns are essentially tree-shaped, the problem as formulated above is
trivial for them: the answer is trivially yes as one just turns a pattern into a tree. What
is more interesting for us is satisfiability with aschema.

As common in the study of XML [25], we abstract a schema as anunranked tree
automaton. Such an automaton over trees labeled with letters from a finite alphabetΣ
is a tupleA = (S, Σ, δ, F), where:

– S is a finite set of states,

– F ⊆ S is the set of final states, and
– δ : S × Σ → 2(S∗) is a transition function; we require thatδ(s, a)’s be regular

languages overS for all s ∈ S anda ∈ Σ. For reasoning about complexity, we
represent values of the transition function by NFAs.

A run of A over a treet = 〈D, ↓,→, λ〉 (note that automata do not talk about data
values) is a functionρA : D → S such that for each nodev with n childrenv ·0, . . . , v ·
(n − 1), the wordρA(v · 0) · · · ρA(v · (n − 1)) is in the languageδ(ρA(v), λ(v)). Of
course, for a leafv labeleda this means thatv could be assigned states iff the empty
word ǫ is in δ(s, a). A run is accepting ifρA(ǫ) ∈ F , i.e., if the root is assigned an
accepting state. A treet is accepted byA if there exists an accepting run ofA on t.
The set of all trees accepted byA is denoted byL(A). A data tree is inL(A) iff its
“data-free” part is inL(A) (i.e., the tree obtained by simply dropping the data-value
assigning functionρ).

The problem we look at now SATaut(σ): its input consists of a patternπ ∈ PAT(σ)
and an automatonA, and the question is whether there is a treet ∈ L(A) such that
π(t) 6= ∅.

There are different versions of this problem depending onσ and the features allowed
in the automatonA; essentially all of them are known to be NP-complete. This result
has appeared several times in the literature in different incarnations [5, 7–10]. For the
definition of patterns as given here, the directly applicable one is the following result
from [8].

Theorem 1. The problemSATaut(σ,) is in NP. Moreover, the problemSATaut(↓) is
alreadyNP-complete, as is the problemSATaut(↓,→,) restricted to patters without
variables.

In fact the results hold if automata are given as DTDs, i.e., extended context-free
grammars (and rather simple ones, see [8]). The case of SATaut(↓) restricted to trees
without variables is tractable though, as such a pattern canbe efficiently translated into
an automaton, and the problem is reduced to checking nonemptiness of the product of
two automata.

The upper NP bound is proved by a “cutting” technique: it shows that if there is a
data treet ∈ L(A) in which the patternπ is satisfied, then there is one which is not too
large in terms ofπ andA (a low degree polynomial).

5 Pattern-based queries

The most fundamental static analysis question is query equivalence/containment. As in
the relational case, we consider conjunctive queries, their unions, and Boolean com-
binations. However, now the role of atomic formulae is played by patterns. That is,
pattern-based conjunctive XML queries are obtained by closing patterns by conjunc-
tion and existential quantification. Since we have different classes of patternsPAT(σ),
we have different classes of conjunctive queries denoted byCQ(σ). More precisely,
CQ(σ) queries are of the form:

Q(x̄) = ∃ȳ

n
∧

i=1

πi(z̄i) (5)

where eachπi is a PAT(σ) pattern, and each̄zi is contained in̄x, ȳ. The semantics is
standard:(t, ν) |= Q(x̄) if there is an extensionν′ of valuationν to variables̄y such
that (t, ν′) |= πi(z̄i) for everyi ≤ n. That is to say, one evaluates all theπi(t) and
then combines the results as prescribed by the conjunction in (5), using the standard
relational semantics. We also writet |= Q(v̄) if (t, ν) |= Q(x̄) with ν(x̄) = v̄ and, as
usual,Q(t) for {v̄ | t |= Q(v̄)}.

