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Abstract

We consider a model for online computation in which the online algorithm receives, together
with each request, some information regarding the future, referred to as advice. The advice is a
function, defined by the online algorithm, of the whole request sequence. The advice provided
to the online algorithm may allow an improvement in its performance, compared to the classical
model of complete lack of information regarding the future. We are interested in the impact of
such advice on the competitive ratio, and in particular, in the relation between the size b of the
advice, measured in terms of bits of information per request, and the (improved) competitive
ratio. Since b = 0 corresponds to the classical online model, and b = dlog |A|e, where A is the
algorithm’s action space, corresponds to the optimal (offline) one, our model spans a spectrum
of settings ranging from classical online algorithms to offline ones.

In this paper we propose the above model and illustrate its applicability by considering two
of the most extensively studied online problems, namely, metrical task systems (MTS) and the
k-server problem. For MTS we establish tight (up to constant factors) upper and lower bounds
on the competitive ratio of deterministic and randomized online algorithms with advice for any
choice of 1 ≤ b ≤ Θ(log n), where n is the number of states in the system: we prove that
any randomized online algorithm for MTS has competitive ratio Ω(log(n)/b) and we present a
deterministic online algorithm for MTS with competitive ratio O(log(n)/b). For the k-server
problem we construct a deterministic online algorithm for general metric spaces with competitive
ratio kO(1/b) for any choice of Θ(1) ≤ b ≤ log k.
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1 Introduction

Online algorithms are algorithms that receive their input piece by piece and have to act upon the
receipt of each piece of input (a.k.a. request). Yet, their goal is usually to guarantee a performance
which is as close as possible to the optimal performance achievable if the entire input is known
in advance. How close do they get to this optimal performance is usually analyzed by means of
competitive analysis (cf. [4]).

From a theoretical standpoint, the complete lack of knowledge about the future makes it many
times impossible to achieve ‘reasonable’ competitive ratios. From a practical standpoint, complete
lack of knowledge about the future does not always accurately model realistic situations. Conse-
quently, several attempts have been made in the literature to somewhat relax the ‘absolutely no
knowledge’ setting, and achieve better competitive ratios in such relaxed settings. Most notable
are the setting where a limited number of steps into the future is known at any time (lookahead)
(e.g., [1, 7, 19]), and the ‘access graph’ setting for paging (e.g., [5, 13]). These settings and their
analyses are usually specific to the problem they address.

In this paper we study a new, general framework whose purpose is to model online algorithms
which have access to some information about the future. This framework is intended to analyze
the impact of such information on the achievable competitive ratio. One important feature of our
framework is that it takes a quantitative approach for measuring the amount of information about
the future available to an online algorithm. Roughly speaking, we define a finite advice space U ,
and augment the power of the online algorithm Alg (and thus reduce the power of the adversary) by
means of a series of queries ut, t = 1, 2, . . ., where ut maps the whole request sequence σ (including
the future requests) to an advice ut(σ) ∈ U provided to Alg in conjunction with the tth request of
σ. This advice can then be used by the online algorithm to improve its performance. At the risk
of a small loss of generality, we assume that the advice space is of size 2b for some integer b ≥ 0
and consider the advice to be a string of b bits.
Example 1. For the paging problem, it is relatively easy to verify that the following is a 1-
competitive algorithm which uses 1 bit of advice per request (i.e., |U| = 2) [10]. The bit of advice
indicates whether the optimal offline algorithm keeps in memory the requested page until the
next request to that same page. The online algorithm tries to imitate the behavior of the offline
algorithm: if the offline algorithm indeed keeps in memory the requested page until the next request
to that same page, then so does the online algorithm. Whenever a page must be swapped out from
memory, the online algorithm picks an arbitrary page among all pages that are not supposed to
remain in memory until they are requested again.

Clearly, since for a ‘usual’ online problem the set of all possible request sequences is infinite, our
framework just imposes some ‘commitment’ of the adversary regarding the future. This reduces
the power of the adversary, and gives to the online algorithm some information about the future.
Since (typically) an online algorithm has at any time a finite set of possible actions, our setting
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additionally provides a smooth spectrum of computation models whose extremes are (classical)
online computation with no advice (advice space of size 1) and optimal, offline computation, where
the advice is simply the optimal action (the advice space corresponds to the set of all possible
actions).

The main motivation for studying online algorithms that receive a small advice with each
request is purely theoretical. Nevertheless, this framework may be motivated by settings such as
the following, which may be dubbed ‘spy behind enemy lines’: an entity which is aware of the plans
of the adversary collaborates with the online algorithm, however the communication between this
entity and the online algorithm is limited in terms of its capacity.

In this work we concentrate on two of the most extensively studied online problems, metrical
task systems (MTS) and the k-server problem. We establish several (upper and lower) bounds
on the achievable competitive ratios for these problems by online algorithms with advice, thus
demonstrating the applicability of our approach for online problems, and giving a more refined
analysis for online algorithms having some information about the future. Specifically, for MTS we
establish asymptotically tight upper and lower bounds by proving Theorems 1 and 2.
Theorem 1. Any randomized online algorithm for uniform n-node MTS with 1 ≤ b ≤ Θ(log n) bits
of advice per request cannot be ρ-competitive against an oblivious adversary unless ρ = Ω(log(n)/b).
Theorem 2. For any choice of 1 ≤ b ≤ dlog ne, there exists a deterministic online algorithm for
general n-node metrical task systems that receives b bits of advice per request and whose competitive
ratio is O(log(n)/b).

For the k-server problem we first prove Theorem 3 and then generalize it to establish Theorem 4.
Theorem 3. There exists an O(

√
k)-competitive deterministic algorithm for the k-server problem

that receives O(1) bits of advice per request.
Theorem 4. For any choice of Θ(1) ≤ b ≤ dlog ke, there exists a deterministic online algorithm
for the k-server problem that receives b bits of advice per request and whose competitive ratio is
kO(1/b).

1.1 Related work

Online algorithms operating against restricted adversaries have been considered in the literature on
many occasions, and under different settings. For example, online algorithms that operate against
an adversary that has to provide some lookahead into the future have been considered, e.g., for
the list accessing problem [1], the bin-packing problem [19], and the paging problem [7]. Another
example is the model of ‘access graph’ for the paging problem [5, 13].

The notion of advice is central in computer science (actually, checking membership in NP-
languages can be seen as computing with advice). In particular, the concept of advice and the
analysis of its size and its impact on various computations has recently found various applications

2



in distributed computing. It is for instance present in frameworks such as informative labeling
for graphs [27], distance oracles [28], and proof labeling [22, 23]. A formalism of computing with
advice based on a pair of collaborative entities, usually referred to as an oracle and an algorithm,
has been defined in [17] for the purpose of differentiating the broadcast problem from the wake-up
problem. This framework has been recently used in [16] for the design of distributed algorithms for
computing minimum spanning trees (MST), in [15] for tackling the distributed coloring problem,
and in [26] for analyzing the graph searching problem (a.k.a. the cops-and-robbers problem). Other
applications can be found in [8, 18, 20]. In the framework of computing with advice, the work
probably most closely related to the present one is the work of Dobrev, Královič, and Pardubská
[10] who essentially prove that there is a 1-competitive online algorithm for the paging problem,
with 1 bit of advice1 (see Example 1).

Online algorithms (without advice) for metrical task systems have been extensively studied.
For deterministic algorithms it is known that the competitive ratio is exactly 2n−1, where n is the
number of states in the system [6]. For randomized algorithms, the known upper bound for general
metrical task systems is O(log2 n log logn) [12, 14] and the known lower bound is Ω(log n/ log logn)
[2, 3]. For uniform metric spaces the randomized competitive ratio is known to be Θ(log n) [6, 21].

For the k-server problem the best competitive ratio for deterministic algorithms on general
metric spaces is 2k− 1 [24], and the lower bound is k [25]. Randomized algorithms for the k-server
problem (against oblivious adversaries) are not well understood: it is known that in general metric
spaces no algorithm has competitive ratio better than Ω(log k/ log log k) [2, 3], but no upper bound
better than the one of [24] (that holds for deterministic algorithms) is known.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we give the necessary preliminaries. Our
lower bound for metrical task systems is established in Section 3 and the matching upper bound is
established in Section 4. In Section 5 we present our results for the k-server problem. We conclude
in Section 6 with some further discussion and open problems.