Observe that if the setσ of axes contains↓∗ then we can restrictCQ(σ,) to the
conjunctive queries which use a single pattern, i.e. queries of the form∃ȳπ(x̄, ȳ). In
fact any query inCQ(σ,) is equivalent to a single-patternCQ(σ,) query: it suffices
to connect all patternsπ1, . . . πn of the query as descendants of a common wildcard-
labeled root.

As in the relational case, we extendCQs by taking their union (to the classUCQ)
and Boolean combinations (to the classBCCQ). Formally, a query fromUCQ(σ) is of
the formQ(x̄) = Q1(x̄)∪ . . .∪Qm(x̄), where eachQi(x̄) is aCQ(σ) query. It returns
the union of answers to theQi’s.

Queries in the classBCCQ(σ) are obtained as follows: take some queries
Q1(x̄), . . . , Qm(x̄) from CQ(σ) and consider a Boolean combination of them, i.e.,
close CQs under operationsQ ∩ Q′, Q ∪ Q′, andQ − Q′. The semantics is extended
naturally, with operations interpreted as intersection, union, and set difference, respec-
tively.

The answer to a queryQ(x̄), from any of the above classes, on a data treet is
defined asQ(t) = {ν(x̄) | (t, ν) |= Q(x̄)}. Note that our definitions of query classes
ensure thatQ(t) is always finite.

The containment problem is formally stated as follows:

PROBLEM: CONTAINMENT-CQ(σ)

INPUT: queriesQ(x̄), Q′(x̄′) in CQ(σ);
QUESTION: is Q ⊆ Q′?

If instead of queries inCQ(σ) we use queries inUCQ(σ), we refer to the prob-
lem CONTAINMENT-UCQ(σ) and, if we use queries fromBCCQ(σ), we refer to the
problemCONTAINMENT-BCCQ(σ).

Note that one can look at satisfiability problemsSAT-CQ, SAT-UCQ, andSAT-BCCQ,
where the input is a queryQ from a class and the question is whetherQ(t) 6= ∅ for
some tree. For the same reason as for patterns, the problemsSAT-CQ and SAT-UCQ

are trivial: such queries are always satisfiable. The problem SAT-BCCQ is the same
as CONTAINMENT-BCCQ. Indeed, given aBCCQ(σ) queryQ, it is not satisfiable iff
Q is contained inQ − Q. Conversely, given twoBCCQ(σ) queriesQ1, Q2, we have
Q1 ⊆ Q2 iff Q1 − Q2 is not satisfiable. The latter connection is actually important for
providing upper bounds for containment as we shall deal withsatisfiability instead.

6 Containment of pattern-based queries

We now look at the containment problems described in the previous section and start
with a general upper bound. The following was shown in [14].

Theorem 2. The problemCONTAINMENT-BCCQ(⇓,⇒,) is in Πp
2 .

The proof shows that the problemSAT-BCCQ(⇓,⇒,) is in Πp
2 . Satisfiability of

BCCQs can easily be reduced to simultaneous satisfiability of a CQ andunsatisfiability
of a UCQ. For this, we need to guess a witness treet; then satisfiability of a CQ can be
done in NP and unsatisfiability of a UCQ inCONP, giving us the bound. One can still
use the cutting technique to reduce the size of this tree; however, this time the size is
not polynomial but rather exponential. However, the only objects of exponential size are
long non-branching paths in the tree, so they can be carefully re-labeled and encoded
by polysize objects in a way that checking satisfiability or unsatisfiability of CQs and
UCQs can still be done with the same complexity as before.

The next obvious question is about matching lower bounds. They can be shown
with the simplest form of navigation, or, alternatively, with all the navigation but just
for CQs [14].

Theorem 3. – The problemCONTAINMENT-BCCQ(↓) is Πp
2 -complete.

– The problemCONTAINMENT-CQ(⇓,⇒) is Πp
2 -complete.