2 Preliminaries

An online algorithm is an algorithm that receives its input piece by piece. Each such piece is an
element in some set S and we refer to it as a request. Let σ be a finite request sequence. The tth

1 The model and interests of [10] actually differ from ours in two aspects. First, they are interested in the

amount of information required in order to obtain online algorithms with optimal performance, rather than improved

competitive ratios. Second, they allow the advice to be of variable size, including size zero, and concentrate their

work on the question of how much below 1 can the average size of the advice be. This is done by means of encoding

methods such as encoding the 3-letter alphabet {∅, 0, 1} using one bit only.
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request is denoted σ[t] ∈ S. The online algorithm has to perform an action upon the receipt of each
request, that is, at round t, 1 ≤ t ≤ |σ|, this action has to be performed when the online algorithm
only knows the requests σ[1], . . . , σ[t].

To formally define a deterministic online algorithm we use the formulation of [4] (cf. Chapter 7).
A deterministic online algorithm is a sequence of functions gt : St → At, t ≥ 1, where At is the
set of possible actions for request t (in many cases all At are identical and we denote them by A.)
In this work we strengthen the online algorithm (and thus weaken the adversary) in the following
manner. For some finite set U , referred to as the advice space, the online algorithm is augmented
by means of a sequence of queries ut : S∗ → U , t ≥ 1. The value of ut(σ), referred to as advice, is
provided to the online algorithm in each round 1 ≤ t ≤ |σ|. The complexity of the advice is defined
to be log |U|. For simplicity of presentation, and at the risk of an inaccuracy in our results by a
factor of at most 2, we only consider advice spaces of size 2b for some integer b ≥ 0, and view the
advice as a string of b bits.

Formally, a deterministic online algorithm with advice is a sequence of pairs (gt, ut), t ≥ 1,
where gt : St × U t → At, and ut : S∗ → U . Given a finite sequence of requests σ = (σ[1], . . . , σ[`]),
the action taken by the online algorithm in round t is

gt(σ[1], . . . , σ[t], u1(σ), . . . , ut(σ)) .

A randomized online algorithm with advice is allowed to make random choices (i.e., ‘toss coins’)
to determine its actions (the functions gt) and the advice scheme (the queries ut). Formally, then,
a randomized online algorithm with advice is a probability distribution over deterministic online
algorithms with advice.

A deterministic online algorithm Alg (with or without advice) is said to be c-competitive if for all
finite request sequences σ, we have Alg(σ) ≤ c ·Opt(σ)+β, where Alg(σ) is the cost incurred by Alg

on σ, Opt(σ) is the cost incurred by an optimal (offline) algorithm on σ, and β is a constant which
does not depend on σ. If the above holds with β = 0, then Alg is said to be strictly c-competitive.
For a randomized online algorithm (with or without advice) we consider the expectation (over the
random choices of the algorithm) of the cost incurred by Alg on σ. Therefore a randomized online
algorithm Alg (with or without advice) is said to be c-competitive (against an oblivious adversary)
if for all finite request sequences σ, we have E[Alg(σ)] ≤ c · Opt(σ) + β.

As commonly done for the analysis of online algorithms, one may view the setting as a game
between the online algorithm and an adversary that issues the request sequence round by round.
In this framework, the values of the queries ut can be thought of as commitments made by the
adversary to issue a request sequence which is consistent with the advice seen so far. For an online
algorithm Alg, augmented with advices in U , we are interested in both the competitive ratio of Alg
and the advice complexity log |U|, and in the interplay between those.
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Metrical Task Systems. A metrical task system (MTS) is a pair (M,R), where M = (V, δ)
is an n-point metric space2, and R ⊆ (R≥0 ∪ {∞})n is a set of allowable tasks. The points in V

are usually referred to as states. We assume without loss of generality that M is scaled so that
the minimum distance between two distinct states is 1. When the metric space is uniform, we
sometimes call the metrical task system a uniform n-node Metrical Task Systems (or MTS).

An instance I of (M,R) consists of an initial state s0 and a finite task sequence r1, . . . , rm,
where rt ∈ R for all 1 ≤ t ≤ m. Consider some algorithm Alg for (M,R) and suppose that Alg is
in state s at the beginning of round t (the algorithm is in state s0 at the beginning of round 1). In
round t Alg first moves to some state s′ (possibly equal to s), incurring a transition cost of δ(s, s′),
and then processes the task rt in state s′, incurring a processing cost of rt(s′). The cost incurred
by Alg on I is the sum of the transition costs in all rounds and the processing costs in all rounds.

The k-server problem. LetM = (V, δ) be a metric space. We consider instances of the k-server
problem on M, and when clear from the context, omit the mention of the metric space. At any
given time, the k servers reside in some configuration, i.e., a subset X ⊆ V , |X| = k. The distance
between two configurations X and Y , denoted by D(X,Y ), is defined as the weight of a minimum
weight matching between X and Y .

An instance I of the k-server problem onM consists of an initial configuration X0 and a finite
node sequence r1, . . . , rm, where rt ∈ V for all 1 ≤ t ≤ m. Consider some algorithm Alg for the
k-server problem onM and suppose that Alg is in configuration X at the beginning of round t (the
algorithm is in configuration X0 at the beginning of round 1). The request rt must be processed
by one of the k servers in round t, which means that Alg moves to some configuration Y such that
rt ∈ Y (Y may be equal to X if r ∈ X), incurring a cost of D(X,Y ). The cost incurred by Alg on
I is the sum of the costs incurred in all rounds.
Remark. Throughout the paper we denote the logarithm on base 2, as log (without a subscript).
Logarithms on other bases are denoted with the base as a subscript.

3 A lower bound for MTS

In this section we prove Theorem 1, that is, we show that if a randomized online algorithm for
uniform n-node MTS with 1 ≤ b ≤ Θ(log n) bits of advice per request is ρ-competitive, then
ρ = 1 + Ω(log(n)/b). For the sake of the analysis, we consider in this section a stronger model for
online algorithms with advice, where the whole advice is provided at the beginning of the execution
rather than round by round. This only makes our results stronger.

Our proof is based on a lower bound on the competitive ratio of randomized online algorithms
2 Throughout the paper, we use the standard definition of a metric space consisting of a set V of points and a

distance function δ.
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with advice for an online problem we call generalized matching pennies (GMP), and on a reduction
from this problem to the MTS problem.

3.1 The GMP problem

An instance I of the (φ, τ)-GMP problem, for positive integers φ and τ , consists of a finite sequence
σ of m ≥ 1 requests, where σ[t] is one of the digits 0, . . . , φ − 1 for 1 ≤ t ≤ m. (We refer to the
integers 0, . . . , φ − 1 as digits for reasons that will be clarified soon.) An algorithm for the GMP

problem outputs, for each request σ[t], 1 ≤ t ≤ m, an action a[t] ∈ {0, . . . , φ−1}; it incurs a cost of
0 if σ[t] = a[t] and a cost of 1 otherwise. In addition, the algorithm incurs a dummy cost of dm/τe.
Formally, the cost of an algorithm Alg on σ is

dm
τ
e+

m∑
t=1

Zt ,

where

Zt =

{
0 if a[t] = σ[t];
1 otherwise.

An online algorithm for the GMP problem must output a[1] before it sees request σ[1], and must
output a[t], t > 1, as a function of σ[1], . . . , σ[t− 1] only.3

We now give a lower bound on the competitive ratio of any randomized online algorithm with
advice for the (φ, τ)-GMP problem. We first consider a single step of the GMP problem and regard
it as a game between a max-player that chooses some digit σ ∈ {0, . . . , φ − 1} and a min-player
that chooses some digit a ∈ {0, . . . , φ− 1}. The min-player incurs a cost of 0 if a = σ and a cost of
1 otherwise. Clearly, if the max-player chooses its action uniformly at random, then the expected
cost incurred by the min-player is 1 − 1/φ. The following lemma provides a lower bound on the
expected cost incurred by the min-player when the entropy in the mixed strategy of the max-player
is not maximal.
Lemma 3.1. Let S be the mixed strategy of the max-player (i.e., a probability distribution over
the digits 0, . . . , φ − 1). If H(S) ≥ δ log φ, where 0 < δ < 1, then the expected cost incurred by the
min-player is greater than δ − 1/ log φ.