Thus, we already see a big difference in the containment problem for XML pattern-
based conjunctive queries, which isΠp

2 -hard, and relational CQs, for which the problem
is in NP. The question is then when we can lower the complexityof containment to NP,
to match the relational case.

One way to do so is to use the standard homomorphism technique. We know it will
not work for all patterns due to complexity mismatch, but perhaps it will work for some.
With eachCQ(σ) queryQ, we can associate a tableautab(Q) which is essentially
an incomplete tree obtained by parsing the patterns inQ. The full (and completely
expected) definition is given in [14]; here we just give an illustrating example. Suppose
we have a patterna(x)[b(y) → c(x)]//d(y). The tableau is an incomplete tree with
four nodess1, s2, s3, s4 labeleda, b, c, d, respectively. The functionρ assignsx to s1

ands3, andy to s2 ands4. Finally the following hold:s1 ↓ s2, s1 ↓ s3, s2 → s3, and
s1 ↓∗ s4.

Without transitive-closure axes, the standard connectionbetween containment and
tableaux homomorphism continues to work.

Theorem 4. For queries fromCQ(↓) and CQ(↓,→), we haveQ1 ⊆ Q2 iff there is
a homomorphism from tab(Q2) to tab(Q1). In particular, bothCONTAINMENT-CQ(↓)
andCONTAINMENT-CQ(↓,→) are NP-complete.

It is also possible to show that these results extend to UCQs,using techniques in the
spirit of [28].

We know thatCONTAINMENT-CQ(⇓,⇒) cannot be in NP (otherwise NP and
CONP would be the same). But it turns out thatCONTAINMENT-CQ(⇓,→) does
stay in NP. This, however, cannot be shown by exhibiting a homomorphism from
tab(Q2) to tab(Q1). Consider, for instance, queriesQ1 = ∃x a(x)//b(x)[c(x)] and
Q2 = ∃x a(x)//c(x). While it is easy to see thatQ1 ⊆ Q2, there is no homomorphism
from tab(Q2) to tab(Q1). However, if we definetab∗(Q) by replacing relation↓∗ in
tab(Q) by the transitive closure of the union of↓ and↓∗, we do get a homomorphism
from tab∗(Q2) to tab∗(Q1). In fact, [14] showed:

Proposition 1. For queries fromCQ(⇓,→), we haveQ1 ⊆ Q2 iff there is a homomor-
phism from tab∗(Q2) to tab∗(Q1). In particular, CONTAINMENT-CQ(⇓,→) remains
NP-complete.

When wildcard is added, things change dramatically. Consider, for instance, two
Boolean queriesQ1 = r[a, b] andQ2 = r[→]. We knowQ1 ⊆ Q2 but there is
no homomorphism between the tableau as intab(Q1) the relation→ is empty. It is
possible to recover the result aboutCONTAINMENT-CQ(↓) and CONTAINMENT-CQ(↓
,→) when wildcard is usedexceptat the root of the pattern (by again modifying the
tableau and establishing a homomorphism) but beyond that little is known. In fact in
the presence of wildcard existing results do not extend to UCQs even with restriction
on the use of wildcard: the problemCONTAINMENT-UCQ(↓,→,) is Πp

2 -complete, as
is CONTAINMENT-UCQ(⇓) with wildcard used anywhere except the root.

As we did before, we can relativize the containment problem to a schema ex-
pressed as an unranked tree automaton. Such a problem (indicated again by subscript
AUT), takes as an input two queriesQ1, Q2 and an automatonA, and checks whether
Q1(t) ⊆ Q2(t) for everyt ∈ L(A). The addition of schemas adds one exponent to the
complexity.

Theorem 5. The problemCONTAINMENT-BCCQaut(⇓,⇒,) is in 2EXPTIME. Further-
more,CONTAINMENT-CQaut(⇓,⇒) is already 2EXPTIME-hard.

Finally, one can extend queries with inequality comparisons of data values. This
makes the problem undecidable for BCCQs and all the axes, or for CQs with↓ and↓∗

under schemas.

Pattern containment vs XPath containmentThere has been significant interest in con-
tainment of XPath queries, see, e.g., [29] for a survey. In general, pattern queries con-
sidered here are incompatible with XPath: our queries return tuples of data values, while
XPath queries returnn-tuples of nodes, forn ≤ 2. However, the cases of Boolean XPath
queries (i.e.,n = 0) and Boolean pattern-based queries are indeed comparable,and we
offer a comparison here.

The closest language to the classes we consider here is the fragment of XPath
calledXP in [27]. Boolean queries fromXP (with data variables and existential seman-
tics) are tightly related to Boolean queries fromUCQ(⇓,). In particular, any Boolean
UCQ(⇓,) query (possibly with data inequalities) can be viewed as a BooleanXP
query. Conversely, any BooleanXP query written in disjunctive normal form can be
viewed as a BooleanUCQ(⇓,) with inequalities, but with an additional restriction
that patterns be evaluated at the root.

It was shown in [27] that Boolean containment ofXP without wildcard is inΠp
2 ,

and therefore so isCONTAINMENT-UCQ(⇓) (even with inequalities) when restricted to
boolean UCQs without wildcard. Moreover Boolean containment of XP is Πp

2 -hard in
some restricted fragments ofXP without wildcard, and undecidable in the presence of
wildcard (due to inequalities). However lower bounds do notimmediately carry over
to containment of BooleanUCQ(⇓,) queries because, in the presence of disjunction,
XP formulae need not be in disjunctive normal form, and the disjunctive normal form

may be exponential in the size of the the originalXP query; moreoverXP patterns are
evaluated at the root.

The containment of Boolean queries fromCQ(⇓,) without variables was also con-
sidered in [26] where it was shown to be inCONP. The problem was also provedCONP-
hard for evaluation of patterns at the root. These results were later extended in [27]
by introducing disjunction in patterns and schemas. They imply that containment of
BooleanUCQ(⇓,) queries without variables is still inCONP, while in the presence of
schemas it is in EXPTIME.

7 Certain answers over patterns

We have already said that the containment provides a way to address the problem of
finding certain answers to queries over incomplete databases. In the relational case,
we saw the equivalencecertain(Q, D) = true ⇔ tab(Q) → D, which is the same as
sayingQD ⊆ Q. HereQD is the canonical query of the databaseD, i.e., the conjunction
of all the facts inD preceded by existentially quantifying all the variables inD. For
instance, ifD contains tuples(1, x) and(x, y), thenQD is ∃x∃y D(1, x) ∧ D(x, y).

In the case of XML, the standard view of incomplete documentsis that of tree
patterns [2, 8]. For instance, a pattern inPAT(↓) specifies the child relation, but no next-
sibling relation, and nodes may contain incomplete information as data associated with
them. In a tree inPAT(⇓,⇒,), structural information may be missing too. Consider,
for instance, a patterna(1)//b(x)[c(x) →∗ a(3)]. It represents all trees in which there
is ana-node holding value1, with a b-descendant holding some value, that has two
children: ac-node with the same value, and ana-node with value3, about which we
also know that it appears after thec-node in the sibling order.

Thus, as in the relational case, a patternπ(x̄) represents all data treest such that
t |= π(v̄) for some valuation̄v of free variables̄x. In the above example, a tree
a(1)/b(2)/b(1)[c(1) → c(2) → a(3)] is one such tree. By analogy with the relational
case, we writeJπK for all the trees represented by a pattern. Also, as in the relational
case, this can be defined via homomorphisms (which now are a bit more complex as
they have to act on both tree nodes and data values; see [8] fordetails).

If we have a queryQ(x̄), certain answers over a patternπ are defined, as before,
by certain(Q, π) =

⋂

{Q(t) | t ∈ JπK}. If Q is Boolean, intersection is replaced by
conjunction, of course.