Proof. Let pi = P(S = i) for every 0 ≤ i ≤ φ − 1. Assume without loss of generality that
p0 ≥ p2 ≥ · · · ≥ pφ−1 and fix p = p0. Clearly, the expected cost incurred by the min-player is
minimized by choosing digit a = 0, in which case the expected cost is 1− p. We bound the entropy

3 For clarity and simplicity, we give this definition, which does not fully conform to the definition of online

algorithms of Section 2. Alternatively, one may add to the definition of the problem a dummy request σ[0], define

the output of the online algorithm a[t], 0 ≤ t ≤ m, to be a function of σ[0], . . . , σ[t], and define Zt, 1 ≤ t ≤ m to be

0 if and only if a[t− 1] = σ[t] and 1 otherwise.
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in S as follows:

H(S) =
φ−1∑
i=0

pi log
(

1
pi

)

= p log
(

1
p

)
+
φ−1∑
i=1

pi log
(

1
pi

)
≤ p log

(
1
p

)
+ (1− p) log

(
φ− 1
1− p

)
(1)

= p log
(

1
p

)
+ (1− p)

(
log(φ− 1) + log

(
1

1− p

))
≤ 1 + (1− p) log(φ− 1) (2)

< (1− p) log φ+ 1 ,

where (1) and (2) are due to Jensen’s inequality. Since H(S) ≥ δ log φ, it follows that δ log φ <

(1− p) log φ+ 1, hence 1− p > δ − 1/ log φ and the assertion holds.

We can now prove the following theorem.
Theorem 3.2. Let Alg be a ρ-competitive randomized online algorithm for the (φ, τ)-GMP problem
that receives b bits of advice per request. If φ ≥ 4 and 1 ≤ b ≤ (1/3) log φ then ρ = 1 + Ω(τ).

Proof. We use Yao’s principle and show that for an arbitrarily large integer L, there is a probability
distribution over request sequences for the (φ, τ)-GMP problem such that (1) the optimal cost
on any sequence in the support of this distribution is L; and (2) the expected cost, over this
distribution, of any deterministic online algorithm with b bits of advice per request is at least
L · (1 + Ω(τ)).

We define this distribution to be the uniform distribution over all sequences of length Lτ .
Clearly, the optimal cost on all of these sequences is L. It remains to establish the lower bound on
the expected cost incurred by an arbitrary deterministic online algorithm Alg on this distribution.
Let m = Lτ and let σ be a request sequence drawn from the above distribution. For the purpose
of the proof we fix arbitrary constants 1/2 < γ < β < α < 1 such that b < (1− α) log φ. Note that
this is possible since we assume that b ≤ (1/3) log φ.

For 1 ≤ t ≤ m, let Xt be the random variable that takes on the digit σ[t] ∈ {0, . . . , φ − 1}.
Let Y be the random variable that takes on the advice. So, Alg may base its choice of a[t] on the
knowledge of Y and X1, . . . , Xt−1.

Fix X = (X1, . . . , Xm). Since X1, . . . , Xm are chosen uniformly at random and independently,
the entropy in X is H(X) = m log φ. The advice Y is encoded by bm bits, thus H(Y ) ≤ bm. A
crucial observation is that Y is fully determined by X (this is how we defined the advice). Therefore
H(Y | X) = 0 and

H(X | Y ) = H(X,Y )−H(Y ) = H(X)−H(Y ) ≥ m log φ−mb . (3)
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On the other hand, by a straightforward variant of the chain rule of conditional entropy, we have

H(X|Y ) = H(X1, . . . , Xm | Y ) = H(X1 | Y )+H(X2 | X1, Y )+· · ·+H(Xm | X1, . . . , Xm−1, Y ) . (4)

By combining (3) and (4), we conclude that on average, a typical term in (4) is at least log φ−b >
α log φ. As each request admits φ possible digits, we have H(Xt | X1, . . . , Xt−1, Y ) ≤ log φ, and
hence the fraction of terms in (4) which are smaller than β log φ is smaller than 1−α

1−β . Therefore the
fraction of terms in (4) which are at least β log φ is greater than 1− 1−α

1−β ≥
α−β
1−β .

Fix T = {1 ≤ t ≤ m | H(Xt | X1, . . . , Xt−1, Y ) ≥ β log φ}. We know that |T | > m(α−β)
1−β .

(In fact, given a deterministic online algorithm with advice, the function Y = Y (X) is known to
us and the set T can be computed.) Consider some index 1 ≤ t ≤ m. The amount of entropy
that remains in request t after the online algorithm saw the advice (Y ) and the previous requests
(X1, . . . , Xt−1) is a random variable4, denote it by Ht. Assuming that t ∈ T , we have E[Ht] =
H(Xt | X1, . . . , Xt−1, Y ) ≥ β log φ. Since Ht is bounded from above by log φ, it follows that
P(Ht < γ log φ) < 1−β

1−γ and P(Ht ≥ γ log φ) > 1− 1−β
1−γ = β−γ

1−γ .

Recall that Zt takes on the cost incurred by Alg on request t for every 1 ≤ t ≤ m — this is
now a random variable. Let Z =

∑m
t=1 Zt. We have E[Zt] ≥ E[Zt | Ht ≥ γ log φ] · P(Ht ≥ γ log φ).

Lemma 3.1 guarantees that E[Zt | Ht ≥ γ log φ] > γ− 1/ log φ which is at least γ− 1/2 since φ ≥ 4.
Therefore for every t ∈ T , we have E[Zt] > (γ − 1/2) · β−γ1−γ and by summing over all indices t ∈ T ,
we conclude that

E[Z] > m · α− β
1− β

· β − γ
1− γ

(γ − 1/2) = Lτ · α− β
1− β

· β − γ
1− γ

(γ − 1/2) .

Since the dummy cost incurred by Alg on σ is L, it follows that the expected cost incurred by
Alg is greater than L(1 + Ω(τ)). This completes the proof.

3.2 Metrical Task Systems

To establish our lower bound for metrical task systems, we present a reduction from the GMP

problem to MTS. That is, we build a randomized online algorithm with advice for the GMP

problem from a randomized online algorithm with advice for uniform MTS.
Theorem 3.3. Suppose that there exists a ρ-competitive randomized online algorithm with b bits
of advice per request for uniform n-node MTS. Then there exists a ρ-competitive randomized online
algorithm with 2b bits of advice per request for the (φ, τ)-GMP problem as long as φτ ≤ n/2.

4 The random variable Ht maps the event (X1 = x1)∧· · ·∧(Xt−1 = xt−1)∧(Y = y) to the entropy in Xt conditioned

on that event. It should not be confused with the conditional entropy in Xt given X1, . . . , Xt−1, Y , denoted by

H(Xt | X1, . . . , Xt−1, Y ), which is the expected value of Ht, nor with the conditional self information in Xt given

X1, . . . , Xt−1, Y which is a random variable that maps the event Xt = xt conditioned on (X1 = x1) ∧ · · · ∧ (Xt−1 =

xt−1) ∧ (Y = y) to minus the logarithm of the probability for that event.
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Proof. Let AlgMTS be a ρ-competitive randomized online algorithm with b bits of advice per request
for uniform n-node MTS. We design a randomized online algorithm AlgGMP with 2b bits of advice
per request for the (φ, τ)-GMP problem. AlgGMP works by issuing requests to AlgMTS in an online
manner, and deciding on its actions as a function of the actions taken by AlgMTS. We first define
the requests issued to AlgMTS and the actions taken by AlgGMP and then prove that AlgGMP is
ρ-competitive.

Let σGMP be the request sequence for the GMP problem and let m = |σGMP|. We denote by
σMTS the request sequence produced by AlgGMP for AlgMTS. The request sequence σGMP is divided
into cycles, where each cycle consists of τ consecutive requests (the last cycle may be shorter); σMTS

is also divided into cycles, each consisting of τ + 1 tasks.

Fix n′ = φτ . We index the n states of the uniform MTS by the integers 0, . . . , n − 1. Each
task r of the MTS is of the form r = 〈r(0), . . . , r(n − 1)〉 ∈ {0,∞}n, where r(i) = ∞ for every
2n′ ≤ i ≤ n− 1. Furthermore, in odd (respectively, even) cycles the task r also satisfies r(i) = ∞
for every n′ ≤ i ≤ 2n′− 1 (resp., for every 0 ≤ i ≤ n′− 1). Note that this means that a competitive
MTS algorithm can be in state i in an odd (resp., even) cycle only if 0 ≤ i ≤ n′ − 1 (resp.,
n′ ≤ i ≤ 2n′ − 1).

The initial state of the MTS is set to be n′. We now define the request sequence precisely.
In what follows we consider some odd cycle c; the construction for even cycles is analogous. Let
ψ1, . . . , ψτ ∈ {0, . . . , φ−1} be the τ GMP requests input to AlgGMP in cycle c and let r0, r1, . . . , rτ ∈
{0,∞}n be the τ+1 tasks produced by AlgGMP (in an online fashion) for AlgMTS. Task r0 is defined
as follows: set r0(i) = 0 for every 0 ≤ i ≤ n′ − 1 (recall that since r0 is an odd cycle task, we
have r0(i) = ∞ for every other state i). For every integer 0 ≤ i ≤ n′ − 1, let u(i) be the τ -letter
word over the alphabet 0, . . . , φ − 1 that represents i in base φ. Task rt, 1 ≤ t ≤ τ , is designed
so that rt(i) = 0 if and only if the t most significant digits in u(i) are exactly ψ1, . . . , ψt (in that
order); otherwise, rt(i) =∞. That is, there are φτ−t states with zero processing cost in rt (all other
states have infinite processing cost); note that these states also had zero processing cost in rt−1.
Eventually, in the last task of cycle c (task rτ ) there remains a single state with zero processing
cost — denote it sc — while all other states have infinite processing cost.

Now, consider some 1 ≤ t ≤ τ and suppose that AlgMTS serves task rt−1 in state 0 ≤ i ≤ n′− 1.
Then the action at of AlgGMP in step t is the tth most significant digit in u(i), i.e., at = bi/φτ−tc
mod φ.

Note that the request sequence σMTS consists of m+dmτ e requests. Thus the advice that AlgMTS

should receive is of size b · (m + dmτ e) bits. This is feasible since AlgGMP is assumed to receive 2b
bits of advice per request which sums up to 2bm ≥ b · (m+ dmτ e) bits of advice in total.

We now prove that AlgGMP is ρ-competitive. This is done by showing that Opt(σGMP) ≥
Opt(σMTS) and that AlgGMP(σGMP) ≤ AlgMTS(σMTS). The assertion follows since AlgMTS is assumed
to be ρ-competitive.
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First observe that by definition, Opt(σGMP) = dm/τe. On the other hand, σMTS can be served
at cost dm/τe by moving to state sc at the beginning of cycle c and remaining there until the end
of the cycle. (Recall that sc admits a zero processing cost throughout the cycle.) Thus during each
cycle the transition cost is 1 and the processing cost is 0. Since there are dm/τe cycles, we conclude
that Opt(σMTS) ≤ dm/τe = Opt(σGMP).

To prove that AlgGMP(σGMP) ≤ AlgMTS(σMTS) we consider σGMP and σMTS cycle by cycle. Con-
sider some odd cycle c of σGMP (the analysis for even cycles is analogous) and some step 1 ≤ t ≤ τ
in that cycle. If AlgGMP incurs a cost of 1 (and not 0) at this step, then the action at of AlgGMP

differs from the request ψt. We argue that in this case AlgMTS serves task rt−1 in some state i such
that rt(i) =∞, and hence AlgMTS is forced to change its state in step t, incurring a unit transition
cost. Indeed, the definition of the actions of AlgGMP implies that the tth most significant digit of
u(i) is at while the construction of σMTS implies that for every state j admitting zero processing
cost in task rt, the tth most significant digit of u(j) is ψt.

Moreover, note that AlgMTS always incurs a unit transition cost when the cycle begins as at
the end of the previous (even) cycle, or at the beginning of the execution if c = 1, AlgMTS must
be in state sc−1 ∈ {n′, . . . , 2n′ − 1} while the first task of cycle c must be served in some state in
{0, . . . , n′ − 1}. Summing over all cycles, we get a cost of dm/τe which accounts for the dummy
cost incurred by AlgGMP. It follows that the total cost incurred by AlgGMP on σGMP is bounded
from above by the total cost incurred by AlgMTS on σMTS.

We are now ready to establish Theorem 1.

Proof of Theorem 1. Let AlgMTS be a ρ-competitive randomized online algorithm for uniform n-
node MTS with b ≤ (1/6) log(n/2) bits of advice per request. Fix φ = 26b and τ = blogφ

n
2 c. Note

that φ and τ are positive integers satisfying φτ ≤ n/2. Therefore by Theorem 3.3, there exists
a ρ-competitive randomized online algorithm AlgGMP for the (φ, τ)-GMP problem with 2b bits of
advice per request. Since φ ≥ 4 and 2b ≤ (1/3) log φ, Theorem 3.2 can be applied to conclude that
ρ = 1 + Ω(τ) = 1 + Ω(log(n)/b).

4 An upper bound for MTS

In this section we establish Theorem 2 by presenting a deterministic online algorithm for general
MTS that gets b, 1 ≤ b ≤ log n, bits of advice per request, and achieves a competitive ratio of
d dlogne

b e = O(log(n)/b). This algorithm is called Follow.

Let (M,R) be a metrical task system. The request sequence is divided into cycles, each
consisting of α = d dlogne

b e requests, with the last cycle possibly shorter. The first cycle, cycle
0, consists of the first α requests, the second one of the next α requests, and so on. During cycle
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i ≥ 0, Follow receives advice of dlog ne bits, which indicate the state in which the optimal algorithm
serves (will serve) the first request of cycle i+ 1.

For cycle i, let si be the state in which the optimal algorithm serves the first request of the
cycle. Let OPT be the cost of the optimal algorithm on the whole request sequence and let OPTi
be the cost of the optimal algorithm during cycle i.

The operation of Follow. Before starting to serve cycle i, i ≥ 0, Follow places itself at state
si. This is possible (in the empty sense - at no cost) for the first request of cycle 0, because both
the optimal algorithm and Follow start at the same initial state s0. This is possible for any cycle
i > 0, by moving, at the end of phase i − 1, to state si, known to Follow by the advice given in
cycle i− 1.

To describe how Follow serves the requests in a cycle we give the following definition. Let
Bi(j), j ≥ 0, be the set of states in the metrical task system that are at distance less than 2j from
si. I.e.,

Bi(j) = {s : d(s, si) < 2j} .

We now partition the (at most) α requests of cycle i, into phases. When the cycle starts, phase 0
starts too. During phase j, Follow serves the requests by moving to the state, among the states
in Bi(j), which has the least processing cost for the given task, and serves the request there. A
request no longer belongs to phase j, and phase j+ 1 starts, if serving the request according to the
above rule, will bring the total processing cost since the cycle started to be at least 2j . Note that
if a given request belongs to some phase j, the next request may belong to phase j′ > j + 1. That
is, there may be phases with no request.

To analyze the algorithm we first give a lower bound on the cost of the optimal algorithm in
each cycle in terms of the number of phases that occurred in that cycle.
Lemma 4.1. If the last request of cycle i belongs to phase k, k ≥ 1, then OPTi ≥ 2k−2.

Proof. Let σ be the sequence of requests that belong to phase k − 1, concatenated with the first
request of phase k. Note that the sequence of requests that belong to phase k − 1 may be empty,
but the first request of phase k must exist.

We consider how the optimal algorithm serves σ, and assume by way of contradiction that
OPTi < 2k−2. It follows that the optimal algorithm serves all the requests of σ in states within
Bi(k − 2) ⊆ Bi(k − 1), incurring for those a processing cost less than 2k−2. Since for each of the
requests of σ the optimal algorithm must at least incur the minimum processing cost among the
states in Bi(k−1), it follows that

∑|σ|
`=1 mins∈Bi(k−1) σ`(s) < 2k−2. Now observe that the processing

cost incurred by Follow for those requests in cycle i which are before σ is less than 2k−2. And by
the above, the processing cost of Follow for σ is less than 2k−2. But then the processing cost of
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Follow in cycle i up to and including the last request of σ would be less than 2k−1, and phase k
would not have started at the last request of σ — a contradiction.

We conclude this section with the following theorem.
Theorem 4.2. Follow is O(α)-competitive.

Proof. We consider the cost incurred by Follow cycle by cycle. We denote by Ci the cost of Follow
during cycle i. Let Ci = Csi + Cti + C∗i , where, Csi is the processing cost during cycle i, Cti is the
transition cost during cycle i, and C∗i is the cost incurred by Follow, at the end of cycle i, to move
to state si+1 (we do not count this cost in Cti ).

For cycle i we consider two cases.

Case 1: The last request of cycle i is in phase k = 0. It follows that Csi < 1 and this processing cost
was incurred in state si. The optimal algorithm has either moved away from si, incurring a cost of
at least 1, or serves the whole cycle in si, incurring a cost of exactly Csi . In any case Csi ≤ OPTi,
and Cti = 0. We thus have for this case Csi + Cti ≤ OPTi.

Case 2: The last request of cycle i is in phase k > 0. By Lemma 4.1 we have that OPTi ≥ 2k−2.
We have Csi < 2k by definition of the phases. We further have Cti ≤ (α − 1)2k+1, because Follow

moves between states at most α− 1 times, and stays during the whole cycle within Bi(k). We thus
have for this case Csi + Cti ≤ 8α ·OPTi.