We are interested in the complexity of finding certain answers: that is, checking, for
a queryQ, a patternπ, and a tuple of values̄a, whether̄a ∈ certain(Q, π).

As in the relational case, certain answers can be reduced to the containment prob-
lem. If Q is Boolean thencertain(Q, π) = true iff Qπ ⊆ Q, whereQπ is simply
∃x̄π(x̄). A similar equivalence holds for arbitrary queries as well.

Thus, it appears that we can lift results for containment to state results about certain
answers. However, this is only partly true. When we deal withquery answering, we are
interested in a finer classification of complexity, namely:

– Data complexity, when the queryQ is fixed and onlyπ andā are inputs; and
– Combined complexity, whenQ, π, andā are inputs.

In relational databases, it is common to have an exponentialgap between data and
combined complexity: for instance, data complexity of all first-order queries is very
low (AC0, i.e., a subset of DLOGSPACE), while combined complexity is NP-complete
for CQs and PSPACE-complete for first-order.

We start with upper bounds. In [8], it was shown, using the cutting technique, that
data complexity of UCQs is inCONP; the proof yielded non-elementary combined
complexity though. These results were refined in [19] which showed:

Theorem 6. For finding certain answers toBCCQs, data complexity is inCONP, and
combined complexity is inΠp

2 .

What about matching lower bounds? It turns out that they can be achieved quite
easily. The following combines results in [8, 19]. Below we say that data complexity of
a class of queries isCONP-hard if there exists a query from that class for which data
complexity isCONP-hard.

Theorem 7. Data complexity of finding certain answers isCONP-complete for:

– CQ(↓,→) queries overPAT(↓);
– UCQ(↓,) queries overPAT(⇓,→);

Furthermore, combined complexity of finding certain answers toUCQ(↓,→) queries
overPAT(↓,→) is Πp

2 -hard.

We now look at ways of lowering the complexity, especially data complexity of
finding certain answers. Recall that for Boolean relationalCQs over incomplete docu-
ments, we have the equivalencecertain(Q, D) = true ⇔ D |= Q. More generally,
certain(Q, D) can be obtained by evaluatingQ onD and then dropping any tuples con-
taining variables. This is referred to asnäıve evaluation, and when it computes certain
answers, we say that it works for a particular class of queries over a class of patterns.

To see when naı̈ve evaluation works for XML queries, we definerigid patterns.
These are given by

π := a(x)[π → . . . → π] (6)

They can also be seen as patterns in (2), where theµ sequence appears just once. For
instance,a(x)[b(y)[c(x) → d(y)] → b(2) → c(3)[d(y) → a(1)]] is a rigid pattern:
it completely specifies the tree structure via the↓ and→ relations, leaving only data
potentially incomplete. We writePATrigid for the class of rigid patterns. The following
combines results from [8, 15].

Theorem 8. Näıve evaluation works forUCQ(⇓,⇒,) queries overPATrigid , and for
UCQ(⇓,) queries overPAT(↓). Thus, in both cases data complexity of finding certain
answers is tractable.

For BCCQs, even rigid ones, naı̈ve evaluation no longer works. Nonetheless, a more
complex tractable algorithm can be devised [19]. In fact, such an algorithm first had to
be applied in the relational case (where it had not been knownuntil [19]) and then
adapted to the XML case.

Theorem 9. Data complexity of certain answers forBCCQ(↓,→) queries over
PATrigid is in PTIME. Their combined complexity isΠp

2 -complete, but it drops toNP-
complete forUCQ(↓,→) queries overPATrigid .

Another question is what happens in the presence of schemas.That is, what happens
if the trees must conform to a schema given by an automatonA, and we defined certain
answers ascertainA(Q, π) =

⋂

{Q(t) | t ∈ JπK ∩ L(A)}. We then refer to finding
certain answers under schemas. For talking about data complexity, we assume that only
π is the input. It turns out that there is little hope of finding well behaved classes:

Proposition 2. Data complexity of finding certain answers under schemas isCONP-
complete forCQ(↓) queries overPAT(↓).