Now consider the cost C∗i incurred by Follow to move to state si+1 at the end of phase i. By
the triangle inequality, this cost is at most Cti + d(si, si+1).

If the whole sequence has ` cycles, summing over all cycles we have

∑̀
i=1

Ci =
∑̀
i=1

(Csi + Cti + C∗i )

≤
∑̀
i=1

(Csi + Cti ) +
`−1∑
i=1

(Cti + d(si, si+1))

≤
∑̀
i=1

8α ·OPTi +
∑̀
i=1

8α ·OPTi +
`−1∑
i=1

d(si, si+1)

≤ (16α+ 1)OPT .

The theorem follows.

5 An upper bound for the k-server problem

In this section we establish Theorem 4. This is done in two stages. First, in Section 5.1 we
present an online k-server algorithm, referred to as Partition, that receives O(1) bits of advice per
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request and whose competitive ratio is O(
√
k), thus establishing Theorem 3. Then, in Section 5.2,

we use Partition in a recursive manner to obtain the desired upper bound: for every choice of
1 ≤ j ≤ log k, we present an online k-server algorithm that receives 6j bits of advice per request
and whose competitive ratio is O

(
k1/(j+1)

)
.

5.1 An O(
√

k)-competitive k-server algorithm with advice of size O(1)

In this section we present a k-server algorithm that receives O(1) bits of advice per request, and
achieves a competitive ratio of O(

√
k), thus establishing Theorem 3. The algorithm, denoted

hereafter Partition, works in iterations, where each iteration except, maybe, the last one, consists
of k requests. For simplicity of presentation, we assume that the request sequence ρ satisfies |ρ|
mod k = 0 so that the last iteration consists of k requests as well. The request sequence in iteration
i is merely the subsequence of ρ that starts at request ρ[(i − 1)k + 1] and ends at request ρ[ik].
We may sometimes use the notation (i, j), where 1 ≤ i ≤ |ρ|/k and 1 ≤ j ≤ k, to denote round j

in iteration i, namely, round (i− 1)k + j. Therefore ρ[i, j] = ρ[(i− 1)k + j] stands for the request
presented in round j of iteration i.

Let the initial configuration be A and the request sequence ρ. We define an order on the points
of the metric space; we let the points of A be the first k points in that order (this last condition
is necessary for technical reasons only for the recursive algorithms of Section 5.2). Let Opt denote
an optimal (offline) algorithm for ρ, when starting at A. The configuration of Opt just before
request ρ[i, j] is presented is denoted COpt[i, j]. Note that for every iteration i except the last one,
COpt[i+ 1, 1] is also the configuration of Opt at the end of the iteration, i.e., after serving the last
request in iteration i. For convenience, if i is the last iteration then we may slightly abuse notation
and let COpt[i+ 1, 1] denote the configuration of Opt at the end of iteration i.

For a configuration C and a request sequence σ we denote by Opt(C, σ) the optimal cost to
start at C and serve σ. We remark that in this notation the number of servers used to serve the
request sequence is implicitly understood from the size of the configuration C.

5.1.1 The Partition algorithm

We subsequently assume that Partition has some information in addition to the request sequence
so far. This information comes in pieces that are provided to the algorithm by means of the bits
of advice, as described later on. In particular, it is assumed that for every iteration i, after serving
the last request in that iteration, Partition knows the configuration COpt[i + 1, 1]. Using this
knowledge, Partition moves its servers so that its configuration coincides with that of Opt at the
beginning of the next iteration. This is done by implementing the following step.
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Configuration matching. After serving the last request in iteration i, Partition moves the
servers to configuration B = COpt[i + 1, 1] along a minimum weight matching, paying a cost of
D(X,B), where X is the configuration of Partition upon serving the last request in iteration i.
Therefore, in what follows we assume that when each iteration starts, Partition and Opt are in the
same configuration. (This is true by definition for the first iteration, when the algorithm starts.)

To serve the requests within each iteration we proceed as follows. Let xi1, . . . , x
i
k be the nodes

occupied by the servers of Partition (and Opt) at the beginning of iteration i, ordered in the
defined order. In this context, we ignore any identity that the servers may have and rename them
from scratch at the beginning of each iteration: the server residing in node xij at the beginning
of iteration i is (re)named sij for every 1 ≤ j ≤ k. As both Partition and Opt agree on the
configuration at the beginning of the iteration, and since the order xi1, . . . , x

i
k is predetermined

(and known to Partition), it follows that the server residing in node xij is named sij in both
executions.

We now partition the servers into two sets, namely, heavy servers and light servers, as follows.
The decision whether a server is heavy or light is made based on the number of requests served by
that server, according to Opt, during the iteration. A server sij is said to be heavier than server sij′
if, according to Opt, sij serves more requests during iteration i than sij′ does. We define the set of
heavy servers to consist of the b

√
kc heaviest servers; the set of light servers contains the rest of

the servers.

As we show later on, Partition knows which servers are heavy and which are light at the
beginning of iteration i for every 1 < i ≤ |ρ|/k (this is made possible by employing the advice
provided to Partition in previous rounds, as discussed later). In the first iteration we make
an arbitrary heavy/light server classification by classifying an arbitrary subset of b

√
kc servers as

heavy, while the rest of the servers are classified as light. Clearly, this arbitrary classification may
differ from the “right” one. The implications of such a “wrong” classification are discussed later
on. (In the next section we will invoke Partition as a subroutine, and sometimes provide to it the
heavy/light server classification also for the first iteration. Once again, this will be discussed later
on.)

Based on the classification of the servers, the requests of the iteration are also partitioned into
two sets. A request that Opt serves with a heavy (respectively, light) server is called a heavy (resp.,
light) request. We may also say at times that a round is heavy (resp., light) if the request presented
in that round is heavy (resp., light). We define the heavy subsequence (resp., light subsequence) of
iteration i to be the subsequence of the heavy (resp., light) requests and denote it by ρih (resp., ρil).
Recall that when the iteration starts both Partition and Opt occupy the same configuration. Let
Ai = COpt[i, 1] denote the configuration at the beginning of iteration i and let Aih ⊂ Ai and Ail ⊂ Ai

denote the configurations of the heavy servers and light serves, respectively, at the beginning of
iteration i.
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Serving the light subsequence. Each light request r ∈ V is served by the closest light server,
which then returns to its initial position. That is, let x ∈ Ail be the node minimizing δ(x, r). Then
the server residing in x serves the request at r and subsequently returns to x.

Serving the heavy subsequence. To serve the heavy subsequence we invoke the Work Function
Algorithm (WFA) [9, 24] on the set of heavy servers, starting in configuration Aih, serving only the
heavy subsequence (and ignoring the light requests). Note that this algorithm is invoked with b

√
kc

servers.

5.1.2 The advice

The above description of Partition assumes that certain information is available to the algorithm.
Specifically, we assumed the following.

(a) At the end of each iteration 1 ≤ i ≤ |ρ|/k, the algorithm knows COpt[i + 1, 1], which is the
configuration of Opt at the end of iteration i.
(b) For each iteration 1 < i ≤ |ρ|/k, the algorithm knows the heavy/light server classification.
(c) For each iteration 1 ≤ i ≤ |ρ|/k, the algorithm knows the classification of each request as light
or heavy.

We now turn to show how to provide this information to the algorithm, using 4 bits of advice per
request.

(a) Matching the configuration of Opt. In order to know COpt[i+ 1, 1] at the end of iteration
i, the following two bits of advice are provided to Partition in round (i, j) for every 1 ≤ j ≤ k.
[1st bit of advice] occupied request(i, j): this bit is set if the node which corresponds to the request
presented in round (i, j) belongs to the configuration of Opt at the beginning of iteration i+1, that
is, if ρ[i, j] ∈ COpt[i+ 1, 1].
[2nd bit of advice] occupied node(i, j): recall that xi1, . . . , x

i
k are the nodes of the configuration

of Opt at the beginning of iteration i in the defined order; this bit is set if xij belongs to the
configuration of Opt at the beginning of iteration i+ 1, that is, if xij ∈ COpt[i+ 1, 1].

Let C = CPartition[i, 1] be the configuration of Partition at the beginning of iteration i and
assume by induction that C = COpt[i, 1] (the base case holds since Partition and Opt start at the
same configuration). We assume without loss of generality that Opt is lazy (cf. Chapter 10 in [4]),
namely, Opt moves a server to node x in round t only if ρ[t] = x and x is not presently covered by a
server. Therefore COpt[i+ 1, 1] ⊆ C ∪{ρ[i, j] | 1 ≤ j ≤ k}. It follows that the configuration COpt[i+
1, 1] can be deduced from the advice collection {occupied request(i, j), occupied node(i, j) | 1 ≤
j ≤ k} provided to the online algorithm along iteration i, together with the knowledge of C.
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(b) Heavy vs. light servers. Recall that xi1, . . . , x
i
k are the nodes of the configuration of Opt

at the beginning of iteration i in a predetermined order. When iteration i starts, 1 < i ≤ |ρ|/k, our
algorithm needs to know which of the servers are light and which are heavy. To implement this, an
additional bit of advice is provided in round j of the previous iteration, namely, in round (i− 1, j).
[3rd bit of advice] heavy server(i−1, j): this bit is set if the server sij residing at xij when iteration
i starts is heavy (in iteration i).
As each iteration lasts k rounds, the required information is available to Partition when iteration
i starts.

(c) Heavy vs. light requests. Our algorithm is further designed so that it knows for each
request, upon the receipt of this request, whether it is a light request or a heavy one. This is im-
plemented simply by providing in round (i, j) a bit that distinguishes between the two possibilities.
[4th bit of advice] heavy request(i, j): this bit is set if the request presented at round (i, j) is heavy.

5.1.3 Analysis

Denote the total cost incurred by Opt in the heavy (respectively, light) rounds of iteration i by
cost∗h(i) (resp., cost∗l (i)). The total cost incurred by Opt in iteration i is thus cost∗(i) = cost∗h(i) +
cost∗l (i). Denote the total cost incurred by Partition in the heavy (respectively, light) rounds of
iteration i by costh(i) (resp., costl(i)). An additional configuration matching cost is incurred by
Partition upon completion of iteration i — denote this cost by costm(i). The total cost incurred
by Partition in iteration i is thus cost(i) = costh(i) + costl(i) + costm(i). Recall that Ai, Aih, and
Ail, denote the configuration at the beginning of iteration i, the configuration of the heavy servers
at the beginning of iteration i, and the the configuration of the light servers at the beginning of
iteration i, respectively.

We now prove an upper bound on the cost incurred by Partition during an iteration, in terms
of the cost incurred by Opt during the same iteration. Consider iteration i for some 1 < i ≤ |ρ|/k.
Observe first that cost∗h(i) ≥ Opt(Aih, ρ

i
h), as Opt(Aih, ρ

i
h) is the minimum possible cost of serving

ρih with |Aih| = b
√
kc servers initially residing in configuration Aih. The cost incurred by our

algorithm in the heavy rounds of iteration i is costh(i) = WFA(Aih, ρ
i
h). We now use the fact that

WFA is not only (2k − 1)-competitive [24], but is also strictly (4k − 2)-competitive [11]. Therefore
costh(i) ≤ 4b

√
kcOpt(Aih, ρ

i
h) and

costh(i) ≤ 4b
√
kccost∗h(i) . (5)

Now, observe that a light server cannot serve more than b
√
kc requests in iteration i according

to Opt (otherwise, this would imply that every heavy server serves at least as many requests which
would account to b

√
kc(b
√
kc + 1) + b

√
kc + 1 = (b

√
kc + 1)2 > k requests in iteration i). We

partition the light requests of iteration i according to which (light) server of Opt serves them. Let
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sij be a light server residing in node xij ∈ Ail at the beginning of iteration i. Let 〈r1, . . . , rm〉, where
m ≤ b

√
kc, be the sequence of (light) requests served according to Opt by sij in (light rounds of)

iteration i. We will show that the cost incurred by Partition for serving each of the requests
r1, . . . , rm is at most twice the total cost incurred by Opt for serving all these requests. This
establishes a ratio of at most 2m ≤ 2b

√
kc between the cost incurred by Partition for serving the

light requests, and the cost incurred by Opt for serving them.

The total cost incurred by Opt in iteration i for serving the requests r1, . . . , rm is χj = δ(xij , r1)+∑m−1
t=1 δ(rt, rt+1). The cost incurred by Partition for serving each request ri, 1 ≤ i ≤ m, is

2 minx∈Ai
l
δ(x, ri) ≤ 2δ(xij , ri). By the triangle inequality, this is at most 2χj . As each light server

serves at most b
√
kc (light) requests (in iteration i), we have

costl(i) ≤ 2b
√
kccost∗l (i) . (6)

It remains to bound from above the configuration matching cost incurred by Partition upon
completion of the iteration, i.e., costm(i). Let X be the configuration of Partition upon serving
the last request of iteration i, and let B the configuration of Opt upon serving the last request of
that iteration. By definition, costm(i) = D(X,B). We argue that D(X,B) can be bounded from
above by cost∗(i) + costh(i). To see that, observe that Partition always returns the light servers
to their initial position after serving each light request. Thus, one can bring all k servers from
configuration X back to configuration Ai (where the servers resided at the beginning of iteration
i), incurring a cost of at most costh(i). On the other hand, along iteration i, Opt moved its
servers from configuration Ai to configuration B, incurring a cost of cost∗(i), hence we must have
D(Ai, B) ≤ cost∗(i). By the triangle inequality, we conclude that D(X,B) ≤ cost∗(i) + costh(i),
therefore

costm(i) ≤ cost∗h(i) + cost∗l (i) + costh(i) . (7)

By combining inequalities (5), (6), and (7), it follows that cost(i) = costh(i)+costl(i)+costm(i)
incurred by Partition in iteration i, 1 < i ≤ |ρ|/k, satisfies

cost(i) ≤ (8b
√
kc+ 1)cost∗h(i) + (2b

√
kc+ 1)cost∗l (i) .

In fact, the above analysis holds for any iteration as long as the “right” heavy/light server classifica-
tion is provided to Partition at (or actually before) the beginning of the iteration. This property
is cast in the following lemma.
Lemma 5.1. Consider some iteration i of Partition and suppose that the heavy/light server
classification is provided to Partition for that iteration. Then, cost(i) ≤ 9b

√
kc · cost∗(i).

The heavy/light server classification is provided to Partition by the bits of advice for every
iteration i, 1 < i ≤ |ρ|/k, hence Lemma 5.1 can be applied to all such iterations. We are left with
the analysis of iteration i for i = 1. For this iteration we give the following Lemma.
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Lemma 5.2. cost(1) ≤ 9b
√
kc · cost∗(1) + β, where β is a constant that does not depend on the

request sequence (but may depend on other parameters of the instance such as the number of servers
or the initial configuration) .

Proof. Since the iteration consists of k requests, the claim is obvious for finite metric spaces where
the diameter is bounded. In the following we prove this claim for infinite metric spaces.

Consider the first iteration of Partition, where its classification of servers into heavy or light
may be wrong. Recall that A1 denotes the configuration at the beginning of the iteration. Fix
∆ = max{δ(u, v) | u, v ∈ A1}. Let H∗ be the set of nodes in which the “genuine” heavy servers
reside at the beginning of the iteration. Let H be the set of nodes resided by the servers which are
classified as heavy servers by Partition at the beginning of the iteration. The line of arguments
that established inequality (5) can be repeated to deduce that costh(1) ≤ 4b

√
kcOpt(H, ρ1

h). We
can bound Opt(H, ρ1

h) by noticing that it cannot exceed D(H,H∗) + cost∗h(1) as cost∗h(1) is the cost
incurred by some execution that starts at H∗ and serves ρ1

h with b
√
kc servers. Since D(H,H∗) ≤

b
√
kc∆, it follows that

costh(1) ≤ 4b
√
kccost∗h(1) +O(k∆) . (8)

Consider some “genuine” light server s1j residing in node x1
j at the beginning of the first iteration

and let 〈r1, . . . , rm〉, where m ≤ b
√
kc, be the sequence of requests served by s1j in (light rounds

of) the iteration according to Opt. Let γ be the cost incurred by Opt for serving the requests
r1, . . . , rm. If s1j was classified as light by our algorithm, then by following the lines of arguments
that established inequality (6), we conclude that the cost incurred by Partition for serving the
requests r1, . . . , rm is at most 2mγ.

Assume that s1j was mistakenly classified as heavy by our algorithm. There must exist some
server s1j′ residing in node x1

j′ at the beginning of the first iteration, which was classified as light
by our algorithm, where δ(x1

j′ , x
1
j ) ≤ ∆. Once again, by following the lines of arguments that

established inequality (6), we conclude that the cost incurred by Partition for serving the requests
r1, . . . , rm is at most 2m(γ + ∆). As there are b

√
kc nodes which were classified as heavy by our

algorithm, and by the bound on m, it follows that

costl(1) ≤ 2b
√
kccost∗l (1) +O(k∆) . (9)

It is easy to verify that equation (7) holds for the first iteration as well. By combining equations
(8), (9), and (7), we conclude that cost(1) = costh(1) + costl(1) + costm(1) incurred by Partition

in the first iteration satisfies

cost(1) ≤ (8b
√
kc+ 1)cost∗h(1) + (2b

√
kc+ 1)cost∗l (1) +O(k∆) ≤ 9b

√
kccost∗(1) +O(k∆) . (10)
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Using Lemmas 5.1 and 5.2 we conclude with the following theorem.
Theorem 5.3. Partition is an O(

√
k)-competitive k-server algorithm that receives 4 bits of advice

per request.