8 Tree patterns in data exchange

As mentioned in the introduction, one area where pattern-based queries are of par-
ticular importance is integration and exchange of data. We now consider the typical
setting of data exchange, cf. [5]. In data exchange, we need to move data between
databases of different schemas. Since we are talking about XML, we deal with XML
schemas, given by two automataAs andAt, describing source and target schemas
respectively. The correspondence between them is providedby a setΣst of pairs of
queries(Qs(x̄, ȳ), Qt(x̄, z̄)) from CQ(σ).

A schema mappingis then a tripleM = 〈As,At, Σst〉. We letSM(σ) stand for the
class of schema mappings where all the CQs inΣst are fromCQ(σ).

Given two data treest, t′, we say thatt′ is asolutionfor t underM if:

1. t ∈ L(As) andt′ ∈ L(At)
2. ∃ȳQs(t) ⊆ ∃z̄Qt(t

′).

The semantics of a mappingM, denoted byJMK, is the set of pairs of trees(t, t′) so
thatt′ is a solution fort.

The second condition is a containment statement, albeit a bit unusual one. It does
not say that the CQ∃ȳQs(x̄, ȳ) is contained in the CQ∃z̄Qt(x̄, ȳ) but rather that the
result of the first CQ ont is contained in the result of the second CQ ont′.

Another, more conventional way, to read that statement is asfollows: for all values
x̄, ȳ makingQs true int, there exist values̄z so thatQt(x̄, z̄) is true int′.

The basic reasoning tasks about schema mappings relate to their consistency, or
satisfiability:

– The problem SATSM(σ) takes aSM(σ) mappingM as an input and asks whether
JMK 6= ∅. That is, it checks whether the mapping makes sense.

– The problem∀SATSM(σ) takes aSM(σ) mappingM as an input and asks whether
everytreet ∈ L(As) has a solution, i.e., whether the mapping always makes sense.

The following was shown in [7, 11].

Theorem 10. – The problemSATSM(⇓,⇒,) is in EXPTIME. In fact the problem
SATSM(⇓) is alreadyEXPTIME-complete.

– The problem∀SATSM(⇓,⇒,) is in ΠEXP
2 . In fact the problem∀SATSM(⇓,) is

alreadyΠEXP
2 -complete.

The classΠEXP
2 is the second level of the exponential hierarchy; it is to EXP-

TIME what Πp
2 is to PTIME. Being ΠEXP

2 -complete means being in EXPSPACE and
NEXPTIME-hard (incidentally, that was the first bound shown for∀SATSM(⇓,) in
[3], which was later improved in [11]).

Among restrictions imposed on schema mappings a common one is to restrict
schemas to benested-relational DTDs. These specify sequences of labels below a given
one in a tree; they consist of rules likebook→ title, author+, chapter∗, publisher?,
saying that abook-labeled node must have atitle child, followed by one or moreau-
thor children, followed by zero or morechapterchildren, and possible followed by a
publisher-labeled node.

For instance, [3] showed that when schemas are given by nested-relational DTDs,
the complexity of SATSM(⇓,⇒,) drops to PSPACE-complete. If, in addition, all the
queries used inΣst are fromCQ(↓), then∀SATSM(↓) can be solved in polynomial
time.

Another variation of schema mappings that was considered allows augmenting CQs
used inΣst with explicit equality and inequality comparisons. When just equality is
allowed, we talk about the classSM(σ, =); if inequalities are allowed too, we talk about
SM(σ, =, 6=). This addition increases the complexity of reasoning tasksdramatically
[3].