5.2 A general k-server algorithm

Our goal in this section is to establish Theorem 4, i.e., to show that for any 1 ≤ j ≤ log k,
there exists an online k-server algorithm Algj that receives 6j bits of advice per request and has
competitive ratio O(k1/(j+1)). We define the algorithm recursively, where the base of the recursion,
for j = 1, is Alg1 = Partition presented in Section 5.1 (subsequently, we assume familiarity with
that section).

Overview. The main idea of Algj is very similar to that of Partition: Algj works in iterations
of length k (that is, the number of servers available to Algj), where in each iteration the servers
are partitioned into heavy servers and light servers according to the number of requests served by
each server according to Opt; the number of heavy servers here is bk1−1/(j+1)c. The light servers
then serve the light requests according to the greedy rule presented in Section 5.1.1. The heavy
requests are served by invoking Algj−1 with the heavy servers.

It is essential that in each iteration Algj knows: (a) the configuration of Opt, at the beginning
of the iteration, for the servers serving the requests of that iteration; (b) the heavy/light server
classification of these servers; and (c) the heavy/light request classification of the requests of that
iteration (see Section 5.1.2). For all iterations other than the first one, this information is available
to Algj through the bits of advice described in Section 5.1.2. Two additional bits of advice are
used to ensure that this information is also available in the first iteration. The above holds for all
iterations other than a number of iterations at the beginning of the requests sequence, all included
in the first iteration of the highest-level algorithm (i.e., the algorithm called from the “outside”);
we describe later the small technical addition to handle this first iteration.

5.2.1 The algorithm Algj, j > 1

We now define Algj that controls k servers. The algorithm works in iterations. It is assumed that
when each iteration starts, the servers of Algj occupy the same points as those occupied by the
servers of Opt that serve the requests of the iteration (this holds for all iterations other than a
number of iterations at the beginning of the request sequence). At the beginning of each iteration,
we classify the k servers into bk1−1/(j+1)c heavy servers and k − bk1−1/(j+1)c light servers, where
the heavy servers are the bk1−1/(j+1)c servers that serve the biggest number of requests according
to Opt, during that iteration. For iteration i, the requests served according to Opt by a light server
are called light requests, and constitute the light subsequence of the iteration, denoted ρil. The
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rest are called heavy requests, and constitute the heavy subsequence of the iteration, denoted ρih.
Algorithm Algj serves each of the above subsequences independently.

Let Ai be the initial configuration at the beginning of iteration i, and let Aih ⊂ Ai and Ail ⊂ Ai

be the configurations of the heavy servers, and light serves, respectively, at the beginning of iteration
i.

Serving the light subsequence. Each light request r ∈ V is served by the closest light server,
which then returns to its initial position. That is, let x ∈ Ail be the node minimizing δ(x, r). Then
the server residing in x serves the request at r and subsequently returns to x. (This is the same
rule as described in Section 5.1.1.)

Serving the heavy subsequence. To serve the heavy subsequence we use the k′ = bk1−1/(j+1)c
heavy servers and invoke algorithm Algj−1. That is, algorithm Algj−1 is invoked with k′ servers,
starting at the initial configuration Aih, and serving the subsequence ρih.

Recall that Algj runs in iterations and that when each iteration begins, the algorithm should
hold an initial configuration and a heavy/light classification of its servers. We will soon describe
how this information is provided for the first iteration. For all other iterations, the algorithm is
provided with this information through the advice received along the previous iteration as described
in Section 5.1.2. For the special case of the first iteration of the first recursive invocation, the
algorithm chooses an arbitrary classification into bk1−1/(j+1)c heavy servers and k − bk1−1/(j+1)c
light servers, and otherwise proceeds as described above.

Configuration change. Upon completing to serve the last request of the iteration, Algj ensures
that all its servers occupy the same points occupied by the server of Opt that served the requests
of the iteration. To do that Algj moves its light servers to their required configuration, i.e., to the
configuration of these servers at the end of the iteration, according to Opt. Note that during the
current iteration of Algj there is a sequence of iterations of Algj−1, all of which use (precisely)
the heavy servers of Algj . The heavy servers of Algj are therefore brought to their required
configuration at the last stage of the last iteration of Algj−1. The only exception to that rule is
for the first iteration of Algj when Algj is called from the “outside” and not by Algj+1 (i.e., we
use a total of 6j bits of advice per request). In this case Algj also moves its heavy servers to the
configuration as specified by its own bits of advice. We count this cost separately in the analysis
and do not include it in the cost of Algj for this first iteration.
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5.2.2 Advice

We now describe the bits of advice used by Algj , j ≥ 1. The algorithm uses the same 4 bits of
advice described in Section 5.1.2, plus two additional bits.

The first additional bit is used only during the first iteration of the algorithm. Let q be the
index of the last iteration.
[5th bit of advice] occupied node last(1, j): let xq1, . . . , x

q
k be the nodes of the configuration of

those servers of Opt which serve the request sequence of iteration q, at the beginning of iteration
q (according to the predetermined order); this bit is set if, according to Opt, xqj holds one of these
severs at the end of iteration q.

This bit is a duplication of the second bit of advice in the last iteration. It is provided in the
first iteration since the last iteration may be shorter than k requests, in which case the amount of
information that can be encoded by the second bits of advice along that iteration may be insufficient.

The other additional bit is used to provide Algj (when invoked as a subroutine of Algj+1) with
the right heavy/light server classification for its first iteration. This bit can be thought of as a
replacement for the 3rd bit of advice that cannot be provided for the first iteration, since there is
no preceding iteration.

Let x1
1, . . . , x

1
k be the nodes occupied, at the beginning of iteration 1 of a given invocation of

Algj , by the servers of Opt which serve the request sequence of that iteration. The following is
done at the first iteration of the previous invocation of Algj , for 1 ≤ s ≤ k :
[6th bit of advice] heavy server(1, s): this bit is set if the server at x1

s is heavy for the first iteration
of the next invocation of Algj .

In this way, when an algorithm Algj is invoked, it is provided with the heavy/light server clas-
sification for the first iteration. Obviously, this cannot be done if we are facing the first invocation
of Algj . We deal with that in the analysis.

In all, Algj uses 6j bits of advice per request.

5.2.3 Analysis

We now turn to analyze the competitive ratio of our algorithm. We consider a request sequence
ρ, an initial configuration A, and denote by Opt the optimal algorithm starting at A and serving
ρ. Let AlgJ be the algorithm that handles the whole of ρ, that is, this is the algorithm that is
called from the “outside” (in particular, we use a total of 6J bits of advice per request). We now
analyze the cost incurred by Algj , j ≤ J . Similarly to Section 5.1.3, we denote the total cost
incurred by Algj in the heavy (resp., light) rounds of iteration i by costh(i) (resp., costl(i)). The
additional configuration matching cost incurred by Algj upon completion of iteration i is denoted
by costm(i). We further denote the total cost incurred by Opt in the heavy (respectively, light)
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rounds of iteration i of Algj by cost∗h(i) (resp., cost∗l (i)). Let cost∗(i) = cost∗h(i) + cost∗l (i). Note
that interleaved between the heavy and light requests of iteration i of Algj there could be other
requests, but the set of servers serving those according to Opt is distinct of the set of servers serving,
according to Opt, the requests of iteration i of Algj .

We distinguish between a regular iteration and a special iteration. Any iteration of Algj , j ≤ J
which is included in the first iteration of AlgJ is a special iteration. All other iterations of Algj ,
j ≤ J are regular iterations. We first deal with regular iterations. The important properties of a
regular iteration of an algorithm Algj are that (1) the initial configuration of the servers controlled
by Algj is identical to the configuration of the servers of Opt that serve the requests of this iteration
(2) at the beginning of that iteration the correct classification into heavy/light servers is known
to Algj ; and (3) all iterations of all Algj′ , j

′ < j, invoked during a regular iteration of Algj are
themselves regular iterations. The configuration and the heavy/light servers classification, at the
beginning of a special iteration, may differ from the “right” ones since we are unable to provide all
the required bits of advice until the end of the first iteration of AlgJ . Once the first iteration of
AlgJ is over, all the information is available and correct. We now start with a regular iteration.
Lemma 5.4. Consider iteration i of Algj invoked on k servers and assume it is a regular iteration.
Then cost(i) ≤ 9k1/(j+1)cost∗(i).

Proof. The assertion is proved by induction on j. Lemma 5.1 establishes the base case j = 1.
Consider some j > 1 and suppose that the lemma holds for every j′ < j.

We first consider the cost incurred by Algj on serving the light requests. As each light server
serves at most bk1/(j+1)c requests, we can repeat the line of arguments which establishes inequal-
ity (6), to conclude that

costl(i) ≤ 2
⌊
k1/(j+1)

⌋
cost∗l (i) .

As to the heavy requests, by the inductive hypothesis on Algj−1, and since Algj−1 is invoked with⌊
k1−1/(j+1)

⌋
servers, it follows that

costh(i) ≤ 9 ·
(⌊
k1−1/(j+1)

⌋)1/j
cost∗h(i) ≤ 9 · k1/(j+1) cost∗h(i) .

It remains to bound from above the configuration matching cost costm(i). The crucial obser-
vation is that the heavy servers of Algj are exactly the servers used by Algj−1, hence the cost of
placing them in the desired configuration is already accounted for in the cost incurred by Algj−1.
The light servers of Algj reside in their initial configuration at the end of iteration i, thus by the
line of arguments that establishes inequality (7), we conclude that

costm(i) ≤ cost∗l (i) .
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It follows that the total cost incurred by Algj in iteration i is

costh(i) + costl(i) + costm(i) ≤ 9 · k1/(j+1) cost∗h(i) + 2 · k1/(j+1) cost∗l (i) + cost∗l (i)

= 9 · k1/(j+1) cost∗h(i) +
(

2 · k1/(j+1) + 1
)

cost∗l (i)

≤ 9 · k1/(j+1) cost∗(i) .

The assertion follows.

We now give an upper bound on the cost incurred by Algj in a special iteration.
Lemma 5.5. Consider iteration i of Algj invoked on k servers and assume it is a special iteration.
Then cost(i) ≤ 9k1/(j+1)cost∗(i) + β, where β is a constant that does not depend on the request
sequence (but may depend on other parameters of the instance such as the number of servers or the
initial configuration).

Proof. Since the iteration consists of k requests, the claim is obvious for finite metric spaces where
the diameter is bounded. In the following we prove this claim for infinite metric spaces.

Let A be the initial configuration of the instance at hand, and let ∆ = max{δ(u, v) | u, v ∈ A}.
Consider a special iteration of Algj , and let σ be the sequence of requests served by Algj in that
iteration.

For a special iteration it is no longer the case that the initial configuration of the servers of Algj
always coincides with that of the servers of Opt that serve σ. This is because we take an arbitrary
heavy/light server classification for the first iteration of the first invocation of every algorithm.
Thus, if, say, Algj+1 takes an arbitrary heavy/light server classification, it also means that the
servers provided to Algj may not be the “right” ones. The bits of advice may then also not give
the “right” information. We now take this fact into account in the analysis for a special iteration.

Let C denote the initial configuration of the servers of Algj at the beginning of the iteration,
and let Ch ⊂ C, and Cl ⊂ C be the configuration of the heavy and light servers, respectively, as
classified by Algj . Let C∗ be the configuration of the servers of Opt that serve σ, when the iteration
starts, and let C∗h ⊂ C and C∗l ⊂ C be the configuration of the heavy and lights servers of Opt,
respectively.

We now observe that C 4 C∗ ⊆ A, and that Ch 4 C∗h ⊆ A and Cl 4 C∗l ⊆ A. This is because
the points in A are the first points in the order used to define the bits of advice. Therefore the bits
of advice may “err” only by replacing one point of A by another point of A.

We can now prove by induction on j that cost(i) ≤ 9k1/(j+1)cost∗(i) +O(5j−1k∆) (we make no
attempt to minimize the additive constant). The base case of j = 1 is established by arguments
similar to those in the proof of Lemma 5.2. We get that cost(i) ≤ 9b

√
kccost∗(i) +O(k∆).

Now consider some j > 1 and suppose that the lemma holds for every j′ < j. We first consider
the cost incurred by Algj on serving the light requests. As each light server serves at most bk1/(j+1)c
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requests, and the total number of (light) requests in the iteration is at most k, we can repeat the
line of arguments which establishes inequality (6) together with the arguments in the proof of
Lemma 5.2 to conclude that

costl(i) ≤ 2
⌊
k1/(j+1)

⌋
cost∗l (i) + 2k∆ .

As to the heavy requests, observe that there are d k

bk1−1/(j+1)ce iterations of Algj−1 in iteration

i of Algj . By the inductive hypothesis on Algj−1, and since Algj−1 is invoked with
⌊
k1−1/(j+1)

⌋
servers,

costh(i) ≤ 9 ·
(⌊
k1−1/(j+1)

⌋)1/j
cost∗h(i) + d k⌊

k1−1/(j+1)
⌋e ·O(5j−2

⌊
k1−1/(j+1)

⌋
∆)

≤ 9 · k1/(j+1) cost∗h(i) +O(5j−22k∆) .

It remains to bound from above the configuration matching cost costm(i). The crucial obser-
vation is that the heavy servers of Algj are exactly the servers used by Algj−1, hence the cost of
placing them in the desired configuration is already accounted for in the cost incurred by Algj−1.
The k−

⌊
k1−1/(j+1)

⌋
light servers of Algj reside in their initial configuration at the end of iteration

i, thus by the line of arguments that establishes inequality (7) together with the arguments in the
proof of Lemma 5.2, we conclude that

costm(i) ≤ cost∗l (i) + (k −
⌊
k1−1/(j+1)

⌋
)∆ .

It follows that the total cost incurred by Algj in iteration i is

costh(i) + costl(i) + costm(i) ≤ 9 · k1/(j+1) cost∗h(i) +O(5j−22k∆) + 2 · k1/(j+1) cost∗l (i) + 2k∆ +

cost∗l (i) + (k −
⌊
k1−1/(j+1)

⌋
)∆

= 9 · k1/(j+1) cost∗h(i) +
(

2 · k1/(j+1) + 1
)

cost∗l (i) +O(5j−22k∆) + 2k∆ +

(k −
⌊
k1−1/(j+1)

⌋
)∆

≤ 9 · k1/(j+1) cost∗(i) +O(5j−1k∆) .

Using Lemma 5.4 and 5.5 we can now conclude with the following theorem.
Theorem 5.6. For any 1 ≤ j ≤ log k, there exists a O(k1/(j+1))-competitive k-server algorithm
with 6j bits of advice.

Proof. Assume we use 6j bits of advice per request and use Algj to serve request sequence ρ starting
at configuration A. Let ∆ = max{δ(u, v) | u, v ∈ A}. Assume Algj has ` iterations in total, and let
cost(i) and cost∗(i) be the cost of Algj and of Opt, respectively, during iteration i, for 1 ≤ i ≤ `.

24



By Lemma 5.4 we have that cost(i) ≤ 9k1/(j+1)cost∗(i) for 2 ≤ i ≤ `. By Lemma 5.5 we have
that cost(1) ≤ 9k1/(j+1)cost∗(1) + β, where β is a constant that does not depend on the request
sequence. In addition, Algj moves its heavy servers at the end of the first iteration to “correct” its
configuration so that it coincides with that of Opt. This involves moving servers only between the
points of A. Therefore the cost incurred by Algj for these moves is at most k∆.

6 Conclusions

We define a model for online computation with advice. The advice provides the online algorithm
with some (limited) information regarding the future requests. Our model quantifies the amount
of this information in terms of the size b of the advice measured in bits per request. This model
does not depend on the specific online problem.

The applicability and usefulness of our model is demonstrated by studying, within its framework,
two of the most extensively studied online problems: metrical task systems (MTS) and the k-server
problem. For general metrical task systems we present a deterministic algorithm whose competitive
ratio is O(log(n)/b). We further show that any online algorithm, even randomized, for MTS has
competitive ratio Ω(log(n)/b) if it receives b bits of advice per request. This lower bound is proved
on uniform metric spaces. For the k-server problem we present a deterministic online algorithm
whose competitive ratio is kO(1/b). Whether this is best possible is left as an open problem.

We believe that employing our model of online computation with advice may lead to other
results, thus enhancing our understanding of the exact impact of the amount of knowledge an
online algorithm has regarding the future on its competitive ratio.
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