Theorem 11. – BothSATSM(↓,→, =) andSATSM(↓,→, 6=) are undecidable.
– BothSATSM(⇓, =) andSATSM(⇓, 6=) are undecidable as well.
– When schemas are nested relational DTDs,SATSM(⇓, =) is NEXPTIME-complete,

but SATSM(↓,→, =) remains undecidable.

AcknowledgmentThis work was supported by EPSRC grants G049165 and J015377.

References

1. S. Abiteboul, B. Cautis, T. Milo. Reasoning about XML update constraints. InPODS’07,
pages 195–204.

2. S. Abiteboul, L. Segoufin, and V. Vianu. Representing and querying XML with incomplete
information.ACM TODS, 31(1):208–254, 2006.

3. S. Amano, L. Libkin, F. Murlak. XML schema mappings. InPODS’09, pages 33–42.
4. S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. Treepattern query minimization.

VLDB J.11(4): 315-331 (2002).
5. M. Arenas, P. Barceló, L. Libkin, F. Murlak.Relational and XML Data Exchange. Morgan

& Claypool, 2010.
6. M. Arenas, W. Fan, L. Libkin. On the complexity of verifying consistency of XML specifi-

cations.SIAM J. Comput.38(3): 841-880 (2008).
7. M. Arenas, L. Libkin. XML data exchange: consistency and query answering.J. ACM55(2):

(2008).
8. P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with incomplete information.J. ACM,

58:1 (2010).

9. H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive queries over trees using
schema information.MFCS’08, pages 132–143.

10. H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment over trees.
JCSS77(3): 450-472 (2011).

11. M. Bojanczyk, L. Kolodziejczyk, F. Murlak. Solutions inXML data exchange. InICDT
2011, pages 102-113.

12. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Regular XPath: constraints,
query containment and view-based answering for XML documents. InLID’08.

13. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational data
bases. InSTOC 1977, pages 77–90.

14. C. David, A. Gheerbrant, L. Libkin, W. Martens. Containment of pattern-based queries over
data trees. InICDT 2013, pages 201-212.

15. C. David, L. Libkin, F. Murlak. Certain answers for XML queries. InPODS 2010, pages
191–202.

16. W. Fan, L. Libkin. On XML integrity constraints in the presence of DTDs.J. ACM49(3):
368–406 (2002).

17. D. Figueira. Satisfiability of downward XPath with data equality tests.PODS’09, 197-206.
18. P. Genevés and N. Layaida. A system for the static analysis of XPath.ACM TOIS24 (2006),

475–502.
19. A. Gheerbrant, L. Libkin, and T. Tan. On the complexity ofquery answering over incomplete

XML documents.ICDT 2012, 169–181.
20. G. Gottlob, C. Koch, K. Schulz. Conjunctive queries overtrees.J. ACM53 (2006), 238–272.
21. T. Imieliński and W. Lipski. Incomplete information inrelational databases.J. ACM,

31(4):761–791, 1984.
22. M. Lenzerini. Data integration: a theoretical perspective. In PODS’02, pages 233–246.
23. L. Libkin. Incomplete information and certain answers in general data models. InPODS’11,

pages 59–70.
24. L. Libkin, C. Sirangelo. Reasoning about XML with temporal logics and automata.J.

Applied Logic, 8:2, 210–232 (2010).
25. W. Martens, F. Neven, T. Schwentick. Simple off the shelfabstractions for XML schema.

SIGMOD Record36(3): 15-22 (2007).
26. G. Miklau and D. Suciu. Containment and equivalence for afragment of XPath.J. ACM,

51(1): 2–45, 2004.
27. F. Neven, T. Schwentick. On the complexity of XPath containment in the presence of dis-

junction, DTDs, and variables.LMCS, 2(3): (2006).
28. Y. Sagiv, M. Yannakakis. Equivalences among relationalexpressions with the union and

difference operators.J. ACM27(4): 633-655 (1980).
29. Th. Schwentick. XPath query containment.SIGMOD Record33(1): 101-109 (2004).

